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ABSTRACT

Cellular-connected unmanned aerial vehicles (UAVs) have been introduced for

5th Generation (5G) and beyond cellular networks to enable various UAVs’ operations

which require real-time and ubiquitous connectivity. Existing solutions are relying

on orthogonal multiple access (OMA) to support existing terrestrial users (TUs) and

UAVs as new aerial users (AUs). However, OMA is unable to provide an e�cient

network performance because each orthogonal resource block can only be utilised by

a single user. To address this limitation, non-orthogonal multiple access (NOMA) can

be employed. NOMA enables AUs and TUs to share the same orthogonal resource

block. By leveraging their downlink asymmetry, NOMA could e�ciently serve the

AUs and TUs. Nevertheless, concurrently serving the AUs and TUs in cellular

networks introduces new challenges. Specifically, reverse successive interference

cancellation (SIC) policy and inappropriate NOMA power allocation might occur if

the AUs are moving in three dimensional space and perfect channel state information

(CSI) is unavailable. These issues will result in spectral ine�ciency and unreliable

communications. Due to high altitude, AUs also su�er strong inter-cell interference

(ICI) that causes the pairing of AUs and TUs in NOMA to be ine�cient. Therefore, this

thesis investigates the performance of NOMA which concurrently serves a mobile AU

and a TU in the absence of perfect CSI. Results show that pairing a mobile AU and a

TU is more beneficial than pairing TUs only. Furthermore, NOMA provides up to 99%

rate of improvement and lower outage probability as compared to OMA. Performance

analysis for AUs and TUs in multi-cell networks is also carried out by using stochastic

geometry. The analysis highlights the e�ects of di�erent network parameters and

reveals that the network performance can be a�ected by user association, receiving

antenna configuration and ICI mitigation technique. This thesis proposes and provides

an important insight about an e�cient combination of user association, transmitting and

receiving strategies known as aerial-terrestrial network NOMA. The proposed scheme

outperforms existing schemes up to 91% in terms of sum-rate and its analytical outage

probability can be as low as the order of 10�17. This thesis concludes that NOMA can

e�ciently serve the AUs and TUs in downlink cellular networks.
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ABSTRAK

Pesawat tanpa pemandu (UAV) bersambung selular telah diperkenalkan untuk
rangkaian generasi kelima (5G) dan seterusnya untuk membolehkan pelbagai operasi
UAV yang memerlukan keterhubungan masa nyata dan di mana-mana pada masa yang
sama. Penyelesaian kini bergantung pada capaian berbilang ortogon (OMA) untuk
menyokong pengguna darat (TU) sedia ada dan UAV sebagai pengguna udara (AU)
baru. Namun, OMA tidak dapat memberikan prestasi rangkaian yang cekap kerana
setiap blok sumber ortogon hanya dapat diguna oleh satu pengguna. Untuk mengatasi
pengehadan ini, capaian berbilang bukan ortogon (NOMA) dapat digunakan. NOMA
dapat menyokong AU dan TU dengan blok sumber ortogon yang sama. Dengan
memanfaatkan asimetri laluan menurun, NOMA dapat melayani AU dan TU dengan
cekap. Walaupun begitu, AU dan TU yang disokong secara serentak dalam jaringan
selular berdepan dengan cabaran yang baru. Khususnya, dasar pembatalan gangguan
berturutan (SIC) balikan dan peruntukan kuasa NOMA yang tidak sesuai mungkin
berlaku jika AU bergerak di dalam ruang tiga dimensi dan maklumat keadaan saluran
sempurna (CSI) tidak ada. Isu-isu ini akan menyebabkan ketidakcekapan spektrum
dan komunikasi yang tidak boleh dipercayai. Oleh kerana altitud tinggi, AU juga
mengalami gangguan antara sel yang kuat (ICI) yang menyebabkan ketidakcekapan
pasangan AU dan TU dalam NOMA. Lantaran, tesis ini menyiasat prestasi NOMA
yang melayani AU bergerak dan TU secara serentak tanpa adanya CSI sempurna.
Keputusan menunjukkan bahawa pasangan AU bergerak dan TU lebih bermanfaat
daripada pasangan TU sahaja. Selanjutnya, NOMA memberikan kadar pembaikan
sehingga 99% dan kebarangkalian keluaran yang lebih rendah berbanding OMA.
Analisis prestasi untuk AU dan TU dalam rangkaian berbilang sel juga dilakukan
dengan menggunakan geometri stokastik. Analisis ini menekankan pengaruh parameter
rangkaian yang berbeza dan mendedahkan bahawa prestasi rangkaian dapat dipengaruhi
oleh pertalian pengguna, konfigurasi antena penerima dan teknik pengurangan ICI.
Tesis ini mengusulkan dan memberikan pandangan yang penting berkaitan gabungan
pertalian pengguna, strategi penerimaan dan transmisi yang cekap dikenali sebagai
rangkaian udara-daratan NOMA. Skim yang dicadangkan mengatasi skim yang sedia-
ada sehingga 91% dari segi jumlah kadar dan kebarangkalian keluaran analisis serendah
10�17. Tesis ini menyimpulkan bahawa NOMA dapat melayani AU dan TU dengan
cekap dalam rangkaian selular laluan menurun.
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CHAPTER 1

INTRODUCTION

1.1 Background

Unmanned aerial vehicle (UAV), also known as drone, is an aircraft without

any human pilot onboard. It has increasingly become a promising tool in the field of

wireless communications. On one hand, UAV can be used as an aerial communication

platform such as aerial base station or aerial relay to provide wireless communications.

On the other hand, UAV can be employed as an aerial user (AU) to perform arbitrary

operations. Both of these applications are broadly termed as UAV communications but

this thesis centres mainly on the latter application.

Due to wide market availability and a�ordable price, employing UAV as an AU

is no longer an enviable practice. It has instead become rather common these days.

For example, common people have been employing UAVs for aerial photography and

drone racing. In the industry, engineers and technicians have also been using UAVs

for inspection and monitoring purposes. Compared to existing terrestrial users (TUs),

AUs exhibit unique characteristics in the communication system due to their ability to

move in the three dimensional (3D) space. Because of the nature of their applications,

AUs also have di�erent characteristics in uplink and downlink communications. This

thesis focusses on the downlink communications.

Most of the commercial UAVs are controlled via point-to-point links over the

unlicensed spectrum. Such a solution is workable but it also limits the UAVs’ operation

range to line-of-sight (LOS). To enable beyond visual line-of-sight (BVLOS) operations,

the concept of cellular-connected UAVs has been introduced in the 5th Generation (5G)

and beyond cellular networks. The key idea of cellular-connected UAVs is to serve

the UAVs as AUs via existing cellular networks. This solution is very attractive to the

telecommunication industry because this new service can help to create new revenues.
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More importantly, existing cellular networks are now widely deployed, and therefore

no significant financial investment is required to serve the new AUs.

Companies such as Qualcomm, Nokia, Ericsson, NTT Docomo, Huawei, and

ZTE have conducted field tests and performed simulations to support the new AUs.

Existing studies mainly rely on orthogonal multiple access (OMA) schemes to support

both AUs and TUs. Examples of the OMA schemes are frequency-division multiple

access (FDMA), time-division multiple access (TDMA), and orthogonal frequency-

division multiple access (OFDMA). In OMA, each orthogonal radio resource/resource

block is assigned to only a single user to prevent co-channel interference. Because of

this, OMA is unable to achieve high spectral e�ciency nor large number of concurrent

connectivity.

To address these limitations, non-orthogonal multiple access (NOMA) can be

employed. NOMA has been proposed for beyond 5G cellular networks primarily to

improve the spectral e�ciency and enable massive connectivity. In general, there are

two classes of NOMA: power-domain NOMA and code-domain NOMA. In this thesis,

only power-domain NOMA is considered. Thus, for brevity, power-domain NOMA is

also referred to as NOMA throughout this thesis. Unlike OMA, NOMA enables multiple

users (e.g., AU and TU) to share the same orthogonal radio resource/resource block

by employing superposition coding at the transmitter(s) and successive interference

cancellation (SIC) at the receivers. The users’ messages are superimposed by using

superposition coding and broadcast with an orthogonal radio resource/resource block.

The co-channel interference induced by the superposition coding is then cancelled at

the receivers by using SIC.

Intuitively, employing NOMA for AUs and TUs can improve the spectral

e�ciency and number of concurrent connectivity of the cellular networks. Previous

studies have also shown that NOMA performs well if the user channels are asymmetric.

Thus, by further leveraging the downlink asymmetricity between AUs and TUs, the

applications of NOMA for AUs and TUs could provide additional gains than that of

NOMA for TUs only. Nevertheless, the applications of NOMA for the co-existing of

2



AUs and TUs introduces new challenges. This thesis aims to address some of the key

challenges.

1.2 Problem Statements

This thesis identifies several open problems in e�ciently serving AUs and TUs

using NOMA in downlink communications. The problem statements are detailed in

the following.

1.2.1 Reverse SIC Policy and Inappropriate NOMA Power Allocation

E�ciently serving a mobile AU and a TU over a time-varying channel using

NOMA remains an open problem because reverse SIC policy and inappropriate NOMA

power allocation issues might frequently occur. In particular, the superiority of NOMA

over OMA is only guaranteed if the strong user and weak user are distinguishable. It

is ine�cient for the weak user to perform SIC and strong user to treat the co-channel

interference as noise, i.e., the reverse SIC policy. In existing terrestrial NOMA, this

issue can be addressed by using distance-based ranking [1] or classifying the types of

links [2], if perfect channel state information (CSI) is unavailable. Nevertheless, these

solutions cannot be applied to the AU due to its unique 3D mobility e�ect. Furthermore,

in downlink communications, typical TU expects high data rate whilst a minimum data

rate must be delivered to the AU to ensure its safe operation. Specifically, the command

and control (C&C) messages used for controlling the AU’s 3D mobility are delivered in

downlink communications. Therefore, inappropriate NOMA power allocation does not

only lead to spectral ine�ciency of the TU, but also high AU’s outage probability. The

high AU’s outage probability would cause unreliable communications and subsequently

a�ect the safe operation of the AU.

3



1.2.2 E�ects of Various Network Parameters in NOMA-Enabled Cellular-

Connected UAVs

Existing cellular networks are mainly designed to serve the TUs only. Thus, to

better serve the new AUs, it is important to consider the co-existence of AUs and TUs in

multi-cell networks. Existing works have shown that the AUs can experience stronger

communication links than the TUs due to the availability of LOS links. But this also

leads to two contrasting e�ects: i) a stronger link to its associated base station (BS),

and ii) a stronger inter-cell interference (ICI) from neighbouring BSs. Unfortunately,

various studies conclude that the former is unable to compensate the latter [3, 4, 5, 6,

7, 8, 9, 10]. Thus, the pairing of AUs and TUs using NOMA might be ine�cient in

the multi-cell networks. This motivates the necessity to analyse the e�ects of di�erent

network parameters on the performance of a typical AU and a TU using NOMA in multi-

cell networks. Thanks to recent advancements, the average performance of a typical

user in multi-cell networks can be analysed using the tools of stochastic geometry [11].

Nevertheless, a stochastic geometry framework that considers the co-existing of AUs

and TUs over NOMA is still missing in the literature. Furthermore, existing frameworks

cannot be directly applied to evaluate the performance of NOMA for co-existing of AUs

and TUs in multi-cell networks.

1.2.3 Strong Inter-Cell Interference in Cellular-Connected UAVs

Strong ICI of the AUs remains as a major impediment to an e�cient NOMA

system. In fact, using NOMA in existing terrestrial multi-cell networks is also

challenged by the ICI problem. This is because the SIC at the receivers can only

be used to cancel the co-channel interference induced by the superposition coding, not

the ICI. Several e�cient solutions have been proposed to mitigate the ICI of cell-edge

TUs but existing solutions such as [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] require

coordination among the BSs. For cell-edge TUs, a coordination among two to three

adjacent BSs is su�cient to address the ICI of the cell-edge TUs because adjacent BSs

are the dominant interferers and the ICI from BSs that are far away can be suppressed

by the severe terrestrial path loss. Nevertheless, AUs that hover at high altitudes
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establish strong LOS links with many other terrestrial BSs. Depending on the AU’s

altitude and the environment, the AUs might detect up to thirty terrestrial BSs [22].

Coordination among these terrestrial BSs is required to fully mitigate the strong ICI of

AUs. Nonetheless, this is not an appealing solution for the AUs because coordination

among a large number of BSs leads to high system complexity and extreme backhaul

requirements [23].

1.3 Research Objectives

This thesis aims to address the open problems discussed in Section 1.2. Based

on the same order, the corresponding research objectives of this thesis are to:

1. Design a robust aerial-terrestrial NOMA (AT-NOMA) scheme that maximises

the TU’s rate over a time-varying wireless channel subject to the AU’s rate

requirement.

2. Develop a stochastic geometric framework to analyse the e�ects of di�erent

network parameters on the performance of AT-NOMA in multi-cell networks.

3. Design an aerial-terrestrial network NOMA (ATN-NOMA) scheme that can

e�ciently mitigate the strong ICI of AU, and maximise the TUs’ sum-rate

subject to the AU’s rate requirement.

1.4 Research Scope

This thesis focuses on the theoretical network performance for the co-existence

of an AU and a TU in downlink communications. Specifically, this research is carried

out based on the principles of wireless communication theory, optimisation theory,

stochastic geometry, probability and statistics, and by using computer software such

as MATLAB and Mathematica. In each research study, the system model considers

only certain parts of the wireless communication process which are major players in

5



the analysis. These parts include path loss, multipath fading, multiple access scheme,

and user rate.

Throughout this thesis, a two-user NOMA is considered. In two-user NOMA,

the transmitter (e.g., terrestrial station (TS)/BS) pairs only two users over an orthogonal

radio resource/resource block using NOMA. The proposed schemes can be extended to

serve multiple AUs and TUs by using a multi-carrier NOMA system1. Specifically, an

AU and a TU can be paired over an orthogonal radio resource/resource block. Then,

each pair of AU and TU can be served using di�erent orthogonal radio resource/resource

block.

In NOMA, the receivers are required to perform SIC and, for simplicity,

this thesis assumes that the SIC is perfect. The implementation, aviation matters,

meteorological conditions, side information, network protocols, and backhaul

communications are assumed to be in perfect, proper, and working conditions. In

addition, all the nodes (e.g., TS, BS, AU, and TU) in the system are equipped with a

single antenna.

1.5 Research Contributions

The original contributions of this thesis are summarized as follows. In Chapter

4, a robust AT-NOMA scheme that considers the pairing of a mobile AU and a TU is

proposed. An optimisation problem that maximises the TU’s rate over a time-varying

wireless channel by optimal SIC policy and power allocation subject to the AU’s rate

requirement is formulated. Both perfect CSI and partial CSI cases are considered. The

solution of the perfect CSI case is used to provide useful insights to that of partial

CSI case. In the partial CSI case, the probabilities of AU/TU channel order are

derived in closed-form expressions. These expressions enable the recognition of strong

user and weak user, and thereby allow the proposed AT-NOMA scheme with partial

CSI to achieve a higher TU’s rate. The AU’s mobility e�ect is also considered, and

1A multi-carrier NOMA system is a combination of OMA and NOMA schemes. Specifically, users
are divided into multiple groups, each group is assigned with an orthogonal radio resource/resource
block, and users in each group are served using NOMA [24].
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suboptimal power allocation is obtained in closed-form expressions. Due to the AU’s

mobility e�ect, the proposed suboptimal power is dynamically allocated, and it exploits

the complementary cumulative distribution function (CCDF) of the AU’s channel gain

in each time slot to ensure the AU’s rate requirement is satisfied across time. In the

absence of perfect CSI, there is also a tradeo� between the TU’s rate and the reliability

of satisfying the AU’s rate requirement. To address this tradeo�, suboptimal SIC policy

and appropriate targeted probability are suggested to strike a balance between rate and

reliability.

In Chapter 5, a novel stochastic geometric framework is proposed, where the

terrestrial BSs are spatially distributed according to a homogeneous Poisson point

process (PPP) and each AU is paired with a TU using NOMA. Di�erent features such

as minimum-distance and maximum-signal-to-interference-plus-noise ratio (SINR)

based user associations, directional and omni-directional antennas, and also inter-

cell interference coordination (ICIC) are incorporated into the proposed framework.

Tractable expressions for the coverage probabilities and average rates of a typical AU

and a TU are derived. Using the derived analytical expressions, the e�ects of various

network settings and parameters are further analysed. The discussions of the analysis

provide intuitive insights on the system characteristics at a fundamental level and

practical guidelines for e�cient system design. To e�ciently serve the AUs and the

TUs, an interference-aware AT-NOMA scheme that combines the use of maximum-

SINR based user association, directional antenna with fixed beamwidth, and ICIC is

proposed. Analytical and simulation results are presented to verify the superiority

of the proposed interference-aware AT-NOMA scheme as compared to other schemes

based on di�erent combinations.

In Chapter 6, a novel ATN-NOMA scheme for the co-existence of AUs and

TUs is proposed. Specifically, each BS pairs the AU and TU in a NOMA setting

to leverage their asymmetric channel and rate demand characteristics. The proposed

ATN-NOMA scheme further employs elevation-angle based user association, the use

of a directional antenna with adjustable beamwidth at the AU, and network NOMA

to address the strong ICI issue at the AU. An optimisation problem is formulated to

maximise the sum-rate of the TUs by optimal beamwidth and power allocation subject

7



to the AU’s rate requirement, and a local optimal solution is subsequently obtained.

By leveraging the unique properties of the proposed scheme and the statistical CSI, the

probability density function (PDF) and cumulative distribution function (CDF) of the

aggregated ICI experienced at the AU are derived. Deriving the statistical properties

is a challenging task because the aggregated ICI is generally the sum of independent

non-identical gamma random variables conditioned by the number of LOS/non-LOS

(NLOS) links. Utilizing the derived statistical properties, the aggregated ICI at the

AU can be estimated reliably. Furthermore, a criterion where AU experiences zero ICI

is outlined. Specifically, AU experiences zero ICI when there are no interfering BSs

having the same elevation angle as the coordinated BSs. In such cases, the AU’s outage

probability is approximated. This analytical result helps to verify the superiority of the

proposed ATN-NOMA scheme in terms of outage probability, and confirms that the

proposed ATN-NOMA scheme is able to support reliable communications for the AU’s

links. Simulation results with di�erent network parameters and settings are presented.

The simulation results provide quantitative insights on the e�ects of AU’s interference,

and more importantly reveal the key factors that determine the performance of the

proposed scheme at a fundamental level.

1.6 Organization

The rest of this thesis is organized as follows: Chapter 2 presents the literature

review, while Chapter 3 describes the research methodology. In Chapter 4, a

robust AT-NOMA scheme that considers the pairing of a mobile AU and a TU is

proposed. In Chapter 5, a novel stochastic geometry framework is developed, a

comprehensive performance analysis is made, and an interference-aware AT-NOMA

scheme is proposed. Then, a novel ATN-NOMA scheme which can fully eliminate

the ICI of the AUs with limited number of coordinated BSs is proposed in Chapter

6. Lastly, conclusions are made and some promising future directions are outlined in

Chapter 7.
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