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ABSTRACT 

This research reports on the third order nonlinear optical (NLO) attributes for 

both nonlinear refractive indices, 𝑛2 and nonlinear absorption coefficient, 𝛽 of 

various type of organic compounds, namely 𝛼-Mangostin (𝛼-MG), Malachite green 

(MG), Light Green SF Yellowish (LGSF), Coumarin 500 (C500) and  Ponceau BS 

(PBS). The purpose of this study are comprised by optimizations of Z-scan 

measurements in order to determine the nonlinear refraction (NLR) and nonlinear 

absorption (NLA) behaviours of each compound mentioned and also to detect the 

optical limiting (OL) threshold for further applications. A single-beam Z-scan 

technique was utilized for the nonlinearity measurement. This indicated the NLA 

phenomena paralleled with the laser excitations wavelength, (𝜆 = 532 𝑛𝑚) The 

existence of vital vibrational 𝜋-bonds for intermolecular charge transfer (ICT) of the 

compounds were confirmed via Fourier Transform Infrared (FTIR) Spectroscopy. 

The vibrational 𝜋-bonds are responsible for the appearance of remarkable responds 

towards nonlinearity under intense laser power. To calculate the values of 

nonlinearity, Thermal Lens Model (TLM) fitting curve was used due to the 

significant contribution of heat in continuous-wave (CW) laser setup. For instance, 

MG, LGSF and PBS chromophores possess both NLR and NLA from closed and 

open aperture signals, respectively. It was recorded that the magnitude of third order 

optical susceptibility, |𝜒3| of the chromophores were in the order of 10-6 (MG), 10-6 

(LGSF) and  10-5 (PBS). On the other hand, 𝛼-MG and C500 revealed closed-

aperture signals only with the value of |𝜒3| in the order of 10-11and 10-8 respectively. 

The power range used in the experiment varies between each sample starting from 

0.10 W (min.) to 2 W (max.) depending to the positive respond shown in specific 

samples.  As a whole, all samples exhibited NLO properties under intense laser 

power. The open aperture signals appeared in MG, LGSF and PBS chromophore as a 

reverse saturable absorption (RSA). Thus, MG, LGSF and PBS chromophores OL 

threshold is found at 0.567, 1.154 and 1.124 W, respectively and it can be further 

developed as optical limiter for optical safety purposes.  
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ABSTRAK 

Penyelidikan ini melaporkan tentang sifat optik tak linear tertib ketiga bagi 

kedua-kedua indeks pembiasan tak linear, 𝑛2 dan pekali serapan tak linear, 𝛽 untuk 

pelbagai jenis sebatian organik seperti 𝛼-Mangostin (𝛼-MG), Hijau Malekit (MG), 

Hijau Muda SF Kekuningan (LGSF), Kumarin 500 (C500) dan Ponceau BS (PBS). 

Tujuan kajian ini terdiri daripada pengoptimuman pengukuran imbasan-Z untuk 

menentukan tingkah laku pembiasan tak linear (NLR) dan penyerapan tak linear 

(NLA) bagi setiap sebatian yang disebutkan dan juga mengesan ambang had optik 

(OL) untuk aplikasi selanjutnya. Teknik alur-tunggal imbasan-Z digunakan untuk 

pengukuran ketaklinearan. Ini menunjukkan fenomena NLA selari dengan panjang 

gelombang pengujaan laser (λ = 532 nm). Kewujudan ikatan-𝜋 getaran vital bagi cas 

perpindahan antara molekul (ICT) sebatian tersebut disahkan melalui Spektroskopi 

Inframerah Transformasi Fourier (FTIR). Ikatan--𝜋 getaran adalah 

bertanggungjawab kepada kemunculan tindak balas yang luar biasa terhadap 

ketaklinearan di bawah kuasa laser yang amat tinggi. Untuk menghitung nilai 

ketaklinearan, penyuaian lengkung Model Kanta Terma (TLM) digunakan oleh 

kerana sumbangan haba yang ketara dalam penyediaan laser gelombang selanjar 

(CW). Contohnya, kromofor MG, LGSF dan PBS masing-masing mempunyai NLR 

dan NLA dari isyarat bukaan tertutup dan terbuka. Telah dicatatkan bahawa 

magnitud kerentanan optik tertib ketiga, | 𝜒3| kromofor berada dalam lingkungan 10-

6 (MG), 10-6 (LGSF) dan 10-5 (PBS). Sebaliknya, α-MG dan C500 mendedahkan 

isyarat bukaan-tertutup sahaja dengan nilai | 𝜒3| masing-masing dalam lingkungan 

10-11 dan 10-8. Julat kuasa yang digunakan dalam eksperimen ini adalah berbeza 

antara setiap sampel, bermula dari 0.10 W (min.) hingga 2.00 W (maks.) bergantung 

pada tindak balas positif yang ditunjukkan dalam sampel yang tertentu. Secara 

keseluruhanya, semua sampel mempamerkan sifat NLO di bawah kuasa laser yang 

amat tinggi. Isyarat bukaan terbuka muncul dalam kromofor MG, LGSF dan PBS 

sebagai penyerapan tepu songsang (RSA). Maka, ambang OL kromofor MG, LGSF 

dan PBS masing-masing didapati pada 0,567, 1,154 dan 1,124 W dan ianya dapat 

dikembangkan sebagai pengehad optik untuk tujuan keselamatan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Since the discovery of laser in 1960s by Theodore H. Maiman at Hughes 

Research Laboratories [1] formulated rigorous theoretical work by Charles Hard 

Townes and Arthur Leonard Schawlow, nonlinear optical (NLO) attributes of various 

compounds have seen to become reachable to date [2-5]. NLO is a branch of optics 

that explains the behaviour of intense light to interact with matter [6]. Technological 

advancement has created various necessities that press the demand in order to 

complement the needs especially related to the nonlinear phenomenon, e.g. self-

focusing [7], Kerr-lens mode-locking [8], self-phase modulation [9], multiphoton 

absorptions [10], optical soliton [11], modulational instability [12], etc. The modern 

applications such as ultra-high definition (UHD) and high definition (HD) display 

[13, 14], great-performance transmitting optical fibres [15-17], and laser-

manufactured in medicine [18-21] are seen more accessible to date. In order to find 

novel materials with relatively huge value of third-order susceptibility, 𝜒(3) 

continuous efforts globally have been made to achieve the modern lifestyles [22-26]. 

 Materials like metal complexes [27, 28], nanocomposites [29, 30], organic 

compounds [31, 32],  hybrid materials [33, 34], etc., are sought and utilized for the 

excellent outcomes. However, off those, single organic compounds were seen as 

potential candidates to exhibit the demand mentioned. Organic molecular framework 

is highly favoured over the inorganic ones [35]. Organic material provides the 

structural flexibility and ability to maximize NLO responses by varying the 

substituents and respective positions over the molecular framework [36]. As a result, 

a series of organic compounds were chosen in this study through its unique chemical 

structures systematically organize by aromatic hydrocarbons which later show 
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prominent NLO attributes. Some of these compounds are not yet reported by any 

individual within NLO field as it remains hidden. Thus, this is a golden opportunity 

to unleash the hidden attributes as these organic compounds hold.  

Furthermore, this research was done by proposing a Z-scan technique where 

Z-scan was first discovered in 1989 by M. Sheik-Bahae et al. at Centre for Research 

in Electro-Optics & Lasers, Florida [37]. It is a technique that is well known for its 

simplicity and accuracy to obtained both values of nonlinear refraction (NLR) and 

nonlinear absorption (NLA) at once [38, 39]. In fact, there are various methods to 

determine nonlinearities of material namely nonlinear interferometry [40], 

degenerate four wave-mixing [41], ellipse rotation [42] and beam distortion method 

[43]. However, those methods are rather complicated and insensitive as compared to 

Z-scan technique.  

1.2 Problem Statement 

In the recent past, rapid technological advancements in optoelectronic have 

placed a great demand on the development of nonlinear material that possesses large 

nonlinearities and satisfying various technological requirements for photonic device 

applications. Due to this reason, the NLO properties of various solid-state, inorganic, 

and organic materials have been, and are being, extensively investigated for such 

purposes. However, majority of the materials stated above suffer from poor photo-

thermal stability, low dissolvability, and complicated preparation virtue. Apart from 

it, organic compounds are considered as promising candidates due to their large 

optical nonlinearities and fast response, applicability over a wide range of visible 

spectral region, photochemical stability, and high damage thresholds.  

For any NLO materials investigated, there is a need to explore their properties 

through the determination of NLR, and NLA magnitudes in order to establish their 

potential applications in the appropriate field of interest. In particular, there are less 
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critical appraisals on the group of organic compounds namely 𝛼-Mangostin, 

Malachite Green, Light green SF Yellowish, Coumarin 500 and Ponceau BS for this 

matter. Their NLO potential is yet to be explored in detail leaving significant insight 

on their respective third-order NLO behaviours. Therefore, this study was proposed 

with the urged to determine the sign and magnitude of its nonlinear refractive index, 

𝑛2, nonlinear absorption coefficient, 𝛽, 𝜒(3) as well as the optical limiting (OL) 

ability of such organic compounds mentioned under intense continuous-wave (CW) 

laser illumination,  

1.3 Research Goals 

The main objective of this study is to determine the third-order NLO response 

of various organic compounds at 532 nm via Z-scan technique. In order to achieve 

this goal, there are specific objectives need to be achieved:  

1. To align and optimize the Z-scan setup with respect to its open and closed-

aperture responses.  

2. To determine and analyse the NLR and NLA behaviours of organic samples 

including its 𝑛2, β, and magnitude of  |𝜒|(3). 

3. To determine the OL threshold of such organic compounds under intense CW 

laser illumination subjected to the presence of NLA. 

 

1.4 Scope of Study 

This study focuses on single organic compounds and its interaction with  

different laser power. The laser excitation source was chosen at 𝜆 = 532 nm using 

CW diode-pumped solid-state (DPSS) laser. The organic compounds samples were 

purchased from Sigma-Aldrich (Ponceau BS, Malachite Green, Coumarin 500, Light 

green SF Yellowish) without further purification while 𝛼-Mangostin sample was 
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synthesized in the laboratory. A Z-scan method was used as the primary 

experimental setup to operate and determine the value of NLO attributes in term of 

NLR and NLA for each compound. Specific values of 𝑛2, β and 𝜒(3) were calculated 

based on the theoretical Thermal Lens Model (TLM) framework considering the 

prominent thermal effect arise from the CW laser source. The OL properties of 

samples were examined in the range of 0 to 2.0 W. 

1.5 Significant of Study 

NLO materials play a pivotal role in the future evolution of nonlinear optics 

and its impact in technology and industrial applications are excellent. In the field of 

optics, nonlinear effects became a subject of interest only after the invention of the 

laser. Since then, nonlinear optics had become a rapidly growing field in Physics. 

Nonlinearities are found everywhere in optical applications and at present, NLO 

properties of many optical materials with significant relevance to technological and 

optical applications have been found. In the present scenario, where a lot of emphasis 

is devoted to the growth and structural elucidation of NLO materials, this word 

presents a detailed investigation of the NLO properties of selected single organic 

compounds. Conclusively, the significances of this study mainly contribute towards 

the increment of our underlying knowledge on the nonlinear behaviours of 𝛼-

Mangostin, Malachite green, Light green SF Yellowish, Coumarin 500 and  Ponceau 

BS to be specific. Understanding and quantifying the physics of such process gives 

an insight into the field of nonlinear optics. A successful development of the 

proposed study leaves a direct benefit for scientific awareness of the country, and the 

whole research activities can be used for future references. 
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