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ABSTRACT 

Due to the expensive operation and stringent effluent requirements of 

wastewater treatment plants, the wastewater treatment operator has been forced to 

find an alternative to improve the current control strategy, particularly for those using 

conventional activated sludge systems. The goal of this research is to design a 

controller capable of reducing aeration energy while improving effluent quality. The 

objectives are met through a technique known as ammonium-based aeration control 

(ABAC). In this study, neural network (NN) – ABAC was designed and proposed for 

the Benchmark Simulation Model No. 1. The simulation results were compared to 

those of the proportional-integral (PI) controller and PI ABAC control 

configurations. During the NN training, a dropout layer was added to improve NN 

generalization. The simulation results show that the dropout layer successfully 

reduced the complexity of the NN while maintaining a good mean squared error and 

regression value. When compared to PI, the proposed NN – ABAC is more effective 

in terms of energy efficiency by lowering aeration energy by up to 23.86%, 

improving effluent quality by up to 1.94%, and lowering the total overall cost index 

by up to 4.61%. The findings suggest that the NN – ABAC has the potential to 

improve the performance of the activated sludge system. 
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ABSTRAK 

 

Disebabkan oleh pengoperasian yang mahal dan keperluan efluen yang ketat 

bagi loji rawatan kumbahan, pengendali rawatan kumbahan terpaksa mencari 

alternatif untuk menambah baik strategi kawalan semasa, terutamanya bagi mereka 

yang menggunakan sistem enapcemar aktif secara konvensional. Matlamat 

penyelidikan ini adalah untuk mereka bentuk pengawal yang mampu mengurangkan 

tenaga pengudaraan di samping meningkatkan kualiti efluen. Objektif dicapai 

melalui teknik yang dikenali sebagai kawalan pengudaraan berasaskan ammonium 

(ABAC). Dalam kajian ini, rangkaian neural (NN) – ABAC telah direka bentuk dan 

dicadangkan untuk Model Simulasi Penanda Aras No. 1. Keputusan simulasi telah 

dibandingkan dengan pengawal kamiran berkadar (PI) dan konfigurasi kawalan PI 

ABAC. Semasa latihan NN, lapisan penciciran telah ditambahkan untuk 

meningkatkan pengitlakan NN. Keputusan simulasi menunjukkan bahawa lapisan 

penciciran berjaya mengurangkan kerumitan NN sambil mengekalkan nilai ralat min 

kuasa dua dan regresi yang baik. Jika dibandingkan dengan PI, NN – ABAC yang 

dicadangkan adalah lebih berkesan dari segi kecekapan tenaga dengan menurunkan 

tenaga pengudaraan sehingga 23.86%, meningkatkan kualiti efluen sehingga 1.94%, 

dan menurunkan jumlah indeks kos keseluruhan sehingga 4.61% . Penemuan 

menunjukkan bahawa NN – ABAC mempunyai potensi untuk meningkatkan prestasi 

sistem enapcemar aktif. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Wastewater treatment plant (WWTP) is the key infrastructures for protecting 

public health by preserving water resources and safeguarding the environment for a 

sustainable future. Wastewater treatment is a combination of mechanical, biological, 

and chemical treatments which makes it considered a big-scale and complex process. 

Apart from that, WWTP is a complex system with nonlinear dynamics and has 

strong interactions with the multivariable system (Foscoliano et al., 2016; Roxana & 

Ioan, 2016). The influent of the WWTP exhibits oscillating behavior which subjects 

to large disturbances in the flowrate and uncertainties with reference to the 

composition of the influent, thus making them hard to control (Silvana Revollar et 

al., 2017). 

For this research, the scope is on the biological treatment process which is a 

part of the secondary treatment. The wastewater entered the secondary treatment 

after it has gone through the mechanical treatment which are the filters that are 

committed to the removal of gross solids, sand, oil, and grease. In the biological 

treatment process, several organic components (i.e., soluble inert organic matter and 

particulate inert organic matter) and forms of nitrogen (i.e., nitrate and nitrite 

nitrogen, soluble biodegradable organic nitrogen, and particulate biodegradable 

organic nitrogen) are eliminated.  

The activated sludge process (ASP) is the most widely used biological 

treatment process in WWTP to reduce the biochemical oxygen demand (BOD), 

nutrients, and some other micro-pollutants. In principle, all activated sludge systems 

consist of three main components which are aeration tank, settling tank, and a return 
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activated sludge as shown in Figure 1.1. In the aeration tank, bacteria are used for 

nitrification, which is a process that converted ammonia to nitrite and denitrification 

which is a process that converted nitrite to nitrate which can be illustrated as in 

Figure 1.2. In this process, the bacteria need dissolved oxygen (DO) for growth. 

Normally, WWTP facility usually pretty „dead‟ in the sense that minimum life exists 

and DO level is nearly zero. Therefore, aeration turbines are employed in wastewater 

treatment to give the bacteria with the required DO concentration in the aeration 

tank. 

 

Figure 1.1 The activated sludge process 

 

 

Figure 1.2 Nitrification and denitrification illustration 

The ideal aeration control is highly important for the biological treatment 

process. The complex interaction in the biological phenomena in the ASP itself and 

the huge range of time constant e.g., oxygen transfer occurs within minutes; sludge 

properties changes over a period of days, has contributes to the difficulty in the 

operation and process control of WWTP (Amand & Carlsson, 2012; Nguyen et al., 

2020). Apart from that, the DO concentration must be adequate to withstand the 
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designated nitrogen removal rate. If the value of DO is set too high, however, it will 

result in higher costs and worse efficiency.  

Table 1.1 shows an overview of the effects of various aeration rate 

circumstances. When the aeration rate is excessively high, not only is energy 

squandered, but so is the operational expense. Solids, which are waterborne particles 

larger than 2 microns in diameter, will also be increased. If too much DO is provided 

to the bacteria/microbe, a major operation problem known as activated sludge 

breakup occurs, causing the flocs to break up. Later on, this state will pose problems 

with the settling process. 

On the other hand, if the aeration rate is too low, the process will operate 

poorly, and nitrification will be lost as a result of the lack of bacteria available to 

convert ammonia to nitrite. Apart from that, if the aeration rate is too low, a septic 

aeration tank situation might emerge, which is a condition in which there is no DO in 

the tank. If this happens, the bacteria will die, and the biological process would slow 

down, emit odours, and result in incomplete pollutants conversion. Bacterial death 

takes time and cost a lot of money to reestablish. 

Table 1.1 The effect of the different condition of aeration rate 

Aeration rate 

condition 

Too high Too low 

Description  Energy is wasted. 

 Operating cost is 

increased. 

 Solids are increased. 

 The breakup of 

activated sludge 

 Septic aeration tank 

 Poor process (nitrification) 

performance 

 Loss of nitrification 
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WWTP is facing more stringent effluent standards which were formed for a 

safer ecosystem (Pisa et al., 2019). The WWTP industry must come up with a 

solution that abides by the stringent effluent requirements and is also economical.  

Studies have shown that the energy consumption in biological systems such 

as the ASP, biological trickling filters, and membrane bioreactors can be curbed 

through good control of the aeration system. The issue of energy consumption has 

been investigated by various researchers and the findings suggest that the aeration 

section which is needed in the WWTP to detract nitrogen and natural or inorganic 

carbon in the biological process, contributes to 50-90% of the electricity used by a 

WWTP depending on its size and the employed technological solution (Drewnowski 

et al., 2019; Ghoneim et al., 2016). The aeration section of the WWTP's biological 

reactors requires a lot of energy to ensure that the microorganisms in the activated 

sludge have optimal access to oxygen via aeration devices such as surface aeration 

(mechanical) and diffused aeration (coarse, medium, fine bubbles). 

In the last decade, there have been various studies investigating the 

effectiveness of various controller designs utilizing DO control in lowering the 

aeration cost. This control configuration is the highlight during that time due to the 

availability of a DO sensor probe that can continuously measure the DO 

concentration in the tank. The fundamental of using the DO sensor probe is to control 

the DO supply according to the oxygen demand of the microorganism in the tank. 

However, this solution has weaknesses due to the difficulty in getting the exact value 

of the actual oxygen demand by the microorganism at a specific time, thus, most of 

the proposed DO control strategies implemented an elevated DO set point to avoid 

nitrification failure. The DO control strategy has been extensively studied and many 

viable solutions have been developed and proposed, for example, model predictive 

control (MPC) (Cheng et al., 2021; El bahja et al., 2018; H. Han, Liu, et al., 2019; 

Hassen & Asmare, 2018; Sheik et al., 2021), Proportional Integral Derivative (PID) 

(Du et al., 2018; Nguyen et al., 2020), fuzzy and neural network (NN) control (H. 

Han, Liu, et al., 2019).  
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However, even with the DO control strategy, the aeration cost issues persist 

as DO control requires aerators and turbines which are operated by electrically 

powered motors that add extra cost to the system. This calls for a paradigm shift in 

the choice of methodology to solve the problems of energy consumption and cost of 

aeration control. This issue was explored in the publication by Linda Åmand et. al 

(2014) which has suggested that the aeration process can be regulated either using 

the aeration concentration control or tweaking the DO set point level corresponding 

to the ammonium (SNH) concentration in the effluent (Åmand & Carlsson, 2014).  

1.2 ABAC as a Alternative Solution to Aeration Cost Issue  

During the last ten years, the ion-selective electrodes (ISEs) SNH sensor probe 

has become available for online processes. This is developing technology and has led 

to the introduction of ammonium-based aeration control (ABAC). ABAC is an 

approach that utilizes the SNH concentration level in the effluent flow to decide on the 

DO set point for the controller of the aerated zone. The ABAC has a variation of the 

DO concentration based on the ammonia concentration in the effluent and the 

aeration intensity is changed according to the process requirement which helps to 

lessen the energy consumption without raising the effluent SNH load.  

ABAC is a control strategy that uses SNH as a response variable in addition to 

or in place of DO. ABAC has been introduced to overcome some of the inherent 

limitations of DO control strategy and it is used mainly for two reasons; to restrict 

aeration and to shrink effluent SNH peaks. Several techniques have been recently 

proposed regarding ABAC, ranging from a conventional Proportional Integral (PI) 

ABAC control (Åmand & Carlsson, 2014; Uprety et al., 2015; Várhelyi et al., 2018), 

to advanced MPC ABAC (Santin et al., 2015b; Santín et al., 2015, 2016).  
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From the literature study, it is observed that most pilot or real plants are using 

the PI control in their ABAC configurations. The PI controllers used are of 

decentralized configuration. This configuration is favorable because there is no need 

to deal with the coupling problem in a multi-input multi-output (MIMO) system. 

However, a PI/PID controller is difficult to adjust to changing conditions, resulting in 

poor water quality (Y. Zhang & Wei, 2019). Apart from that, the nonlinearity and 

long time-delay characteristics of WWTP have a substantial influence on the PI/PID 

controller's parameters, so the control effect may be inadequate and the parameters 

are not self-adjusted (Du et al., 2018).  

On the other hand, advanced control scheme like MPC is proven to be able to 

produce better results compared to PI controllers but MPC is also known to be 

computationally complex (Chistiakova, 2018) and it is difficult to be applied online 

in a real plant (Du et al., 2018). All the studies in the literature indicated that the 

MPC is implemented using simulation work only.  

This thesis aims to focus on an alternative control strategy that is more 

streamlined with lower complexity is desirable especially if the aim is to apply the 

controller in the real or pilot plant. The study aims to develop a direct feedback 

ABAC control of a biological WWTP that focuses on the reduction in the number of 

violations in Ntot and SNH concentration, which are considered as the two most 

important effluent pollutants. Direct feedback configuration will only require one 

controller to control the airflow to the basin. With this aim in mind, a new 

multivariable NN – ABAC is proposed to be applied in the chosen simulation 

platform which is Benchmark Simulation Model No. 1 (BSM1). BSM1 is the plant 

model and associated control strategy that serves as a baseline for simulation-based 

comparison of control strategies applicable to WWTP simulation studies. The 

International Water Association (IWA) Task Group on Benchmarking Control 

Strategies for WWTP developed BSM1. More information on BSM1 can be found in 

Chapter 2. NN is chosen to be used to design the controller due to its simplicity and 

non-linear approximation ability. 
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1.3 Problem Statement  

The key objective of the ABAC control strategy is to lower aeration costs, 

lowering total WWTP costs while maintaining effluent quality below the permissible 

limit. The inconsistency between aeration cost and effluent quality is a serious 

problem in achieving this goal. More DO is needed to provide more oxygen to the 

bacteria, however this will result in higher aeration costs, but improved effluent 

quality. However, if the DO is severely limited, less nitrification and denitrification 

occurs, potentially resulting in poor effluent quality. As a result, the key to a 

successful ABAC development is finding the appropriate balance between effluent 

quality and aeration cost in order to achieve optimal performance. The existing 

controller, PI ABAC, has a limitation in that the operator must choose between 

effluent quality and cost. Aside from that, single input single output (SISO) 

controllers such as PI ABAC were chosen to avoid control parameter interaction in 

multivariable plants such as WWTP. According to studies, multivariable control for 

WWTP can produce good effluent quality while keeping operating costs low (Mulas 

et al., 2016). However, as previously stated, the main issue with multivariable control 

is the coupling problem, which can make tuning the multivariable controller difficult.  

The main issue in the development of ABAC control strategy is to develop a 

control strategy that is more efficient with less complexity. NN offer many 

advantages if implemented in ABAC control strategy including simplicity and a good 

decoupling control due to its excellent nonlinear approximation ability. However, 

there are some drawbacks to using NN, such as the fact that in the presence of 

disturbance, the generalisation ability may struggle to maintain a consistent DO 

concentration when applied to highly nonlinear plants such as wastewater treatment 

(Y. Zhang & Wei, 2019). Furthermore, NN control necessitates a large number of 

computations, which increases computational time (Du et al., 2018; Y. Zhang & Wei, 

2019).  

  



 

8 

Thus, for the NN – ABAC proposed in this study, a two-input single-output 

(TISO) NN system is designed with SNH and DO concentrations are applied as 

independent inputs to the system and oxygen transfer coefficient (KLa) as output.  A 

substantial coupling problem may occur; however, the proposed NN control will 

operate as a decoupling control of the MIMO system due to its excellent nonlinear 

approximation ability. In this study, a dropout layer is also added to the NN to 

improve the network's generalization capability and lower the computational 

complexity to solve the problem of generalization and computation time. The result 

is an NN – ABAC capable of producing a reduced aeration cost while maintaining 

permitted effluent quality.  

1.4 Research Objectives 

The objectives of this study are as follows: 

(a) To design a multivariable NN – ABAC for BSM1 that capable of reducing 

the aeration cost and improve the effluent quality.  

(b) To compare the performance of the NN – ABAC with and without the 

dropout layer in terms of mean square error, regression value, and 

computational time.  

(c) To measure the performance of the NN-ABAC in terms of energy efficiency, 

EQ, and overall cost index (OCI) under different variations. 
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1.5 Research Scope 

The scope and limitation of this study are as follows:  

(a) The simulation work is performed using BSM1 described in (Alex et al., 

2008) using MATLAB
(TM)

 Simulink simulation platform, as shown in 

Appendix A. 

(b) The sensor for SNH is designed according to the description given in the 

BSM1 manual and the MATLAB
(TM)

 Simulink block is shown in Appendix 

B. 

(c) Five effluents are highlighted in the discussion which are: total nitrogen (Ntot) 

– maximum limit at 18 g/l, BOD – maximum limit at 100 g/l, chemical 

oxygen demand (COD) – maximum limit at 4 g/l, ammonia (SNH) – 

maximum limit at 30 g/l and total suspended solids (TSS) – maximum limit at 

10 g/l.  

(d) Comparison is done between the proposed NN-ABAC and the BSM1 PI 

controller and PI ABAC. 

1.6 Organization of the Thesis 

After the brief introduction and research background in Chapter 1, Chapter 2 

continues with literature on aeration control from its introduction to the current 

development in the subject. Aeration control and issues related to energy cost and 

stricter effluent standards will be thoroughly discussed. It includes the ABAC 

structure to emphasize the significant contributions to the problems by other 

researchers and to identify the research gap in which this study fits in and its 

significance to the subject. A further focus is put upon the use of NN in undertaking 

the problems. Finally, it ends with a critical review of the literature that motivates the 

implementation of the NN-ABAC.  
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Chapter 3 presents the implementation of the neural ABAC to manipulate the 

oxygen transfer coefficient in the BSM1. This is followed by an explanation of the 

criteria for the performance evaluation of the NN-ABAC. 

In Chapter 4, the NN-ABAC is implemented in the BSM1 plant and is 

evaluated under various weather conditions (dry, storm, and rainy weather). The 

performance of the proposed controller in terms of the effluent violation, effluent 

quality, and total overall cost index are observed and calculated. The results are then 

compared with the results of the benchmark model to highlight the improvement 

brought forth by the proposed controller. Results are presented quantitatively with 

the use of graphs and charts to highlights the difference in performance between the 

benchmark and PI ABAC, which most other researchers used. Discussion on the 

results will be performed to highlight the outcomes from the simulations. 

Chapter 5 will conclude the thesis. A thorough analysis is made regarding the 

findings from the simulations and a comparison to evaluate the outcome of the study. 

The performance of the NN-ABAC is summarized here, and further development 

potentials are highlighted. Reflections of the acquired results and the objectives are 

also discussed. Finally, the recommendation of future research work is included as 

the closure for the chapter and the thesis.  
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