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ABSTRACT

Industries are moving towards automation and the usage of machines such as 

Automated Guided Vehicle (AGV) is increasing. Thus, demands for the reliability of 

AGVs are increasing as they have various complex tasks to carry out. Unfortunately, 

AGVs are still susceptible to faults and breakdown. Therefore, fault detection is 

important to provide means of self-diagnosis on AGV. However, fault detections are 

generally threshold based which are unsatisfying in terms of accuracy and are prone 

to false triggering. Extended Kalman Filter (EKF) has limitations in handling 

nonlinear models while Unscented Kalman Filter (UKF) seems promising. Support 

Vector Machine (SVM) was used as a fault detection method. Thus, this research 

proposes a sensor fusion enhanced with SVM for fault detection on AGV. The first 

objective of this research is to develop a test AGV. This AGV is a two-wheeled 

differential driven mobile robot with multiple sensors and able to make various types 

of movements to emulate an industrial AGV. Next objective is to develop an 

enhanced sensor fusion method using EKF and UKF for fault detection with SVM on 

AGV. The last objective is to evaluate the performance of the developed method. 

Experiments were carried out where the AGV was used as a test bed for sensor 

fusion and fault detection. The AGV was tested in different experiment setups such 

as different track layout, different wheel condition, and different castor conditions. 

Result shows that UKF handles changes and non-linearity better than EKF. The 

average residual generated during the test for UKF is 0.0083 meter while for EKF is

0.0129 meter. With sensor fusion, deviations in odometry data can be compensated 

with the usage of a LiDAR sensor as reference. Using UKF parameters to detect 

fault, the accuracy achieved with SVM is 64.2% compared to 37.9% without SVM. 

Fault detection accuracy using EKF parameters with SVM is 82.5% while without 

SVM is 41.0%. As a conclusion, the results show SVM improves fault detection 

accuracy regardless of using UKF or EKF.
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ABSTRAK

Industri sedang menuju ke arah automasi dan penggunaan mesin seperti 

kenderaan panduan automatik (AGV) semakin meningkat. Oleh itu, permintaan 

untuk AGV yang boleh diharap semakin meningkat kerana adanya pelbagai tugas 

kompleks untuk dijalankan. Malangnya, AGV masih tidak bebas daripada masalah 

dan kerosakan. Oleh itu, AGV harus mempunyai kemampuan untuk menjalankan 

pemeriksaan kendiri untuk masalah dan kerosakan. Walaubagaimanapun, kaedah 

pengesanan kerosakan secara amnya adalah berdasarkan nilai ambang yang tidak 

memuaskan dari segi ketepatan. Penapis Kalman Berlanjutan (EKF) mempunyai 

cabaran mengendali model tidak linear sedangkan Penapis Kalman Tidak Berbau 

(UKF) menunjukkan potensi. Mesin Sokongan Vektor (SVM) telah digunakan untuk 

kaedah pengesanan kerosakan. Justeru, kajian ini mencadangkan kaedah pelakuran 

penderia yang dipertingkatkan dengan SVM untuk pengesanan kerosakan pada 

AGV. Tujuan pertama kajian ini adalah untuk membangunkan sebuah AGV. AGV 

ini adalah robot pacuan berbeza dua roda dengan pelbagai penderia yang boleh buat 

pelbagai gerakan untuk menyerupai AGV industri. Tujuan seterusnya adalah untuk 

menghasilkan kaedah pelakuran penderia yang diperbaiki dengan EKF dan UKF 

untuk pengesanan kerosakan dengan SVM pada AGV. Tujuan terakhir adalah 

menguji prestasi kaedah yang telah dihasilkan. AGV telah digunakan dalam kajian 

untuk menguji pelakuran penderia dan pengesanan kerosakan. AGV tersebut telah 

diuji dengan keadaan yang berbeza seperti susunan atur trek, keadaan roda dan 

keadaan kastor yang berlainan. Hasil kajian menunjukan bahawa UKF mengendali 

perubahan dan model tidak linear lebih baik daripada EKF. Nilai perbezaan antara 

anggaran dan sebenar yang dijanakan semasa ujian untuk UKF ialah 0.0083 meter 

dan untuk EKF ialah 0.0129 meter. Penyelewengan dalam data odometri boleh 

diperbaiki dengan penggunaan peranti pengesanan cahaya dan penjarakan sebagai 

rujukan. Ketepatan pengesanan kerosakan dengan penggunaan nilai UKF ialah 

64.2% dengan SVM dan 37.9% tanpa SVM. Ketepatan pengesanan kerosakan 

dengan penggunaan nilai EKF ialah 82.5% dengan SVM dan 41.0% tanpa SVM. 

Kesimpulannya, hasil kajian menunjukan bahawa SVM memperbaiki ketepatan 

pengesanan kerosakan tanpa mengira samada menggunakan UKF atau EKF.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this era of Industry 4.0, more solutions are moving towards automation and 

such automated solutions are automated guided vehicle (AGV). According to the 

International Federation of Robotics, the population of service mobile robot were 4 

million and is increasing to about 31 million in 2014 till 2017 [1]. AGV is a type of 

self-propelled, mobile robot and is capable of carrying out task. AGVs are deployed 

in industrial environment to automate industrial operation and to cut down operation 

cost [2]. In a warehouse, operation cost can be costly with manual labour due to 

employee salary. The operation is less efficient due to the limitation of human 

workers where human workers can feel exhausted and are prone to health problems. 

AGV as machines, work tirelessly and continuously to ensure high productivity. 

AGV as robot seems suitable for any task which are too Dangerous, too Dull, too 

Dirty and too Difficult (4Ds) to be done by humans [3]. Modern AGVs are equipped 

with more different sensors, allowing them to complete complex tasks. Sensors play 

a vital role on AGVs to acquire information from the environment so AGVs may 

operate properly in its working environment [4]. By using sensor fusion, the 

combination of data from more than one sensor enables better robot perception. 

Uncertainties in sensors can be reduced and the accuracy and reliability of AGVs can 

be increased with better perception. However, machines can break down and cause 

business losses and potential harm to the workers. Thus, there is an increase in 

demands regarding the reliability and maintenance [5]. With fault detection, 

anomalies in performance of AGV can be detected which could help improve 

reliability of AGV. Thus, this research aims to design and develop an enhanced 

sensor fusion algorithm for fault detection in AGV with better accuracy. Hence,
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sensor fusion method with better estimation accuracy could contribute to better fault 

detection accuracy.

1.2 Problem Statement

Modern AGVs are equipped with more sensors to collect information on the 

AGV itself and its surrounding. Data generated from sensors enable AGV functions 

such as detecting obstacles and performance and status monitoring. Information on 

the AGV can be utilized to optimize maintenance work on AGV. Efficient 

maintenance can save time and cost which is beneficial.

The weakness of currently utilized AGV systems are the cost for installation, 

efficiency of the system, flexibility of the system and the safety of the system [5]. 

The challenges in fault detection includes robustness, multiple fault diagnosis and 

real time diagnosis [6]. Failure in mobile robot system may cause robot to be off 

navigation which will be hazardous to human and degrades service performance [7]. 

Hence, the AGV should be capable of fault detection with multiple sensors for fault 

diagnosis and the sensors installed should be reliable so the AGV and its fault 

detection is robust while dealing with uncertainties in practical operation. The 

importance of fault detection is that it would bring more advantages not only to the 

mobile robot itself but also to maintenance planning and safety [8].

Residual generation is vital for most case in fault detection. Model based 

methods are preferred as data driven based methods are computationally costly. Most 

previous sensor fusion for fault detection work uses extended Kalman filter (EKF) 

which has limitation in handling nonlinear model [9]. This limitation causes low 

accuracy of the generated estimated value. Limited accuracy of the generated 

estimated value using EKF causes the fault detection to be unsatisfying in terms of 

accuracy. There are other sensor fusion methods claimed to have better estimation 

accuracy than EKF when used on other applications such as unscented Kalman filter 

(UKF). As for fault detection algorithm, previous work mostly relies on thresholding
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of residual values generated which can be falsely triggered due to inaccuracies of 

EKF. Classification methods such as support vector machine (SVM) can be used to 

identify abnormalities in AGV performances.

1.3 Objective of Research

The purpose of this research is to design and develop enhanced sensor fusion 

for fault detection on AGV. The objectives of this research are:

i. To design and develop an AGV as a test bed for fault detection. Sensors 

such as current sensor and encoder will be implemented on the test 

AGV.

ii. To design an enhanced sensor fusion and fault detection method on 

AGV. Multiple sensor data generated on test AGV will be fused using 

EKF and UKF. SVM will be used for fault detection.

iii. To evaluate the performance of methods on AGV and compare 

performance for fault detection on AGV. The performance of methods 

is measured in terms of estimation accuracy of sensor fusion method 

and the fault detection accuracy.

1.4 Scope of Research

A prototype AGV will be designed and developed as a test bed to experiment 

sensor fusion methods and fault detection. A two wheeled differential drive mobile 

robot will be used as the test AGV. Sensors are to be applied to the AGV. These 

sensors are vital for an AGV operations as the data outputs from these sensors can be 

used to measure the performance of the AGV and its fault detection capabilities.
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Next, the test AGV uses Arduino Mega microcontroller as controller to 

govern the operation of the test AGV. Some C programming as prerequisite for 

coding the program to drive the actuators of the test AGV and to control the sensors. 

The Raspberry Pi 4 is to collect and analyse data, computing the sensor fusion 

algorithm. The programming environment to run sensor fusion and fault detection 

algorithm is mostly in Python programming language.

Lastly, the performance of the fault detection will be evaluated using residual 

calculation and error evaluation. The generated residual will be evaluated using SVM 

for fault detection. Based on the residual values calculated, the accuracy of 

estimation of each sensor fusion method can be measured and abnormality on AGV 

can be detected using fault detection method.

1.5 Thesis Outline

This report is divided into five chapters with Chapter 1 being the introduction 

of this report where problem statement, objective and scope of research are 

discussed. Chapter 2 is the literature review where research and review of AGV, 

sensor fusion and fault detection are discussed and summarized. Chapter 3 is where 

the project methodology is explained in detail. Experiment setup and execution to 

test the AGV test bed, sensor fusion and fault detection methods are mentioned in 

Chapter 3. Next, Chapter 4 is the result and outcome of the experiment mentioned in 

Chapter 3. Finally, Chapter 5 is the conclusion and suggestion for future work of this 

project. This final chapter is to summarize the research based on the findings in 

previous chapters and to proposed possible improvements for future research work.
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