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ABSTRACT 

The sonic log is the pivotal parameter for the reservoir description and fluid 

identification and is extensively applied in determining mechanical rock properties for 

rock physics, quantitative seismic interpretation, and geomechanics application. There 

is frequently a paucity of shear wave velocity (Vs) data in oil and gas exploration wells 

which is relatively due to poor borehole conditions (washout), damaged tools, offset 

well data, and quite expensive. This paper aims to provide a solution to predict the 

compressional wave (Vp) and shear wave velocities (Vs) by machine learning (ML) 

model using the original petrophysical data from an oil and gas sandstone reservoir in 

the Malay Basin and build a generalisable ML model. The ML framework is based on 

Cross Industry Standard Process for Data Mining (CRISP-DM) workflows and 

Exploratory Data Analysis (EDA) as an iterative cycle to analyse and tune the 

algorithms. First, appropriately address the composite data and its associated 

uncertainties through data pre-processing. Second, set the data splitting and evaluate 

the prediction model’s through several regressions. Third, run an optimization 

algorithm to search for the best hyperparameters for the regressor to optimize the 

prediction. The ML method then captured the performance measure from the 

Coefficient of Determination (R2) of 0.96 and 0.97 for Random Forest and Decision 

Tree Regression, respectively, and the lowest Root Mean Square Error (RMSE) value 

was recorded at 0.05, which indicates the excellent model with positive correlation. It 

is observed that the predicted Vp (DTC logs) and Vs (DTS logs) of the ML model 

produced good cross-validation to the original logs with a good performance measure 

of 1.0 for R2 and 0.0 for RMSE. It can be concluded, based on the performance 

measure of each method, indicates the robustness of DTS log prediction using a 

quantitative measure of accuracy in scoring the predictions. It demonstrates the ML 

model’s ability to generalize and predict shear logs on full field size. 
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ABSTRAK 

Log sonik adalah parameter penting untuk keterangan takungan dan 

pengenalan cecair dan digunakan secara meluas dalam menentukan sifat batuan 

mekanikal untuk fizik batuan, tafsiran seismik kuantitatif dan aplikasi geomekanik. 

Selalunya terdapat kekurangan kecepatan gelombang ricih (Vs) data di telaga 

eksplorasi minyak dan gas yang relatif disebabkan oleh keadaan lubang bor yang buruk 

(pencucian), alat yang rosak, mengimbangi data dengan baik dan agak mahal. Ini 

bertujuan untuk memberikan penyelesaian untuk meramalkan gelombang mampatan 

(Vp) dan halaju gelombang ricih (Vs) dengan machine learning (ML) model 

menggunakan data petrofizik asli dari minyak dan takungan batu pasir gas di Malay 

Basin dan membina model ML umum. Kerangka ML didasarkan pada Cross Industry 

Standard Process for Data Mining (CRISP-DM) dan Exploratory Data Analysis (EDA) 

sebagai kitaran berulang untuk menganalisis dan menyesuaikan algoritma. Pertama, 

atasi data komposit dan ketidakpastian yang berkaitan dengan tepat melalui 

pemprosesan data. Kedua, tetapkan pemisahan data dan menilai model ramalan 

melalui beberapa regresi yang berbeza. Ketiga, jalankan algoritma pengoptimuman 

untuk mencari hiperparameter terbaik untuk regresor untuk mengoptimumkan 

ramalan. Kaedah ML kemudian menangkap ukuran prestasi dari Pekali Penentuan (R2) 

0.96 dan 0.97 untuk Random Forest dan Decision Tree Regression dan nilai Root 

Mean Square Error (RMSE) terendah dicatatkan pada 0.05 yang menunjukkan model 

yang baik dengan korelasi positif. Telah diperhatikan bahawa log Vp (DTC yang 

diramalkan ) dan Vs ( DTS log) model ML menghasilkan pengesahan silang yang baik 

ke log asal dengan ukuran prestasi yang baik 1.0 untuk R2 dan 0.0 untuk RMSE. Ini 

dapat disimpulkan, berdasarkan ukuran prestasi setiap kaedah, menunjukkan 

ketahanan ramalan log DTS menggunakan ukuran ketepatan kuantitatif dalam 

menjaringkan ramalan. Ini menunjukkan kemampuan model ML untuk 

menggeneralisasi dan meramalkan log ricih pada ukuran medan penuh. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background  

Sonic log data is an essential parameter for reservoir description and fluid 

identification and is extensively applied in determining mechanical rock properties for 

rock physics, quantitative seismic interpretation and geomechanics application. In 

actual application, there is frequently a paucity of shear wave velocity (Vs) 

information due to several factors, which only a few development wells have Vs log 

data, while old fields (brownfields) have been developed with longer development 

times have less to none of Vs log data. To date, when applying well seismic technology 

to fine reservoir parameter inversion based on seismic data in old fields, compressional 

wave velocity (Vp), Vs and density log are needed to establish formation strata 

modelling. The sonic well logs’ unavailability is potentially due to the poor borehole 

conditions (washout), damaged tools and offset well data. Most offset well log data 

are not acquired with dipole sonic imager tools but with a borehole compensated 

logging tool, which limits the application of acoustic measurements to estimate the 

mechanical rock properties (Onalo et al., 2018). Empirical approaches are commonly 

used to estimate sonic velocity, and more recent research has demonstrated that neural 

networks can provide accurate predictions of formation sonic velocity. Nevertheless, 

these correlations cannot produce the desired results in different settings, even the most 

frequently used correlations such as those proposed by (Brocher, 2005; Eskandari et 

al., 2004; Greenberg & Castagna, 1992; Pickett, 1963). Meanwhile, because these 

correlations only consider the compressional wave velocity (Vp), they are only slightly 

capable of estimating shear wave velocity (Vs). 

 

The synthetic sonic log offers more precise, reliable, and continuous 

indications of the formation’s strength and mechanical rock properties. In addition, log 

data from the density and neutron logs can be utilised as a porosity indication for the 
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formation. It has proven that the compressional wave velocity (Vp) and shear wave 

velocity (Vs) are widely used as quick, easy to use, and cost-effective means of 

determining the mechanical properties of the formation (Akhundi et al., 2014). 

However, shear wave logs are only available in a limited number of wells in an oil 

field due to the high cost of the log acquisition. Therefore, researchers are trying to 

estimate Vs from methods with acceptable accuracy like the empirical equation, as it 

should be more economical and only require the existing information. Integration with 

machine learning will create new statistical techniques to solve reservoir 

characteristics and geomechanical parameters that the empirical equation cannot 

achieve (Akhundi et al., 2014). 

The uncertainty level of data in the reservoir exploration and development 

cycle is significantly high at the beginning of the exploration during the core sample 

data acquisition. However, the uncertainty will reduce when it reaches the appraisal 

and development level. The core data is quite diversified, containing images, 

waveforms, and numeric values with continuous and discrete depth indexes. 

Geological controls such as heterogeneity, engineering considerations such as 

operating conditions (drilling/logging), and physical sensors all contribute to 

variability in petrophysical data. 

 

Figure 1.1   Petrophysical data acquisition for formation evaluation reduces as the 

reservoir uncertainty level decreases during the reservoir exploration and development 

cycle. 
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Petrophysical data is vital to visualize trends, patterns, distinctions, and clusters 

of the specific reservoir properties. The common practises are histograms, cross-plots, 

logging track displays, heatmaps and correlation graphs. The data has substantially 

impacted business decision-making. 

 

Data quality is critical in ensuring the correct environmental-affected data, data 

reconstruction, and statistical correction and reconstruction processes for all well logs. 

Based on petrophysical principles, selecting and eliminating irrelevant data can flatten 

the prediction model’s rate or margin of error, especially when dealing with multiple 

features and algorithms. 

 

Compared to physics-based or data-driven models, petrophysical models are 

used to quantitatively determine various petrophysical parameters by processing 

physical measurements received from core or well logs. For example, water saturation 

calculation uses empirical Archie’s model and its modifications through a combination 

of porosity estimations and resistivity logs (Archie, 1942). However, Archie’s model 

makes various assumptions, including clay-free rocks, no major invasion, and the 

absence of sophisticated pore networks. Archie’s model is insufficient for clay-rich, 

highly tortuous, and thinly laminated reservoirs (Worthington, 2000). When the 

assumptions of these models cannot be satisfied due to the complexity, heterogeneity, 

and multiscale nature of physical processes, these models become unsuitable for 

petrophysical interpretations and estimates. 

 

The models required for petrophysical computations must be exceedingly non-

linear and non-explicit. Such non-linearity is unexplainable by mechanistic, empirical, 

or phenomenological theories. As an alternative, constructing data-driven models 

using machine learning (ML) can improve the characterization of petrophysical 

processes and systems. When the deterministic physics-based model is unavailable, 

the data-driven models can give a computationally cheaper surrogate model to replace 

the costly physics-based model or provide a statistical approximation model based on 

the observations (Aifa, 2014). 

 

The advent of big data and the more affordable computing hardware and 

software drive the recent resurgence of ML. Numerous endeavours in applying ML for 
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petrophysical analysis, particularly in synthetic log generation or log prediction, such 

as shear sonic log prediction, receive immense attention. The recent resurgence of 

machine learning, due in part to the advent of big data and improved and more 

affordable computing hardware and software, has led to numerous endeavours in the 

application of machine learning for petrophysical analysis and particularly synthetic 

log generation or log prediction, and sonic log prediction has received particular 

attention (Akhundi et al., 2014; Eskandari & Rezaee, 2003; Rajabi et al., 2010). 

 

When the prediction can be a solution to the absence of well logs data, value 

creation in terms of cost-saving is formulated and calculated. The cost of well activities 

such as rental wireline equipment, logistics, human resources, and lab analysis is 

calculated as determining factors for creating the business cases. The major cost 

reduction is estimated to be around RM 80k to RM 100k per curve, depending on the 

complexity of the well intervention during the phases, whether at the Exploration, 

Appraisal or Development, which would have an impact on the economic results of 

the specific project during project sanction. The focus of cost optimization efforts was 

typically done to improve project economics by re-examining the main contributors 

such as facility concepts, drilling or well’s costs, hook-up and commissioning (HUC), 

which will be parked under CAPEX and operations and maintenance (O&M) is 

registered under OPEX as input to generate complete economic evaluations. 

 

This paper aims to provide a solution to the machine learning (ML) model for 

the field engineers to predict the compressional wave (Vp) and shear wave velocities 

(Vs). Improvement in this research focuses on the prediction model involving machine 

learning algorithms and examines and evaluates the best-performing model using the 

actual dataset. 

1.2 Problem Statement  

Empirical regression and equation never consider factors like the fluid in pores, 

clay mineralogy, grain size, and bulk density of the rock, even though these factors 

affect the Vs, as recently highlighted in many works of literature. Similarly, factors 

like pore geometry, fracture orientation and intensity, bulk density, depth of burial, 
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effective stress, and type of cementation are also not included. The following items are 

included in this section to address the issue of predicting shear wave: 

(a) Vs is usually estimated from the analysis of core samples and using tools such 

as dipole sonic imager (DSI), which are expensive, relatively difficult to 

operate, time-consuming, and most of the DSI tools are not readily accessible 

in the wells. 

(b) The empirical relationship excludes the various parameters affecting the shear 

wave velocity. Most empirical relations between Vp-Vs and petrophysical data 

are site-specific and only applicable to sandstone reservoirs. 

(c) Scarcity of compressional travel time (DTC) and shear travel time (DTS) logs 

in all the wells drilled in a field due to financial or operational constraints. 

Under such circumstances, ML techniques can predict DTC and DTS logs to 

improve subsurface characteristics 

1.3 Objective 

The main objective of this thesis to code machine learning models to predict 

shear sonic log, Vs (DTS) using a real data from the Angsi field located in the Malay 

Basin. The specific objectives of this research are:  

 

(a) To create a generalizable ML model specific to data-driven models using 

localized datasets (well logs). 

(b) To cross validate the predicted sonic log with the actual sonic log based on the 

performance measure, coefficient of determination (R2) and root mean squared 

error (RMSE). 

1.4 Research Scope 

This study was carried out based on the open dataset obtained from the 

Malaysia Petroleum Management (MPM) acts for and on behalf of PETRONAS. The 

scope is limited to the dataset of conventional logs identified as a pre-requisite to 

executing the research in the following components: 
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(a) Data gathering and data pre-processing: 

i. The data included measured depth (MD), caliper log (CALI), gamma-

ray log (GR), photoelectric factor (PEF), resistivity log (RT), bulk 

density (RHOB), neuron porosity (NPHI), compressional and shear 

sonic (DTC and DTS) as the main features. 

 

ii. Differentiate and filtering of the datasets as requirement for quality 

control, model selection criterion, unbalanced data, checking the 

relevancy and redundancy 

 

iii. Exploratory Data Analysis (EDA) - Plotting the cross plot, histograms, 

charts, heatmaps, and other forms for better data comprehension is 

readable and simplifies the visualization process 

 

(b) Machine Learning (ML) modelling: 

i.  Using the cloud services software, Google Colaboratory (Colab) that 

capable of executing Python code interactively in a web browser. It can 

handle huge volumes of data that can be analyzed and has a great library 

ecosystem. 

ii. Formulate and calculate ML algorithms like clustering, regression, and 

classification, which allows merging, filtering, training, and 

transforming data to the desired format. 

(c) Performance Measure and Final Result. 

i. The high prediction accuracy, quantified in terms of root mean squared 

error (RMSE), examines the coefficient of determination (R2). 

ii. Evaluating the final output of the predicted sonic log, Vs (DTS) 

generated from the ML model with the actual dataset as part of cross-

validation. 
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1.5 Significant of Research 

The interpretation of geological reservoir heterogeneity is one of the major 

reservoir uncertainties usually inferred from various data types: well logs, core data, 

seismic, production data analysis, and based on geological understanding to derive the 

conceptual interpretation. The data size often exceeds conventional dataset tools’ 

capabilities to store, acquire, and analyse data. This is especially true given the data’s 

non-linear nature and high complexity. As a result, models with higher levels of 

complexity and sophistication are vital in transforming raw data into scholarly output. 

Explanatory data analysis (EDA) identifies patterns and describes broad data. 

Predictive modeling relies on the interpretation of present variables to forecast future 

variables. The algorithms utilize past and current information in the dataset to uncover 

hidden trends for hypothesising descriptive and predictive models with decent 

generalizability. 

Therefore, this thesis provides the computing ML solution to estimate the 

synthesise sonic logs from wells with missing well log data and erroneous data due to 

faulty or damaged tools. Thus, it offers a considerably cheaper alternative to running 

actual sonic logging tools like borehole compensated and dipole sonic logging tools. 

It is also an option to use empirical correlation and offset data to determine the sonic 

log for calculating mechanical rock properties.  

Ultimately, the research aims to improve the accuracy and efficiency of 

Upstream Exploration by using a reliable ML model to predict the sonic log as an 

essential input for geophysical and geo-mechanical studies in identifying rock strength 

and understanding the stress regime. 
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