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ABSTRACT 
 
 
 

The naturally fractured reservoirs are one of the products of the tectonic movements, 

which increases the permeability and conductivity of the fractures. The instability of the 

permeability and conductivity effect on the fluid's flow path causes problems during the 

transfer of the fluids from the matrix to the fractures and fluids losses during production. In 

addition, these complications made it difficult for engineers to estimate fluid flow during 

production. The fracture properties study is essential to model the fluids flow paths such as the 

fracture porosity, permeability, and the shape factor which are considered essential in the 

stability of fluids flow. To examine this, this research introduced new models called the 

Decision trees model (DT), Random Forest model (RF), Ridge regression model, LASSO 

regression model, and K-nearest regression model. The research studied the fracture properties 

in naturally fractured reservoirs like the fracture porosity and the shape factor. The datasets 

used in this study were collected from previous studies “i.eTexas oil and gas fields” to build a 

predictive intelligence model for fluid flow characteristics. The prediction process was 

conducted based on interporosity flow coefficient, storativity ratio, wellbore radius, matrix 

permeability, and fracture permeability as input data and shape factor (SF) and fracture 

porosity (FP) as output data. This study revealed a positive finding for the adopted machine 

learning models and was superior in using R2 of accuracy based on the quantitative metrics. 

The results of the test showed an increase in the readings of the fractured porosity and the shape 

factor compared to the actual data for oil and gas, which improved the fracture properties. For 

fluid flow, fluids are designed on the basis that the flow is radial. All models exhibited similar 

behavior of fluid flow, as the fluids were traveling parallel and radial, which changed the fluid 

properties except for the LASSO model. The research results of LASSO found that the 

accuracy of gas flow is less although gas flow is faster than oil flow in naturally fractured 

reservoirs. In conclusion, the radial flow model cannot be implemented for all fluids in the 

naturally fractured reservoirs that prefer to assume as flow is pseudo steady state. Overall, the 

research emphasized implementing computer aid models for naturally fractured reservoir 

analysis, which gives more details on the extensive executing techniques, such as injection or 

the creation of artificial cracks, to minimize hydrocarbon losses or leakage. 

 



vii  

ABSTRAK 
 
 
 

Takungan yang retak secara semula jadi adalah salah satu yang paling mencabar 

disebabkan oleh pergerakan tektonik yang menyebabkan peningkatan dalam kebolehtelapan 

dan kekonduksian patah. Ketidakstabilan kesan kebolehtelapan dan kekonduksian pada laluan 

aliran bendalir menyebabkan masalah semasa pemindahan bendalir dari matriks ke patah dan 

kehilangan cecair semasa pengeluaran. Selain itu, komplikasi ini menyukarkan jurutera untuk 

menganggar aliran bendalir semasa pengeluaran. Kajian sifat patah adalah penting untuk 

memodelkan laluan aliran bendalir seperti keliangan patah, kebolehtelapan, dan faktor bentuk 

yang dianggap penting dalam kestabilan aliran bendalir. Untuk meneliti perkara ini, 

penyelidikan ini memperkenalkan model baharu yang dipanggil model pokok keputusan (dt), 

model hutan rawak (rf), model regresi ridge, model regresi lasso, dan model regresi k-terdekat. 

Penyelidikan mengkaji sifat patah dalam takungan patah semula jadi seperti keliangan patah 

dan faktor bentuk. Set data yang digunakan dalam kajian ini dikumpulkan daripada kajian 

terdahulu "iaitu, medan minyak dan gas texas" untuk membina model ramalan pintar untuk ciri 

aliran bendalir. Proses ramalan dijalankan berdasarkan pekali aliran interporosity, nisbah 

storativiti, jejari lubang telaga, kebolehtelapan matriks, dan kebolehtelapan patah sebagai data 

input dan faktor bentuk (sf) dan keliangan patah (fp) sebagai data output. Kajian ini 

mendedahkan penemuan positif untuk model pembelajaran mesin yang diguna pakai dan lebih 

unggul dalam menggunakan r2 ketepatan berdasarkan metrik kuantitatif. Secara 

keseluruhannya, penyelidikan itu menekankan pelaksanaan model bantuan komputer untuk 

analisis takungan patah semula jadi yang memberikan butiran lanjut tentang teknik 

pelaksanaan yang meluas, seperti suntikan atau penciptaan rekahan buatan, untuk 

meminimumkan kehilangan atau kebocoran hidrokarbon. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

A naturally fractured reservoir (NFR) is one in which natural processes such as 

diastrophism and volume shrinkage have caused fractures that have been dispersed as a 

consistently linked network across the reservoir. Where tectonic processes have evolved in 

the reservoir, fractured reservoirs are frequently found in a weak reservoir rock with poor 

porosity. Due to that, the fracture is extended and large and often referred to as the large 

fracture. If the granular porosity is high but the rocks are fragile, the fracture is relatively 

small and limited in quantity, often referred to as microfractures.(Ordonez, Peñuela, Idrobo, 

& Medina, 2001)  

Naturally fractured reservoirs are mostly found in igneous rocks, sandstones and 

carbonates, as well as in igneous rocks.(Jaffré, Mnejja, & Roberts, 2011). Fractured 

reservoirs represent an important percentage of world reserves such as the Campos and 

Santos Basins in Brazil and the Kwanza Basin in Angola. Fractured carbonate reservoirs 

represent an important percentage of world reserves such as the Campos and Santos Basins 

in Brazil and the Kwanza Basin in Angola. (Lima & De Ros, 2019; Lima et al., 2020)  

Naturally fractured reservoirs cover 20% of the world's oil reserves, which makes 

fractured reservoirs one of the most complex in terms of production efficiency. Naturally 

broken reservoirs are distributed in the oil fields of Ain Zala and Jambour, as well as Khazaz 

located in Iraq. (Lima & De Ros, 2019; Lima et al., 2020)  
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In addition, the tectonic movements affected on the behaviour of the fracture during 

transfer and production of the fluids flow due to the high conductivity and permeability of 

the natural fractures (D. Li, Jiao, Yue, Xiang, & Pan, 2015)The conductivity and 

permeability of the fractures factor minimize the fracture porosity of the fluids that cause 

low storage capacity (Beckner, 1990). In contrast, the conductivity of the matrix increases 

storage capacity with low permeability which causes an increase in the matrix porosity 

(Beckner, 1990). According to previous studies, matrix porosity is higher than fracture 

porosity in the naturally fractures reservoirs which the fluids store in the matrix (Frey et al., 

2022)   

 

The fractured reservoirs are divided according to storage capacities or porosity, 

matrix permeability, and fractions into different types. According to Aguilera. (Aguilera, 

1974) the fractured reservoirs were classified into A, B, and C. Type A reservoirs, most 

fluids stored in the matrix while the storage capacity of the fluids is low in the fractures. As 

for type B reservoirs, the storage of the fluids is divided between the matrix and the 

fractures, where half of the fluids are in the fracture but the other half in the matrix. While 

the type C reservoirs, these reservoirs do not need the matrix contribution in storage, as the 

fractures provide them with the storage capacity. (Aguilera, 1974) 

 

Based on Nelson, fractured reservoirs have been classified according to the 

percentage of the total porosity and permeability. In the first type of fractures reservoirs, the 

porosity and permeability are controlled by the fractures. The second type of fractures 

reservoir, the fractures control the basic permeability. The third type of fractures reservoir, 

fractures are permeable. Finally, the fourth type of fractured reservoirs, fractures adopt 

anisotropic barriers which do not provide additional porosity or permeability. (Nelson, 

2001) 

 

The naturally fractured reservoirs are different from the conventional reservoir. The 

naturally fractured reservoirs separate the matrix blocks from the fractures system as 

presented in (Figure 1.1). The matrix has been characterized in the permeability Km and 

porosity m while the fractures have been characterized in porosity f and permeability Kf. 
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The naturally fractured reservoirs have presented as double-porosity and double-

permeability reservoirs. (Guo, Nie, & Jia, 2012) 

 

Naturally fractured reservoirs are one of the distinct challenges in extracting 

hydrocarbons. Naturally fractured reservoirs are considered to have a positive or negative 

impact on the hydrocarbon flow pattern. The matrix has high storage capacity and low flow 

capacity while fractions have high flow capacity and low storage capacity. The 

characterization of naturally fractured reservoirs has faced many challenges in the 

engineering and geological character of naturally fractured reservoirs. (Beckner, 1990) 

 

 

 

 
 

Figure 1.1 The distribution of blocks within matrix system and fracture system 

 

 

The multiphase flow modeling in naturally fractured reservoirs has been considered 

an issue for petroleum reservoirs engineers. The modeling of the reservoir has become more 

complex due to the existence of fractures that impact the capacity of hydrocarbons flow.  

Many researchers have presented models of fractured reservoirs and developed them in 

different approaches but some of the results were not accurate due to a large contrast of 

permeability values between fracture and porous matrix. Many researchers have presented 

models of fractured reservoirs and developed them in different approaches but some of the 

results were not accurate due to a large contrast of permeability values between fracture and 

porous matrix. (Hawez, Sanaee, & Faisal, 2021)  
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Warren and Root have shown a dual-porosity model which presented the multiphase 

behavior in fractured reservoirs. The dual-porosity model has explained the fractures as the 

naturally fractured reservoirs that are inclusive of two kinds of pores, one of them in the 

matrix while another is in the fracture. The natural fractures permeability is higher than the 

matrix permeability in a dual-porosity system, where it allows the hydrocarbons to produce 

through fractures while the matrix stores the hydrocarbons. The hydrocarbons flow from 

the matrix to the fractures by transport method. Warren and Root’s model depended on two 

parameters, the storage ratio (ω) that measure the percentage of hydrocarbons storage to the 

total hydrocarbons in the reservoir and the flow coefficient between the porosity (λ) to 

characterize the flow behavior in naturally fractured reservoirs. (Gilman, Bowzer, & 

Rothkopf, 1995)   

 

The dual-porosity affected the hydrocarbons movement in the naturally fractured 

reservoirs can result in fractures that produce holes causing a leak of hydrocarbons in the 

fractured reservoir. Dissolution of the reservoir can form a hole in the porosity systems and 

it has shown in Ellenberger Pegasus field and Canyon Reef field, Texas.  The production 

strategy of oil recovery in fractured reservoirs is considered a crucial factor for obtaining 

economic production. The fractured reservoirs represented many challenges to their rock 

properties estimations. The fluid flow is lower between the fractures and matrix due to low 

matrix permeability and low storage capacity of the fractures which leads to residual oil 

saturation. The fractured reservoirs, in general, are not good enough which has a large 

impact on the fluids flow. It can leak in the hydrocarbons flow which exists difficulty of 

hydrocarbons recovery that impact on creating a suitable model able to represent the fluids 

flow behavior. (Mesbah, Vatani, & Siavashi, 2018) 

 

The research has resolved a number of challenges by developing an Artificial 

Intelligence-based prediction model that can explain hydrocarbon flow behavior in 

fractured reservoirs. The machine learning program is an Artificial Intelligence approach 

that displays several Algorithms. These algorithms are used in reservoir modeling which is 

more important in the oil and gas industry in the United States. Machine learning is a simple, 

trustworthy method that considers all reservoir conditions, assumptions, and limits. It may 
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also generate many models for a single database, allowing engineers to conduct reliable 

analyses and find additional answers to their reservoir problems.  

 

Multiphase flow modeling in naturally fractured reservoirs has been considered an 

issue for petroleum reservoirs engineers (H. Hawez, R. Sanaee, & N. Faisal, 2021; H. K. 

Hawez, R. Sanaee, & N. H. Faisal, 2021). Warren and Root have shown a dual-porosity 

model which presents multiphase behavior in fractured reservoirs (Warren, 1963). In the 

dual-porosity model, there are two characteristics regions, matrix and fracture (Gilman, 

Bowzer, & Rothkopf, 1995). The naturally fractured reservoir present one of the difficult 

reservoirs in the petroleum industry due to the fractures properties like permeability and 

porosity where natural fractures permeability is higher than the matrix permeability in a 

dual-porosity system (Gilman et al., 1995). The hydrocarbons flow from the matrix to the 

fractures and from these to the wellbore where the fractures cannot store these fluids which 

cause fluid flow losses and obstacle of the fluids flow can see in Figure.1(Gilman et al., 

1995; Rangel-German & Kovscek, 2005).  

The importance of this project has represented an analytical study on the 

hydrocarbons flow behavior in the naturally fractured reservoir and the impact of fractures 

on the transportation of hydrocarbons flow from matrix to the fracture and production too. 

This analytical study can clarify the behavior of the fractures and their impact on fluids flow 

more widely accurately than previous studies through depending on the smart technology 

that its Machine learning. 

  

1.2 Problem Statement  
 
 
 

i) Drops of the fracture porosity and shape factor during production period which 

are considered key parameters of fluids flow losses.  

ii) Difficulty of controlling fluids flow movements in the naturally fractured 

reservoirs which cause difficult in the analysis of fluids transfer in the fractured 

reservoirs can be seen in (Figure 1.2) 
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Figure 1.2  The distribution of blocks within matrix system and fracture system. 

 

 

1.3 Research Objectives  
 

Modelling of the fluids flow in the naturally fractured reservoirs using well-test 

analysis data through machine learning.   

 

Specific objectives are: 
 

a) To estimate of the fracture porosity and shape factor predictably. 

b) To analyze fluids flow behavior in the naturally fractured reservoirs. 

 

1.4 Scope of Work  
 
 

This project is specialized in the study of analysis of well test data for dual-porosity in 

fractured reservoirs.  

  

1. The well test has been applied in limestone rocks under conditions of the reservoir like 

pressure 3626 psi and temperature 120 F.  
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2. The reservoir thickness of oil or gas is limited to 100 ft, matrix porosity 22% as 

assumption of Werbung well-test data, and matrix compressibility 6.8× .  

3. The project assumptions have been established to radial flow, no Darcy equations, no 

skin factor, and matrix porosity equals 22% 

4. New data have been collected from oil and gas databases by using equations followed 

by (Perez Garcia, 2006) and model (He, Chen, Zhang, & Yu, 2017) which are 

interporosity flow coefficient, storage capacity, shape factor, and fracture porosity.  

 

These elements are applied by using Excel program: 

i. The interposition flow coefficient indicates the dynamics of the fluid exchange 

between matrix and the fractures.  

ii. Storage capacity measures the flow capacitance of the fluids in the fractures.  

iii. The shape factor is a parameter how smoothly fluid flows between matrix and 

fractures. 

iv. Fracture porosity is a type of secondary porosity produced by the tectonic 

fracturing of the rock.    

5. Finally, these two sets of data have been established by using a machine learning 

program to create a prediction model. This prediction model analysis the hydrocarbons 

flow accurately and has taken into account the existence of a fracture during the 

transfer of hydrocarbons This technique has worked to develop our oil and gas 

industries correctly allowing us to present our suggestions and ideas for preventing 

these issues occur in the fractured reservoirs.  

 
 

1.5 The Significant of Research  
 
 

The scopes of the research are listed as follow: 
 
 

a) This research contributes to solve many problems that related with fluids flow occur 

in fractured reservoirs.  
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b) Moreover, this research could do analysis the fluids flow behavior deeply through 

comparison the actual data of fluids flow keys with predicted data of fluids flow keys 

such as the fracture porosity and the shape factor.  

c) Machine learning can assist and enhance the modelling process for research’s data 

through do hybrid and optimized models that results high improving of the research’s 

data in the future. 
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