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ABSTRACT 

The Chlorination process in a glove manufacturing industry aid as a surface 

treatment on the latex surface by improving the surface frictions allowing the donning 

of the glove. A cooling system in chlorination process functions to replace and displace 

the heat from hot chlorine water and thus lowering the temperature by returning the 

colder water back to the chlorine water tank. Current chlorination cooling system used 

in Top Glove factories proven inefficient to achieve the desired chlorine water 

temperature in the chlorination process due to several factors such as high utility rate 

and energy consumption, cooling tower design and production processes. Energy 

losses are one of the major concerns especially in process where equipment and heat 

integration system design are outdated. In this paper, the optimization of the current 

chlorination cooling system in glove manufacturing industry was assessed by two 

methods; the heat integration analysis and direct integration of lithium bromide heat 

pump. Although there are not many applications of heat pump scenarios in engineering 

practices, studies have shown that heat pumps are effective in improving low-quality 

heat energy in energy conversion systems. The main goal is to determine the savings 

that can be generated through retrofitting the current design of the overall system as 

well as identifying the optimum cooling system suitable to be implemented in 

chlorination process in glove manufacturing industry based on thorough economic 

analysis. The energy saving and the cost savings obtained from both methods are 

evaluated and compared to determine the feasibility of its implementation to the 

existing system, which results at 99.59% for the retrofit of the existing system and 

35% for the direct approach design. However, for combined design for the grassroot 

design was up to 135 % in terms of cost saving for the both utilities and chemical 

savings.   
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ABSTRAK 

Proses klorinasi pada sarung tangan getah membantu untuk rawatan 

permukaan latex atau susu getah yang diprocess. Ia juga membantu mengurangkan 

geresan pada permukaan sarung tangan gedah untuk memudahkan pemakaiannya. 

Sistem penyejukkan amat penting untuk proses klorinasi dalam industri pembuatan 

sarung tangan getah kerana ia akan merunkan suhu panas tanki klorin. Sistem semasa 

yang digunapakai di kilang Top Glove tidak effektif untuk mencapai suhu yang rendah 

di proses klorinasi disebabkan beberapa factor seperti reka bentuk sistem penyejuk, 

pengunaan tenaga dan bahan kimia yang tinggi dan proses produksi itu sendiri. 

Pembaziran tenaga juga adalah masalah utama dalam proses ini. Kajian ini dilakukan 

untuk mengoptimumkan penyejukkan proses klorinasi di Top Glove dengan 

mencadangkana dua kaedah iaitu Pinch analysis, dan mengunakan lithium bromide 

adsorption heat pump sebagai system pra-penyejukkan untuk menara penyejuk yang 

sedia ada. Walaubagaimanapun, kaedah ini belum diterokai oleh penyelidik secara 

menyeluruh dalam sistem penyejukkan di semua industri. Matlamat utama kajian ini 

adalah untuk mencapai and tentukan system penyejuk yang paling efektif bagi 

digunapakai dalam industri pembuatan sarung tangan getah. Penjimatan tenaga 

sebanyak 99.59% boleh dicapai melalui kaedah Pinch analysis, sementara, Penjimatan 

tenaga sebanyak 35% dicapai bagi kaedah lithium bromide adsorption heat pump. 

Tambahan pula, kombinasi kedua-dua kaedah akan memberi kita penjimatan tenaga 

dan bahan kimia secara menyeluruh sebanyak 135% 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Top Glove Corporation Bhd is the world’s largest manufacturer of gloves, with 

operations spanning across Malaysia, Thailand, China, US and Europe. Top Glove 

success story began a quarter of a century ago in 1991, as a local business enterprise 

with a single factory and 1 glove production line. Today, it has captured 25% of the 

world market share and offers a comprehensive product range, fulfilling demand in 

both the healthcare and non-healthcare segment. Top Glove serves a network of over 

2,000 satisfied customers in more than 195 countries, and these numbers are still 

growing. Its outstanding achievements and global recognition are credited largely to 

its founder Tan Sri Dr Lim Wee Chai, the visionary and driving force, who within a 

short span of time has built the Malaysian-based company into a resounding global 

success. With customer satisfaction as a key priority, Top Glove continues to produce 

high quality gloves at an efficient low cost in line with its time-tested Business 

Direction. Not content to rest on its laurels, Top Glove has also set next-level goals to 

aspire towards, which include increasing its world market share to 30% by 2025 and 

becoming a Forbes and Fortune Global 500 Company by 2030. It is also aggressively 

expanding its business scope and on the lookout for M&A opportunities in similar and 

related industries. 

 

 

Gloves are used vastly around the globes as it proven to provide a protection layer 

against microorganisms. Rubber gloves are divided into two main types, which are 

Natural Rubber (NR) and Nitrile Based or Synthetic Rubber (NBR). NR gloves are 

preferred globally due to it ablility to provide protective barriers against bacteria and 

viruses (Yip et al., 2002). Various studies have shown that there are different methods 

for producing powdered and powder-free gloves. Top Glove produces its top quality 
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rubber gloves through a series of dipping process, whereby the hand mould known as 

formers are dipped into various types of chemicals inclusive of latex, coagulants and 

chlorine water.  Figure 1 below shows the schematic flow diagram of glove 

manufacturing process. The glove manufacturing process begins with former cleaning 

process, followed by coagulant, latex, hot water and series of oven for drying purposes 

and ends at stripping and packing. All these tanks have functions of their own in order 

to produce high quality glove. These processes require a specific operating condition 

and parameters to be maintained in order to ensure high quality end-product. 

 

 

 

Figure 1.1: Schematic flow diagram of glove manufacturing process 

 

 

The chlorination process in the manufacturing of rubber gloves is conducted in the 

chlorinator either by way of online or offline chlorination. Gloves are dipped into tank 

filled with diluted chlorine water up to required concentrations as it enters the 

production process. Chlorination processes improves donning of gloves by reducing 

the friction on gloves’ surface. During the process of glove dipping into the chlorine 

water, the hot former reacts with chlorine water, to release chlorine fume. In order to 

combat higher evaporation rate of chlorine fume, it is very crucial to maintain the 

temperature of the dipping tank at least below 30oC. Therefore, the most efficient and 

effective cooling system need to be introduced for maintaining and controlling the 

desired temperature of the chlorine water in the dipping tank. 

A cooling system in chlorination process functions to replace and displace the heat 

from hot chlorine water and thus lowering the temperature by returning the colder 

Process start

Former 
Cleaning

Coagulant 
dipping

Drying Latex dipping

Process ends

Glove 
Stripping

Leaching

Final Drying Beading

Post Leaching Chlorination
Former 
Cooling

Vulcanising

TOP GLOVE ONLINE CHLORINATION PROCESS
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water back to the chlorine water tank. The cooling system used in Top Glove for 

chlorination’s cooling processes are cooling tower, which includes a cooling tower, 

pumps coupled with plate heat exchanger (PHE) for each individual production line. 

Currently, in the market, the equipment that are able to provide cold water for 

industrial processes are cooling towers, chillers, refrigerant and other, meanwhile, heat 

exchanger equipment ranges from plate heat exchanger, shell-and-tube heat 

exchanger, double pipe heat exchanger, condenser and evaporators. The cooling 

systems used in industrial process require high energy consumption and water 

consumption unless its usage is optimized. In order to achieve this, extensive study 

need to be conducted and implemented to identify the optimum cooling equipment and 

system for chlorination process in glove manufacturing industries. 

 

 

 

 

1.2 Problem Statement 

Current chlorination cooling system used in Top Glove factories has proven 

inefficient to achieve the desired chlorine water temperature in the chlorination process 

due to several factors such as high utility rate, high energy consumption, cooling tower 

design and production process parameters as to name a few. 

 

 

As mentioned above, one of the major factors is high utility rate. This is majorly caused 

by the high-water consumption that leads to water wastages in cooling tower system. 

Cooling towers design has a large and exposed water holding tank. Evaporation of 

water occurs at the exposed water surfaces. Furthermore, the water level of the cooling 

tower holding tank needs to be frequently checked and maintained with a mechanical 

float valve. Any failure in the mechanical device will result in discharge of water from 

the holding tank. Both situations mentioned above will cause water wastages as well 

as increase in water consumption. An average water usage for cooling tower is 

approximately 15m3/hr.  

The selections of the most effective cooling system for industrial processes are largely 

affected by the energy consumption rate as well. Electrical energy consumption plays 
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a crucial role as there are limitations in terms of costs and budgeting during designing 

and purchasing a cooling system. Water cooled chiller and air-cooled chiller have 

higher energy consumption rate compared to cooling tower due to using larger motor 

sizes and the use or evaporator. Cooling tower on the other hand, only requires small 

sized motors and pumps to operate (Cutillas et al., 2017). Besides, poorly maintained 

equipment will result in high power consumption due to higher load on the system and 

equipment. 

 

 

Apart from that, another issue that arise from the existing cooling system design in 

Top Glove where the equipment either is oversized and undersized cooling tower. An 

oversized cooling tower has a higher capacity, workload and electrical load and vice 

versa. Few older factories in Top Glove have undersized cooling towers for several 

reasons, such as changes in production parameters overtime and increased in number 

of production lines to cater for heat reduction. When parameters such as line speed, 

oven temperatures and wet tanks temperature is increased, the heat load at chlorine 

tank will also increase. Therefore, the under-capacity cooling tower will not be able to 

effectively reject the entire heat load and achieve the desired chlorine water 

temperature. To combat these unexpected parameters changes in future, cooling towers 

are designed for larger capacity. This oversized design however is not an optimum 

design for cooling purposes as more wastage tend to take place. The objective to reach 

the low chorine water temperature is still not efficiently achieved through cooling 

tower systems for chlorination process. 

 

 

Abovementioned problem also arises due to the inconsistency of production processes 

and parameters. Troubleshooting the production processes will often lead to changes 

in parameters, especially increase in oven and wet tank temperatures and production 

line speed. When oven temperature is increased, the heat energy from the oven will be 

transferred to the former and glove in which relatively spends about 7 to 10 minutes 

in the main oven zone area. The temperature ranges from 400 to 500 °C. Throughout 

this process, the ceramic former mainly absorbs the large amount heat energy provided 

by main oven, due to its nature of having specific heat capacity of 1.0883 kg/kcal.  
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1.3 Objectives of Study 

The main objectives of this study will be as follows; 

 

1. To evaluate existing chlorination cooling system’s performance  

2. To perform systematic optimization of the chlorination cooling system by 

utilizing heat integration analysis 

3. To retrofit the current chlorination cooling system by optimizing it in 

achieving the most energy efficient process design. 

4. To compare and identify the most energy efficient chlorination cooling 

system based current industrial setup and requirement. 

 

 

 

 

1.4 Scope of Study 

In order to implement this research, a careful consideration of the scope of study are 

identified and defined as below; 

 

1. Perform state of the art analysis on different types of cooling systems for 

chlorination process in glove industry. 

2. Performing data collection from actual chlorination cooling system process 

in Top Glove factory. 

3. Perform heat integration analysis and retrofit analysis of the current design to 

obtain the Maximum Energy Recovery (MER) based on existing data. 

4. Perform detailed cost analysis on energy recovery and utility savings. 

5. Compare and analyse results of different approaches of chlorination cooling 

systems in order to identify the most effective cooling system based on low 

cost, energy saving obtained for chlorination process in glove industry. 

6. Identifying the optimum cooling system which is suitable for chlorination 

process in glove industry. 
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1.5 Significance of Study 

Through this research, we can contribute positively to the company based on the output 

that we obtain. This benefit is described as below; 

 

1. This study shall be able to help glove manufacturing industries to improve on 

its chlorination cooling system and process.  

2. An improved Chlorination cooling system and process will be economical in 

terms of cost, electricity consumption and water consumption. 

3. This research benefits to reduce chemical wastages in terms of losses of 

Chlorine gas from the chlorination process. 

4. The research finding will lead to an optimized Chlorination process with 

reduced energy wastages as well as increased productivity rate.  
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