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ABSTRACT 

Manual semen analysis is a conventional method to assess male infertility which 

includes laboratory technicians examining on parameters such as sperm motility and 

concentration. Manual evaluation is prone to human errors that causes precision and 

accuracy issues. The purpose of this research study is to adopt computer vision deep 

learning techniques and multimodal learning approach in sperm parameters prediction 

using video-based and image-based input. Convolutional neural network (CNN) has 

benefited technology industry in recent years, and it has been widely applied in computer 

vision research tasks as well. Most of the well-established model were designed and 

pretrained for image-based input, whereas temporal information of video-based input 

might not be extracted properly using these architectures. Three-dimensional CNN 

(3DCNN) would be an alternative as it was designed to extract motion and temporal 

features, which are vital for sperm motility prediction. For sperm concentration, since two-

dimensional CNN (2DCNN) is efficient in recognizing and extracting spatial features, 

Residual Network (ResNet) could be adopted for sperm concentration prediction with 

minimal modification on the original architecture. On the other hand, multimodal learning 

approach is a technique to aggregate learnt features from different deep learning 

architecture that adopted other forms of modalities, and provide deep learning model better 

insights on their tasks. Hence, multimodal learning has been introduced in this research 

study, where the finalized deep learning architecture received both image-based (frames 

extracted from video samples) and video-based (stacked frames pre-processed from video 

samples) input that could provide well-extracted spatial and temporal features for sperm 

parameters prediction. In this research study, VISEM dataset has been used because it is 

an open-source dataset which contains 85 sperm videos and biological analysis data from 

different patients. The video samples went through pre-processing stage to obtain the 

suitable modalities for training and validation. The developed system has been proven to 

be capable of improving performance which was as proposed, after the results had been 

compared to other similar research works. Average mean absolute error (MAE) for sperm 

motility was observed with high accuracy up to 8.05, and competent performance for 

sperm concentration with Pearson’s correlation coefficient (RP) of 0.853. 
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ABSTRAK 

Analisis semen yang konvensional menggunakan kaedah manual untuk menilai 

ketidaksuburan lelaki, termasuk pemeriksaan yang dijalankan oleh juruteknik makmal 

pada parameter motoliti sperma dan kepekatan sperma. Pemeriksaan manual tersebut 

mudah terdedah kepada kesilapan manusia dan menyumbang kepada isu ketepatan. 

Tujuan kajian ini adalah untuk mengguna teknik pembelajaran dalam penglihatan mesin 

dan pembelajaran multimodal dalam analisis parameter sperma menggunakan input 

berdasarkan video dan imej. Rangkaian saraf perlingkaran (CNN) telah memanfaatkan 

industri teknologi sejak kebelakangan ini, dan ia juga digunakan secara secara meluas 

dalam penyelidikan yang melibatkan penglihatan mesin. Kebanyakan input model yang 

mantap telah direka dan dilatih terlebih dahulu berasaskan imej input, manakala maklumat 

yang berdasarkan video input mungkin tidak dapat diekstrak dengan betul menggunakan 

model tersebut. CNN tiga-dimensi (3DCNN) akan menjadi model alternatif kerana ia 

direka untuk mengekstrak ciri pergerakan dan temporal, yang amat penting untuk analisis 

motoliti sperma. Untuk kepekatan sperma, memandangkan CNN dua-dimensi sudah cekap 

dalam mengestrak dan mengenali ciri ruangan, model ResNet digunapakai untuk 

penjangkaan kepekatan sperma dengan pengubahsuaian yang minimum pada model asal. 

Selain itu, pembelajaran multimodal ialah teknik untuk mengagregatkan ciri-ciri yang 

dipelajari daripada model dan modaliti yang berbeza, serta memberikan model 

pembelajaran dalam dengan cerapan yang lebih baik untuk melaksanakan tugasnya. Oleh 

itu, pembelajaran multimodal telah diperkenalkan dalam kajian ini, di mana model 

pembelajaran dalam yang dimuktamadkan akan menerima kedua-dua input berasaskan 

imej (imej yang diekstrak dari sampel video) dan video (imej yang disusun sebelum 

diproses dari sampel video) yang mewakili ciri ruangan dan temporal untuk ramalan 

parameter sperma. Dalam penyelidikan ini, dataset VISEM digunakan kerana ia adalah 

sumber terbuka dan mengandungi 85 video sperma dan data analisis biologi daripada 

pesakit yang berbeza. Sampel video telah melalui peringkat pra-pemprosesan untuk 

mendapatkan modaliti yang sesuai untuk tujuan latihan dan pengesahan model. Sistem 

yang diperkenalkan telah dibuktikan bahawa ia dapat meningkatkan prestasi seperti yang 

dicadangkan selepas perbandingan dengan kerja penyelidikan lain yang serupa. Purata 

Min Ralat Mutlak (MAE) untuk motoliti sperma mencapai ketepatan tinggi yang tidak 

kurang daripada 8.05, manakala prestasi yang kompeten juga dicapai untuk kepekatan 

sperma dengan 0.843 dalam korelasi Pearson (RP).  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Infertility, is a medical condition where sexually active and non-contracepting 

couples are unable to successfully achieve clinical pregnancy, as defined by World 

Health Organization (WHO) [1]. Infertility could happened in both men and women, 

however more than half of the failure in childbearing was contributed by infertile men 

[2].  Male infertility is normally due to genetic issue, unhealth environment and 

lifestyle. To identify the male factor infertility, the initial evaluation should at least 

include one properly performed semen analysis and physical examination performed 

by experienced examiner, along with a detailed reproductive history [3]. If abnormal 

values or condition has been observed after initial screening evaluation, only a full 

evaluation by urologist or other specialist be carried out [3]. Hence, semen parameter 

analysis is one of the primary and important analysis required to study the probability 

of male infertility issue of an infertile couple, then only treatment planning options are 

available for conception. Most of the semen analysis are not open-sourced. 

Nevertheless, the dataset used in this research study is VISEM dataset, which is an 

online multimodal dataset that contains videos and biological analysis data from 85 

anonymized participants. Semen parameter analysis is mostly carried out by manual 

approach, which the guidelines have been provided clearly in semen analysis manual 

given by WHO, however it is often susceptible to human related errors. This stimulated 

the development of automated semen analyser such as CASA (Computer Aided Semen 

Analyzer) few decades ago, and a recent model SQA (Sperm Quality Analyzer). 

However, it received several criticisms regarding its inconsistent handling methods for 

routine clinical analysis, as well as credibility on accuracy and precision [4]–[12]. 

Therefore, these limitations allow a room for improvement to be explored by other 

approach such as deep learning. In this era, where artificial intelligence concept is 

vastly used in image processing, recognition, and classification, it is expected that 
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technology advancement would slowly improve and overcome the criticisms received 

30 years back then. 

1.2 Problem Statement 

Most common semen parameter analysis is done manually by experienced 

laboratory technician to evaluate the sperm conditions, which required intensive 

training and regular participation in quality assurance programs. Even though it is the 

most common practice for semen analysis, it has been revealed with limitations such 

as lack of standardization in methodologies and tools used in lab, that caused precision 

and accuracy are being compromised [4], [13]–[14]. Besides the procedures that are 

causing inaccuracies in semen analysis, some sperm parameters evaluations are merely 

based on human subjective judgments such as sperm morphology classification. Even 

though guidelines are provided by WHO in the semen analysis manual, several studies 

have revealed that time spent for technician training will also produce inconsistent 

results [15]. The parameters which would normally be included in the manual semen 

analysis are sperm concentration, total sperm count, sperm motility, sperm 

morphology, semen volume, semen viscosity, pH values of semen sample and sperm 

vitality.  

The inconsistencies in human evaluation method induced the development of 

automated semen analyzer, which started about 30 years ago with CASA and a recent 

model named as SQA [16]. From several comparison studies of both models using 

manual evaluation as gold standard, generally SQA series presented closer results with 

manual evaluation than CASA. However there were also contradict findings from 

different research groups [4]–[7] and both devices still required minimal training to 

operate the system despite being identified as automated system. Some of the 

laboratory personnel were reported not running standard operating procedures and 

laboratory environments as suggested by the manufacturing companies. Hence, these 

downsides of automated semen analysers are WHO’s concerns to not encourage them 

in routine clinical analysis, but it could be the chance to explore other better approaches 

for semen analysis. 
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Several research works have been explored by researchers to solve above 

mentioned issues using machine or deep learning approach. The difference between 

machine and deep learning is that machine learning is a “shallow” classifier, much 

smaller and simpler architecture than deep learning architecture [17]. However, it is 

not suitable to learn non-linear input such as image and speech recognition without 

designing specifically tailored feature extractor, which is harder to adapt same 

architecture/method on other application [17]. Thus, deep learning convolutional 

neural network (CNN) is often being explored by other researchers to tackle computer 

vision related problems, due to its ability to compute non-linear input and deliver non-

linear output. In the research works focusing on sperm parameters prediction, most of 

the previous studies adopted transfer learning techniques from state-of-the-art (SOTA) 

2DCNN or self-customized 3DCNN architectures, with image-based or video-based 

modality extracted from video samples to predict sperm motility, concentration, and 

morphology [18]–[23]. By looking at sperm motility prediction, no significant 

improvements were observed which indicates either the architectures or modalities 

chosen by the researchers were less effective in learning the temporal information 

[18]–[23].  Currently, there were no research studies on sperm concentration prediction 

using computer vision deep learning approach. Nevertheless, there was a similar 

research work demonstrated concentration prediction using artificial neural networks 

(ANN) but the results were not comparable as the accuracy calculation were inaccurate 

[24]. 

Multimodal learning approach has been introduced in medical and assistive 

technology fields to unravel more information from different data sources. For 

instance, knee angle estimation and sensor-based human activity recognition adopted 

several different types of sensors data, mental illness studies and medical image 

segmentation that comprised of multimodalities which are structural and functional 

magnetic resonance imaging (MRI) data, and etc [25]–[30]. However, similar research 

studies on semen parameters prediction mostly adopted unimodal learning where the 

proposed architectures used only one type of modality, either image-based or video-

based modality [19]–[23]. There were other attempts made by researchers to 

incorporate multimodal learning concepts into motility and morphological predictions, 

where image-based and tabular data served as the input types for 2DCNN architecture 

[18]. However, results showed that not only the model’s performance using 
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multimodal learning approach (image-based and tabular data) did not outperform the 

unimodal learning approach but degrades instead. Here it might indicate that the choice 

of tabular data as additional information did not provide any advantages. All in all, 

multimodal learning approach could probably achieve better performance than 

unimodal learning, but the choice of modalities and architecture selection shall be 

considered wisely. 

1.3 Objectives 

Based on the aforementioned problem statement, this research study aims to 

achieve objectives as stated below: 

(a) To formulate multimodal deep learning methods in sperm parameters 

prediction by adopting image-based and video-based input. 

(b) To integrate different deep learning architectures comprised of 3DCNN and 

2DCNN for sperm parameters prediction focusing on sperm motility and 

concentration prediction. To predict/develop by combining architectures 

(c) To compare and validate the results obtained from the proposed method with 

related research works. 

1.4 Project Scopes 

Sperm motility and sperm concentration have been observed as better fertility 

predictors than other sperm parameters, hence these two parameters were chosen as 

the focus of this study. The aim was to predict sperm motility and concentration by 

using combined deep learning architectures that employ multimodal learning methods. 

The desired framework was a combination of 2DCNN and 3DCNN that accepted 

multiple modalities as input, which were image-based and video-based modalities. It 

was expected to harness spatial and temporal data better than a model that only takes 
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in 2D data, which was an image-based input in this context. The modalities (image-

based and video-based) were prepared by pre-processing the extracted frames of video 

samples from an online and open-source multimodal database, Simula VISEM [31]. It 

is a multimodal dataset containing 85 videos of semen samples and participants' 

anonymized data [31]. As the purpose of this study was to perform prediction using 

computer vision deep learning approach, therefore only video samples from this 

dataset were used for modalities generation, and the manual biological data analysis 

was used as reference for ground truth. The model architectures were developed using 

PYTHON language with PyTorch as the framework and Google Colaboratory as the 

development environment. Data analysis and visualization were done by using 

Microsoft Excel to compare the performance. The summary of project scopes was 

visualized as shown in Figure 1.1. 

 

Figure 1.1 Scope of Studies 

 

1.5 Significance of Study 

This research study focused on delivering a multimodal deep learning 

architecture that can predict sperm motility and sperm concentration, which are one of 

the primary parameters to indicate the fertility condition of a male with comparable 

accuracy to existing studies. Manual evaluation and automated semen analyzer 

required a certain level of human judgments and intervention during semen analysis 

or minimal human operations on the semen analyzer. By achieving the objectives of 
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the study, it allows sperm analysis procedures to be less dependent on humans 

compared with the current clinical approach that includes complicated procedures. 

Besides, it introduced an automated multiple semen parameters prediction system 

using multimodal deep learning approach which has yet to be introduced by previous 

similar research works. 
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