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ABSTRACT

Polymer flooding is one of the most often utilised enhanced oil recovery (EOR) 

techniques because it provides excellent recovery. Polymer flooding enhances sweep 

efficiency and reduce viscous fingering severity by increasing fluid and oil mobility. 

Due to excellent viscosifying nature, and well-known physiochemical properties, 

partially hydrolyzed polyacrylamide (HPAM) is the polymer most often utilised for 

the application. However, high temperatures restrict its application because polymer 

will acts as shear-thinning, such it undergoes shear degradation and reduces viscosity 

at high shear rates and quickly destabilized and therefore unable to achieve the 

expected effects. High salinity also causes the molecular chain of the polymer to 

collapse, which results in a much smaller molecule and hence, produces a lower 

viscosity solution. Adding nanoparticle to polymer solutions is now required to alter 

their properties. Therefore, this study aims to investigate the effect of silicon dioxide 

nanoparticles (S i02) addition to the stability of HPAM at high temperatures and 

salinity. The shear viscosity and the flooding performance at high temperature and 

high salinity gauge the stability of HPAM and the hybrid HPAM- Si02. A series of 

stability measurements as well as core flooding experiment with variations of 

conditions were conducted in order to know the improvement offered by this 

nanoparticle towards HPAM polymer. At a temperature of 110 °C, the addition of 1 

wt% Si02 nanoparticle have enhanced the viscosity of 0.015 wt% HPAM, from 3.4 cP 

to 6.8 cP. This resulted in an almost 90% oil recovery rate. It also strengthened 

HP AM's salt tolerance at concentration of 5 wt% of NaCl by raising its viscosity up to

4.6 cP. This HPAM hybrid also have improve the oil recovery factor for this condition 

as well up to 85%. In conclusion, adding nanoparticles to HPAM will unquestionably 

increase the stability and potentially be used in EOR operations.



ABSTRAK

Banjir polimer adalah salah satu teknik pemulihan minyak yang dipertingkat 

dan ianya paling kerap digunakan kerana ia memberikan kadar pemulihan yang sangat 

baik. Banjir polimer dapat meningkatkan kecekapan sapuan dan mengurangkan 

keterukan penjarian likat dengan meningkatkan mobiliti cecair dan minyak. 

Disebabkan sifat kelikatan yang sangat baik, dan sifat fisiokimia yang terkenal, 

partially hydrolyzed polyacrylamide (HPAM) ialah polimer yang paling kerap 

digunakan untuk setiap aplikasi. Walau bagaimanapun, suhu tinggi menyekat 

penggunaannya kerana polimer akan menipis, sehingga ia mengalami degradasi dan 

mengurangkan kelikatan pada kadar ricih yang tinggi dan tidak akan stabil dengan 

cepat. Oleh itu, ianya tidak dapat mencapai kesan yang diharapkan. Kemasinan yang 

tinggi juga menyebabkan rantai molekul polimer akan runtuh, justeru menghasilkan 

molekul yang lebih kecil dan larutan kelikatan yang lebih rendah. Penambahan 

nanopartikel kepada larutan polimer kini diperlukan untuk mengubah sifatnya. Oleh 

itu, kajian ini bertujuan untuk menyiasat kesan penambahan nanozarah seperti silikon 

dioksida (Si02) terhadap kestabilan HPAM pada suhu dan kemasinan yang tinggi. 

Kelikatan dan prestasi banjir pada suhu tinggi dan kemasinan tinggi akan 

mempengaruhi kestabilan HPAM dan hibrid HPAM- S i02. Satu siri pengukuran 

kestabilan serta eksperimen banjir teras dengan variasi keadaan telah dijalankan untuk 

mengetahui peningkatan yang ditawarkan oleh nanopartikel ini terhadap polimer 

HPAM. Hasil menunjukkan bahawa, pada suhu 110 °C, penambahan 1 wt% 

Si02 nanopartikel telah meningkatkan kelikatan 0.015 wt% HPAM daripada 3.4 cP 

kepada 6.8 cP. Ianya juga menyebabkan kadar pemulihan minyak meningkat sehingga 

hampir 90%. Penambahan nanopartikel ini juga telah mengukuhkan toleransi HPAM 

terhadap kemasinan, yakni pada kepekatan 5 wt% NaCl dengan peningkatan kelikatan 

sehingga 4.6 cP, dan seterusnya pengabungan HPAM hibrid ini juga telah 

meningkatkan faktor pemulihan minyak untuk situasi ini sehingga hampir 85%. 

Kesimpulannya, penambahan nanopartikel pada HPAM sudah pasti akan 

meningkatkan kestabilan dan berpotensi digunakan dalam operasi EOR.
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CHAPTER 1

INTRODUCTION

1.1 Background of Research

There are three stages of oil recovery. The first stage will utilize the pressure 

within the reservoir to extract the oil. Inevitably, the reservoir’s pressure will 

eventually decline, resulting in unsustainable oil production. Secondary stages include 

gas injection, water flooding and water injection, with the primary objective being of 

maintaining the reservoir pressure. Finally, tertiary or enhanced oil recovery (EOR) is 

always employed to improve the flooding process area and volumetric sweep 

efficiency. The three most commonly implemented EOR includes thermal EOR, 

chemical EOR, and gas miscible EOR. EOR overcomes well-known causes of 

inefficient flooding processes such as viscous fingering, bypassed oil, segregated flow, 

and altered reservoir wettability (Ali Mohsenatabar Firozjaiia and Hamid Reza 

Saghafi, 2020).

Chemically enhanced oil recovery improves volumetric sweep efficiency by 

lowering the water-oil mobility ratio such as polymer and decreases residual oil 

saturation by reducing the water-oil interfacial tension including surfactant or alkaline. 

Chemical flooding EOR comes in various forms, including alkaline flooding, 

surfactant flooding, surfactant-polymer flooding, polymer flooding, and alkaline- 

surfactant-polymer flooding. Theoretically, a water-soluble polymer raises the water 

viscosity and reduces the water-oil mobility ratio, improving the volumetric sweep’s 

effectiveness (Ali Mohsenatabar Firozjaiia, 2020).
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One of the most often used EOR methods is polymer flooding because it offers 

excellent recovery. Its objective is to improve sweep efficiency and lessen the severity 

of viscous fingering by decreasing the mobility ratio between the displacing fluid and 

the oil. The ability of the polymer to increase viscosity at a low concentration is the 

main emphasis of the design. The oil recovery improves as much as 15 to 20 percent 

for polymer compared to conventional water flooding. Polymer flooding works 

exceptionally in highly heterogeneous reservoirs where the viscous fingering is severe 

and in high-viscosity resident oil reservoirs where the mobility ratio is more than unity 

(Hamid Reza Saghafi, 2020).

Viscous fingering is the unstable displacement of viscous fluid by a less 

viscous fluid. Polymer flooding is frequently employed to combat viscous fingering. 

The fingering of injection fluid may harm the reservoir's flow, and the oil recovery of 

a reservoir. One reasons for viscous fingering is the reservoir rock's heterogeneous 

permeability. Water or another displacing fluid will only flow through the highly 

permeable layer, leaving the lower permeability layer's oil unaffected. Fluid viscosity, 

rock heterogeneity, temperature, and varying injection rates all contribute to viscous 

fingering. Gravity segregation, which separates the denser water from the oil, is a 

frequent term for this process. Combination of gravity segregation and viscous 

fingering results in the early water breakthrough and poor area and volumetric sweep 

efficiency result (Sameer Al-Hajria and Maziyar Sabet, 2019).

A detailed investigation of the polymer solution has been conducted to handle 

the significant flooding problem. A polymer solution pratically increase the water's 

viscosity, leading to a stronger viscous force and higher sweep efficiency. Large 

molecules known as polymers are made up of several monomers, or smaller chemical 

building blocks (Karl D, 2021). The two kinds of polymers are biopolymers and 

synthetic polymers. Synthetic polymers are huge molecular chains (macromolecules) 

and organic connections produced from natural products or by synthesising basic

2



materials from oil, gas, or coal, such as hydrolysed polyacrylamide (HPAM). 

Biopolymers are organic polymers created by the cells of living things, such as 

chitosan. In biopolymers, monomeric units are covalently bonded to produce further 

enormous molecules. The three main categories of biopolymers are polynucleotides, 

polypeptides, and polysaccharides and these categories are based on the monomers 

used and the structure of the biopolymer produced (Md Irfan, and Christopher P. Lenn, 

2021)

According to E. Mentzer, J. Heemskerk, and E. J.L. Koning (2017), the Marmul 

field in south Oman's sandstone reservoirs benefits from HPAM flooding, which 

lowers the total water-cut from 50% to 20%. Reducing water-cut extend the life of 

wells and save maintenance costs for surface infrastructure like separators. N. 

Sanmartim (2002) reported that the oil viscosity of 50 cP at 50°C after studying the 

polymer flooding process using HPAM at the Canto do Amaro oil field in Brazil. This 

outcome demonstrates the viability of polymer flooding in a reservoir containing high- 

viscosity oil. However, the use of polymer flooding is restricted by high salinity and 

high temperatures reservoirs, leading to several studies to enhance the HP AM's 

stability.

1.2 Problem Statement

Due to its cheap cost, tendency to viscosify, and well-known physiochemical 

features, partially hydrolysed polyacrylamide (HPAM) seems to be the most 

commonly used polymer in this situation. However, reservoir’s high temperature and 

salinity restrict the use of HPAM. The chain's amide groups undergo substantial 

hydrolysis into a carboxylic acid in reservoir conditions. When these hydrolyzed 

products come in touch with the common cations found in reservoir brines, they 

precipitate. HPAM behaves as a shear-thinning polymer, reducing viscosity and going 

through shear degradation at high shear rates. This is because the polymer chains are
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severed at high shear rates (Song, 2006). Dandan Hu (2014) stated that mostly the 

limits for polymer flooding are that viscosity is lower than lOOcP, the temperature is 

lower than 93 °C, water salinity is lower than 100,000 ppm, and formation 

permeability is higher than 20mD. In this high temperature and salinity environment, 

this polymer is quickly destabilized and unable to achieve the expected effects. High 

salinity also causes the polymer's molecular chain to collapse, producing a much 

smaller molecule and a lower viscosity solution.

Thermal and salinity degradation both impact the rheology behaviour of 

polymer solutions in porous media. The rate at which the polymer solution is 

hydrolyzed is directly influenced by temperature. Polymer flooding often resulted in 

HPAM hydrolyzing between 25 and 90 degrees. The most often utilised compounds 

in oilfield applications are partly hydrolyzed polyacrylamide (HPAM) and water- 

soluble polyacrylamide (PAM). HPAM polymers are often employed as mobility- 

controlling agents to raise the viscosity of stimulation fluids in polymer-augmented 

water flooding enhanced oil recovery (EOR) procedures to boost sweep efficiency. 

However, due to the thermal instability, applications of HPAM more than 90 °C and 

high salinity in between 100,000 and 200,000 ppm reservoir conditions are severely 

constrained. According to Algharaib M. (2014), this hydrolysis phenomenon may also 

decrease in the viscosity of a polymer solution. The viscosity of a polymer solution is 

influenced by several variables, including the concentration of the polymer, the rate at 

which it degrades, the temperature, as well as the salinity of the water used to prepare 

the solution.

The concentration of a dissolved polymer also affects the viscosity of the 

solution. The polymer segments tend to be surrounded with solvent molecules in 

appropriate solvents over other polymer segments. The polymer molecules, on the 

other hand, work to reduce the region of contact well with solvent molecules in poor 

solvents. Al-Zahrani (1990) explains that the extension of the polymer molecule, for 

instance, relies on the interaction of a polymer solvent, which has an immediate impact 

on its size as well as the viscosity of the solution.

4
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Nowadays, adding nanoparticles into polymer solutions might be of interest, 

but more research on the viability of nanoparticles including the effects on oil recovery 

is still needed. The enhancement that Si02 offers to HPAM stability under high 

temperatures and high salinities, as well as the impact of these polymer hybrids on 

HPAM flooding performance, are nonetheless things that should be investigated.

1.3 Research objectives

The primary objective is to investigate the effect of silica nanoparticles addition on 

HPAM stability under high salinity and temperature.

1. To investigate the improvement silica dioxide nanoparticles (S i02) to the 

HPAM stability in high temperature and high salinity.

2. To investigate the effect of silica dioxide nanoparticles (S i02) on HPAM 

flooding performance under high temperature and high salinity.
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1.4 Scope of Research

1.4.1 Nanoparticle Preparation

1. 100 ml of distilled water will be mixed with three different concentrations 

of HPAM such as 500,1000, and 1500 ppm.

2. Stir all the HPAM solution at 500 rpm for 2 hours using a magnetic stirrer 

for homogeneous solution.

3. Measure the shear viscosity of all HPAM solution using Brookfield 

Rheometer at a shear rate of 100s_1 for comparison matter.

4. The best viscosity result from the comparison will be selected, which 

justify as optimum performance for HPAM.

5. Prepare the selected HPAM concentration mixed with three different S i02 

solutions such as 0.01, 0.1, and lwt% by repeating all the previous 

preparation method.

6. The best viscosity result from the comparison will be selected, which 

justify as optimum performance for HPAM- Si02.

1.4.2 Temperature and Salinity Experiment for HPAM Solution

1. Heat the chosen HPAM solution at three different temperatures such as 

50°C, 70°C, and 90°C for 24 hours and measure the shear viscosity using 

increasing shear rate from 100 to 1000s-1, to determine the effect of 

temperature to the HPAM solution.

2. Prepare HPAM solution with additional of 20,000, 50,000, and 80,000 

ppm of sodium chloride (NaCl) and measure the shear viscosity using
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increasing shear rate from 100 to 1000s-1, to determine the effect of 

salinity to the HPAM solution stability.

3. All the process is repeated three times, and the average value is taken to 

ensure the consistent results.

1.4.3 Temperature and Salinity comparison between HPAM with HPAM -Si02 
solution

1. Repeat all the experiments, which include temperature and salinity 

procedures with HPAM- Si02 solution

2. Compare the viscosity result on the worst temperature and salinity result 

made by HPAM solution previously for improvement matters.

1.4.4 Flooding performance Experiment

1. Prepare the several core samples using the glass beads as the core and the 

cylindrical column as a holder with 18 cm long and 3.8 cm inner diameter.

2. The porosity and permeability of each core were measured.

3. The core was saturated for 24 hours.

4. From the existing column made previously (sand + water), oil will be 

injected until it reaches the end of the column and some will come out 

with certain amount of water, then that amount of water will be recorded 

for finding irresidual water saturation, Swirr.
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5. For finding the effective temperature, the test material (Water, HPAM, 

HPAM + Si02) will be heated up to the chosen temperature which is 110 

degrees Celsius and it will be injected to the core model.

6. Same for effective salinity, test material (water, HPAM, HPAM + Si02) 

will be mixed with the highest chosen concentration which is 50,000 ppm 

of NaCl and it will be injected to the core model.

7. Data for Pressure change (AP) and Volume of oil out (Vo out) will be 

recorded in order to plot the graph of Resistance and Recovery Factor.
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