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ABSTRACT 

     Gas flooding is one of the most widely applied EOR methods in field 

applications, but viscous fingering and gravity segregation are the main issues in gas 

displacing. To mitigate these problems, water alternating gas injection (WAG) has 

been used. Another useful proposal is applying foams to improve sweep efficiency 

because of their high viscosity and mobility. Surfactants have historically been used 

in field applications to reinforce foam. One of the most important tasks in petroleum 

engineering is the characterization of the properties of the reservoirs for the 

application of the method that will lead to a greater oil recovery factor. Among the 

different tertiary recovery methods with great potential for improving the oil 

recovery factor, foam injection can be mentioned. In this study, comprehensive 

laboratory research explored the performance of CO2 foam with anionic and 

nonionic surfactants. The objectives were to determine the critical micellar 

concentration (CMC) of SDS and TX100 surfactants and to investigate the effect of 

varying surfactants salinities and ratios on CO2-FOAM stability. The concentrations 

of SDS and TX100 were considered in a range of (0.01-0.4wt%). Furthermore, the 

salinities of SDS and TX100 were fixed at (25000, 30000, 35000, 40000, and 45000 

ppm) during the stability tests. This study's methodology included several laboratory 

tests divided into two sections. In the first section, the surface tension of (SDS) and 

(TX-100) surfactants was measured to estimate CMC. The second section was to 

consider the behavior of foam stability in various salinity and ratios of surfactant 

solutions. The results showed that the CMC for SDS and TX100 surfactants was 

equal to 0.05 and 0.02 wt%, respectively. Moreover, CO2 foam stability can be 

improved by increasing the salinity of surfactants solution. SDS at 35000 ppm 

salinity was the best for CO2 foam stability, which was stable for 8 minutes. 
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ABSTRAK 

     Banjir gas ialah salah satu kaedah EOR yang paling banyak digunakan dalam 

aplikasi lapangan, tetapi penjarian likat dan pengasingan graviti adalah isu utama 

dalam sesaran gas. Untuk mengurangkan masalah ini, suntikan gas berselang-seli air 

(WAG) telah digunakan. Satu lagi cadangan berguna ialah menggunakan buih untuk 

meningkatkan kecekapan sapuan kerana kelikatan dan mobiliti yang tinggi. 

Surfaktan secara sejarah telah digunakan dalam aplikasi lapangan untuk menguatkan 

buih. Salah satu tugas terpenting dalam kejuruteraan petroleum ialah pencirian sifat-

sifat takungan untuk penggunaan kaedah yang akan membawa kepada faktor 

pemulihan minyak yang lebih besar. Antara kaedah pemulihan tertiari yang berbeza 

dengan potensi besar untuk meningkatkan faktor pemulihan minyak, suntikan buih 

boleh disebut. Dalam kajian ini, penyelidikan makmal yang komprehensif meneroka 

prestasi buih CO2 dengan surfaktan anionik dan bukan ionik. Objektifnya adalah 

untuk menentukan kepekatan micellar kritikal (CMC) surfaktan SDS dan TX100 dan 

untuk menyiasat kesan saliniti dan nisbah surfaktan yang berbeza-beza terhadap 

kestabilan CO2-FOAM. Kepekatan SDS dan TX100 telah dipertimbangkan dalam 

julat (0.01-0.4wt%). Tambahan pula, kemasinan SDS dan TX100 telah ditetapkan 

pada (25000, 30000, 35000, 40000, dan 45000 ppm) semasa ujian kestabilan. 

Metodologi kajian ini merangkumi beberapa ujian makmal yang dibahagikan kepada 

dua bahagian. Dalam bahagian pertama, tegangan permukaan surfaktan (SDS) dan 

(TX-100) diukur untuk menganggarkan CMC. Bahagian kedua adalah untuk 

mempertimbangkan kelakuan kestabilan buih dalam pelbagai kemasinan dan nisbah 

larutan surfaktan. Keputusan menunjukkan bahawa CMC untuk surfaktan SDS dan 

TX100 adalah sama dengan 0.05 dan 0.02% berat, masing-masing. Selain itu, 

kestabilan buih CO2 boleh dipertingkatkan dengan meningkatkan kemasinan larutan 

surfaktan. SDS pada kemasinan 35000 ppm adalah yang terbaik untuk kestabilan 

buih CO2, yang stabil selama 18 minit.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background of the Study 

Primary, secondary, and tertiary processes are the steps in the classic oil 

recovery process that are used today. To make oil, the fundamental process relies on 

the expansion of water, crude oil, gas caps, and dissolved gas in reservoirs, all of which 

release energy when they are heated. The secondary process involves injecting water 

or an immiscible gas into reservoirs after pressure has been depleted, in order to keep 

the pressure constant. Due to high interfacial tension and inadequate mobility control, 

the average recovery efficiency is only one-third of the original oil in place (OOIP) 

following primary and secondary operations (Wardlaw, 1996). An EOR (enhanced oil 

recovery) technique uses tertiary chemistry or thermal energy to solve the difficulties 

of interfacial tension and/or mobility control, which increases the oil recovery 

efficiency (Lake, 1989). 

More than 70% of the world’s oil and gas production is via mature field growth, 

consisting mainly of secondary and tertiary production. The average recovery factor 

for gas is 70%, while that of oil, it is about 35%. (East African Scholars Publisher) In 

the tertiary recovery systems, Enhanced Oil Recovery (EOR) technology is often used, 

in which chemicals that were not initially present in the reservoir are injected to 

stimulate oil recovery. EUR strategies optimize the economic potential of mature oil 

fields by increasing oil recovery and extending field life. (Kittisrisawai and Romero-

Zerón, 2015). For decades, gas enhanced oil recovery (GEOR) has been commonly 

used to improve oil recovery from hydrocarbon reservoirs. Researchers have 

experimented by injecting various forms of gases into reservoirs with the aim of 

increasing oil extraction. Carbon dioxide (CO2), nitrogen (N2), methane (CH4), ethane 

(C2H6), and propane (C3H8) are some of these gases. (Fakher and Imqam, 2020) 
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This section provides an overview of the most common EOR approaches, such 

as chemical EOR, miscible flooding, and thermal methods. Polymers are used to 

control mobility in chemical EOR procedures and surface-active materials to minimise 

interfacial tension (IFT). Surfactants supplied directly to the injection solution or soaps 

produced by the interaction of crude oil and the injected alkaline solution can be used 

as surface-active materials. There are a variety of chemical EOR methods available, 

such as surfactant flooding; alkaline flooding; polymer flooding, as well as their 

combination (e.g., alkaline-surfactant-polymer (ASP) flooding) (Rognmo, 2019). 

Molecule EOR processes have mechanisms and limitations unique to each 

chemical. Surfactants can lower water oil's IFT and change rocks' wettability. High 

cost and retention of surfactants, such as adsorption on rocks, precipitation in highly 

salted brine, and partition in residual oil, limit their use. Cost-effective chemicals like 

alkalis can react with crude oil's acid components to produce soap, which reduces the 

water-interfacial oil's tension (IFT) and the injected surfactant's ability to adsorb 

(Nelson et al., 1984). The created soap in alkaline flooding can lower IFT to a 

satisfactory level if the crude oil's soap number is high enough. The alkalis, on the 

other hand, can still be employed to minimise the adsorption of surfactant (Nelson et 

al., 1984). Several factors will affect the stability of these materials, including the 

interfacial properties of the adsorbed layer between the gas and liquid phases, as well 

as the bulk properties of the liquid films that isolate the bubbles. The interfacial 

properties of the air/water interface are often dominant for foam stabilization in 

relatively simple structures, such as foams stabilized by low molecular weight 

surfactants. (Chen et al., 2017). 

Foams are commonly used in the petroleum industry for stimulation therapy. 

The use of foamed fracturing fluid in the production of low permeability, low pressure, 

and water-sensitive reservoirs is gaining prominence. Surfactants can be absorbed at 

the gas-liquid interface, decreasing surface tension and producing foams. (Zhan et al., 

2018).Foam can increase both aerial and vertical sweep efficiencies in high 

permeability zones by increasing gas-effective viscosity and decreasing gas mobility. 

(Samimi et al., 2020) 
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Sodium dodecyl sulphate (SDS) has been commonly used as a foaming agent 

in many fields due to its low cost and strong foaming ability. Foam can eventually 

come in contact with salts in practical applications, such as when being mixed with 

seawater to extinguish a fuel fire or in enhanced oil recovery (EOR). Salts were shown 

in several experiments to have a direct effect on the foaming performance and foam 

consistency of SDS foams. SDS foam has the highest foamability in four wt% sodium 

chloride (NaCl) solution (Jiang et al., 2020). NaCl will not improve the foam stability 

from 2% to 5%.  (Samin et al., 2017). Kumar and Mandal (2017) used various 

combinations of anionic (sodium dodecyl sulphate) as CO2-foam foaming agents. 

Some EOR procedures, such as foam chemical EOR and miscible CO2 flooding, are 

also secondary processes that can be employed to maintain reservoir pressure and 

boost oil recovery efficiency at the same time. 

 

1.2 Problem Statement 

As global demand for oil increases so does its value and this makes more 

expensive oil extraction techniques more and more viable. Enhanced Oil Recovery 

(EOR) offers the only viable solution for retrieving anywhere up to 80% of the world’s 

oil reserves. One of the techniques of EOR is foam flooding, which has proven that it 

can increase the oil recovery of the reservoir. However, many factors can affect the 

efficiency of the foam flooding. One of the factors is the surfactant concentration used 

in the foam flooding. It is believed that surfactant concentration will influence the 

critical micellar concentration (CMC), the foam adsorption and the ultimate oil 

recovery. 

Additionally, a small number of studies have suggested that a surfactant work 

as stabilise supercritical CO2 foam. To further understand how stabilise surfactant 

foam, researchers incorporated a surfactant in the experiment. Because of its 

widespread use in the industry, sodium dodecyl sulphate (SDS) was chosen as the 

surfactant. It is the stability of the foam sheets that determines the stability of foam in 
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porous media (lamellae). As a defoaming agent, oil may have an impact on foam 

performance by decreasing lamellae stability. 

Foam has a low density, a high apparent viscosity, and a high blocking 

capability in high-permeability formations. As a result, foam increases oil recovery by 

growing sweep efficiency in gas injection, decreasing gas mobility, and redirecting the 

gas flow. Because of their important properties, foams have been of considerable 

practical importance, and their use has gained wider acceptance in the petroleum 

industry. Foam is a two-phase system that includes gas bubbles in a thin liquid film, 

effectively controls gas mobility, and improves sweeping performance. (Li et al., 

2020a). 

Foam is a possible alternative to mitigate the above-mentioned gas flood 

problems. By increasing the apparent gas viscosity and trapping a wide gas fraction 

within the porous medium, it can significantly decrease gas mobility by many orders 

of magnitude. In the past, many field experiments were conducted, for example, steam-

foam injections, foam-assisted water-alternating gas, carbohydrate spam injections, 

and foam inundations with a carbon dioxide-solution surfactant used to boost spraying 

performance. Surfactants have historically been used in field applications to reinforce 

foam. Although, under extreme pressures of a reservoir such as high temperatures, 

high salinity, and crude oil contact, penetration enhancer foams are not quite steady. 

Other considerations such as compressive adsorption of rock matrix, crude oil 

surfactant partitioning, thermal degradation of a surfactant at the high-temperature 

further challenge the economic implementation of foam flooding. (Singh and 

Mohanty, 2017).It is necessary to figure out how foam perform when exposed to oil. 

Because these foams are used in EOR, their stability must be maintained even when 

exposed to oil. As a result, it is critical to conduct studies that examine the 

consequences of oil contact while the three phases are present. 
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1.3 Objectives of the Study 

Thus, the specific objectives of this study are as follows: 

 

I. To estimate the critical micellar concentration (CMC) of SDS and TX100 
surfactants. 
 

II. To investigate the effects of varying brine salinities on CO2 – foam 
stability. 

 

 
 
 

1.4 Scope of the Study 

The scope of the research covers parameter that affects the foam.  

I. The CMC of SDS and TX100 were determined in a range of (0.01-

0.45wt%). 

II. The salinity of SDS and TX100 were determined at (25000, 30000 

35000, 40000, and 45000 ppm). 

III. Comparison of CO2-foam stability with different salinities. 

IV. The experiments were conducted at room temperature 25C and 

atmospheric pressure 14.7 psi. 
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1.5 Significance of Study 

This work is interesting in that the renewable and organic resource foam has 

been taken into account. Where foams are used in an enhanced oil recovery as a 

surface-active agent. In comparison to surfactants and nanoparticles that are 

commonly used in foam flooding, the foam will become an out-of-box” future 

technology for enhancing oil recovery. This will serve as the point of departure for 

further research involving various foam types and altering or incorporating additional 

materials to enhance moisture and foam consistency to increase foam efficiency in oils 

and gas industry applications. 
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