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ABSTRACT

Gas flaring reduction by utilizing methane for syngas production through dry gas
reforming of methane is a favorable method, as compared to other syngas producing
methods, as it utilizes both greenhouse gases (CO2 and CHas). Though, the dry
reforming process is well studied, there are areas that are still being explored in
optimizing the process. Currently, the focused area of research is improving the
stability and activity of the catalysts used in the dry reforming of methane process.
Activity of catalyst mainly depends upon support type, particle size, and dispersion
on support, and synthesis method. Whereas catalyst deactivation is primarily due to
coke deposition and sintering of metal precursor. In this work efficient well designed
2D/2D CoAl-LDH/g-C3N4 heterojunction for photocatalytic dry reforming of
methane (DRM) for syngas production has been designed and fabricated. CoAl-LDH
with different concentration coupled with g-CsNy first tested for optimization of
photocatalytic syngas production (CO, Hz), as prepared 15 wt.% CoAl-LDH/g-C3N4
exhibited efficient syngas production with proficient selectivity for CO and Ha.
Productivity of Hz of 15% wt. CoAl-LDH/g-C3N4 is about 4.8 fold that of pure
CoAI-LDH and for CO is about 3.8 fold than that of pure CoAl-LDH. The improved
photocatalytic activity could be attributed to unique structure and abundant active
sties on surface. As compared to other heterojunction, 2D/2D CoAI-LDH/g-C3N4
heterojunction exhibit batter coupling interfaces and strong interfacial interaction,
which can easily suppress the photo induced charge carrier’s recombination and
decreases the distance of transmission of charges. The good recyclability and
efficient sorption process with different feed ratio (CH4/CO2) confirmed its stability
and batter activity. Comparison with BRM process, gave opportunity to further
extend the study for future improvement in shortcomings related to structure of
heterojunction for better performance in BRM. Coupling CoAl-LDH with g-C3N4 in
sheet-on-sheet heterostructure is an effective strategy towards syngas production

through DRM process.
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ABSTRAK

Reduksi gas flaring melalui kaedah pembentukan semula gas dengan mengutilasi gas
metana bagi pengeluaran sintesis gas merupakan satu prospek yang terbaik
berbanding kaedah lain. Teknik ini mengutilasi kedua-dua gas rumah hijau (CO2 dan
CH4). Walaupun kajian melalui teknik pembentukan semula gas kering telah meluas,
namun dalam mengoptimasikan proses ini, kajian perlu diperluaskan. Fokus kajian
kini hanyalah terhadap mengimprovisasi stabiliti dan aktiviti pemangkin dengan
menggunakan kaedah pembentukan semula gas kering melalui gas metana. Aktiviti
pemangkin bergantung kepada jenis sokongan, saiz zarah, dispersi keatas sokongan
dan juga kaedah sintesis. Faktor penting yang menyebabkan deaktivasi pemangkin
adalah disebabkan oleh pemendapan kok dan pesinteran logam prekursor. Dalam
kajian ini, 2D/2D CoAl-LDH/g-C3N4 heterojungsi direka dengan efisien untuk
pembentukan semula gas kering fotokatalisis menggunakan gas metana (drm) untuk
pengeluaran gas sintesis telah di fabrikasi. CoAl-LDH menggunakan konsentrasi
berbeza di pasangkan dengan g-C3N4 diuji untuk optimisasi pengeluaran fotokatalisis
gas sintesis ((CO,Hz), seperti yang disediakan 15 wt.% CoAl-LDH/g-C3N4 memiliki
pengeluaran gas sintesis yang efisien dengan selektiviti yang profisien untuk CO and
H>. Produktiviti untuk Hz of 15% wt CoAl-LDH/g-C3N4 adalah sebanyak 4.8 fold
dan CO adalah sebanyak 3.8 fold daripada CoAl-LDH asli. Peningkatan aktiviti
fotokatalisis disebabkan struktur unik dan tapak aktif yang banyak di atas
permukaan. Berbanding dengan heterojungsi lain, 2D/2D CoAl-LDH/g-C3Ny
heterojungsi memiliki bater interfasa gandingan dan interaksi interfasa yang kuat
dimana memudahkan dalam menghalang rekombinasi foto-induksi karier cas dan
mengurangkan jarak penularan cas. Kadar penggunaan semula yang baik dan
penjerapan proses yang efisien dengan nisbah kemasukan yang berbeza (CH4/CO2)
menentukan kestabilan dan aktiviti bater. Perbandingan proses BRM memberi
peluang memperluaskan kajian struktur heterojungsi untuk prestasi yang lebih baik
bagi penambahbaikan masa hadapan. Gandingan CoAl-LDH dan g-C3N4 diatas
lapisan heterostruktur adalah merupakan satu strategi yang efektif terhadap

pengeluaran sintesis gas melalui kaedah DRM.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Regardless of efforts to tackle global warming and climate change, the
burning of fossil fuels is still found to be the main contributing factor for the increase
of greenhouse gases in the atmosphere [1]. It is well known that oil and gas
production sites and refineries are main sources of greenhouse gas emission due to
releasing flare and flue gases. Flue gas is the mixture of gases produced during
combustion of fossil fuels and acts as pollutant, whereas, flare gas emission occurs

when the surplus process gas is burnt in gas flares before releasing to the atmosphere

2]

Natural Gas flaring is the process in which associated gas from wells,
refineries and hydrocarbon processing plants are burned either for disposal purposes
or as a way to release pressure [3]. This practice of burning gas is now recognised as
an important environmental problem. About 150 billion cubic meter of natural gas is
flared worldwide, which contaminates the surrounding environment with almost 400
Mt carbon dioxide per year [3, 4]. The estimated losses of flared gas are the single
largest loss in many industrial operations such as oil and gas production, chemical
plants, refineries and coal plants. Wastes or losses occurred due to the flaring

includes natural gas, fuel gas, nitrogen and process gases [5]

Methane, a prime component of hydrocarbon family, and considered as a
cheapest energy source, compared to other fossil fuels. Yet often it is neglected as a
major GHG contributor , with more severe potency of almost 30 times and lifetime
of 100-year as compared to Carbon dioxide.[6] Oil and Gas industry is a major
contributor to CH4 emission via gas flaring, the process in which methane gas is

burned-off from oil and gas fields as a mean of safety measure for pressure



relieve [7] This practice of gas flaring cause not only environmental problems, but
also contribute to wastage of gas, which otherwise would have been utilized for
energy generation.[8] According to one estimate around 150 billion cubic meter of
natural gas is flared as a routine practice in oil and gas fields around the world, which
directly contribute to environmental contamination with almost 400 Mt CO2 per
year.[1] Wastage of valuable gas from oil and gas industry is the single biggest loss

in terms of volume of flared gas.

The situation of flaring may reduce, due to application of Dry reforming of
methane (DRM), which utilizes both CO2 and CH4 for production of the industrially
valuable synthesis gas ( syngas), which is mixture of CO and H2.[9] Given by
equation (1.1).

CH, +CO < 2CO+2H,, AH,,, =247kJ | mol LD

CO,+H, >CO+H,0, AH,y, =41kJ / mol (1.2)

Regardless of advantages of DRM process, the production of syngas from
equation (1) requires energy intensive operating conditions, which is highly
endothermic process ( temperature of 800 °C.[10].This heat requirement is supplied
through combustion of fossil fuels, which further increase the GHG emission
associated with syngas production. Moreover, catalyst deactivation during DRM
process has remained a serious obstacle towards its industrial application.[11] Solar
energy driven photocatalytic process, is a promising technique, which displaces
conventional thermal reforming with solar reforming, thus reducing the reaction
temperature thereby, avoiding CO2 emission by adopting the green approach to

DRM, also provide better resistance to coke formation[6].

However, few studies reported on solar energy driven reaction of CH4 and
CO2. In a recent study , it was investigated that plasmonic metal based catalysts can
be used for the acceleration of DRM process.[12] Various studies reported for
photocatalytic DRM using transition metal oxide semiconductor catalysts.[13-15] In

one study, SrTiO3 catalyst exhibited 3.8% methane conversion under 700 °C



reaction condition. In another study, Rh/SrTiO3 catalyst reported, which exhibited
yield of almost 50% and DRM conversion at reaction condition of under 150 -C.[16]
Moreover, various metal oxides such as, tin oxide (SnO2), titanium dioxide (T102),
and tungsten oxide (WO3) were studied as a semiconductor photocatalysts for
photocatalytic DRM process.[17] Furthermore, in various studies, magnesium oxide
(MgO) was used at low temperature for reduction of CO2 to CO in the gas phase for
Photocatalytic DRM reaction.[15] Recently, combination of Pt/Ti02 with SiO2 light
diffuse reflection surface for efficient DRM photocatalytic reaction.[11] In another
study La- modified TiO2 (La/TiO2) was used under UV light for photocatalytic
DRM reaction.[10] In all these studies mentioned, the main issues encountered with
respect to catalyst activity was, lower catalyst stability due to catalyst deactivation,
higher heat requirement due to endothermicity of reaction and photothermal mode of

heat addition, and expensive catalyst used.

Recently, layered double hydroxides, (LDHs) have received considerable
attention due to its various applications in various fields, such as catalysts, use as
absorbents for CO2, catalyst precursors, as anion exchangers photoactive materials,
degradation of pollutants and hydrogen production.[18] LDHs have normally higher
specific surface area, which implies that more active sites for catalytic reaction.[19]
Layered double hydroxides are type of hydrotalcite clay, comprise of positive layer
and interlayer anion for exchange. Among various layered materials, LDHs are
significant layerd photocatalyst material with structure comprise of brucite like layer
with MOG6 ictahedra edge sharing structure.[20]Therefore, MO6 octahedra edge
sharing structure helps in formation of two dimensional sheets (2D) consists of metal
cations coordinated with OH group in six folds. LDHs have certain advantages of
being uniform distribution of metallic cations, higher stability, lower cost, and
adjustable composition.[21] Recently, layered double hydroxides materials attracted
researchers’ attentions in photocatalysis.[22] As it has advantages of containing
transition metal elements, tunable band gaps, environment friendly and higher
photocatalytic activity under visible light. However, Pure LDHs exhibit lower
catalytic activity due to high recombination rates of electron and hole and slow
charge carriers mobility to the surface.[23]  Among various layered double
hydroxides materials CoAl-LDH found to be excellent photocatalytic agent due to
its appropriate redox potential and higher visible light harvesting abilities.[24]



Therefore, its application particularly focused for various processes comprise of
photoreduction reactions under visible-light irradiation., also for photocatalytic

degradation reactions.[20]

Graphitic carbon nitrade (g-C3N4), a non-metallic semiconductor, due to its
excellent abilities of exhibiting lower cost, suitable band gap position (2.7 eV), and
higher stability is desirable for its application towards efficient energy production
owing to presence of earth-abundant elements.[25] Therefore, g-C3N4 application
towards DRM is promising for higher conversion without thermal system constrain.
However, in spite of promising activity, g-C3N4 still faced with restriction of
limited activity due to higher recombination rate.[10] Hence, requirement of further

modification necessary to achieve the desired results of higher activity.

Various literature regarding restricting charge carriers through modification
of its intrinsic structure have been reported.[10, 26] Two-dimensional (2D)
morphology system for photocatalytic process have proved to be helpful in
suppressing charge carrier recombination also reducing the distance of transmission
for charge carriers.[27] Several studies confirmed the fabrication of g-C3N4 with
material such as LDHs (NiAl-LDH), Znln2S4 and phosphorus (black) increased the
charge carrier separation.[22, 28] Therefore, doubled layer hydroxides (LDHs) are
preferred for its unique double layered structure and excellent photocatalytic
performance can be utilized with g-C3N4 to lower the charge recombination and
enhance the photocatalytic activity.[29] CoAl-LDH has been used previously in
various studies for different applications, such as CO2 reduction, degradation of
pollutants like RhB and Congo red, and recently for photocatalytic hydrogen
production.[23] However, CoAl-LDH application for syngas production in dry

reforming of methane, never reported before.

Over the last few years, performance of LDHs has been improved by
compounding various materials.[30] In current study, CoAl-LDH combined with g-
C3N4 for photocatalytic reforming of methane to syngas (CO,H2) by suppressing
the charge carriers recombination and enhancing the syngas production. CoAl-LDH

was synthesized through co-precipitation method and g-C3N4 was obtained through



calcination, and later CoAl-LDH was coupled in different percentages with g-C3N4.
The performance of synthesized layered 2D composite was tested through dry
reforming of methane in fixed bed photoreactor under visible light irradiation. The
2D/2D CoAI-LDH/g-C3N4 composite exhibited higher photocatalytic activity for
syngas production. In addition, the composite was tested with variation in feed ratio
of CH4/CO2 to examine the effect on yield and selectivity of H2 and CO (syngas).
Comparison between dry reforming and bi reforming was conducted to evaluate the
catalyst performance for yield. Finally, catalyst stability was evaluated for catalyst
life determination in terms of continuous production of CO and H2 under same
operating condition in various cycles. The construction of CoAl-LDH composite
with g-C3N4 will pave path for reducing GHG emissions and inhibit wastage of
valuable energy resource through gas flaring processing and allow reforming of
natural gas (methane) to efficient renewable fuel through DRM photocatalytic

process.

1.2 Problem Statement and Research Hypothesis

The recent studies over carbon dioxide (CO32) utilization technologies with
respect to controlling greenhouse gas (GHG) emissions has often neglected methane
(CH4 ), which is another main GHG contributor with impacts 25 times than that of
COz also the lifetime span of a 100-year, leading to more severely environmental
deterioration[6]. Oil and Gas industry is the main contributor towards methane
emission and burning of natural gas, which is often called as gas flaring, a routine
practice in oil and gas industry. Natural gas flaring practice wastes valuable energy

resource and enhances global warming effects.

There are different natural gas utilization technologies, among them syngas
production through reforming methods is a best option of natural gas utilization in
Gas to liquid technology (GTL) process, because of GTL is being marked as a clean
and environmentally friendly fuel source worldwide[7]. Syngas production is a first
primary step in GTL process, as it is used further as a feed for conversion into

synthetic crude, in a reaction based on Fischer-Tropsch (FT ) process. Besides,



Syngas can be produced through various reforming methods i.e. Steam reforming of
methane (SRM), Partial oxidation of methane (POM).Dry reforming of methane
(DRM).DRM can be considered more suitable for Fischer-Tropsch synthesis because
of H2/CO molar ratio of unity, whereas Steam reforming of Methane (SRM) process
gives higher molar ratio of H2/CO, which limits its usage in FT
process[31].However, in all above reforming technologies, the energy requirement is
very high, needs high temperatures, which result into further combustion of fossil
fuel, thus contributing to CO: emission. Natural gas flaring reduction through
technologies such as LPG, LNG and GTL are expensive because of more energy

requirement and more greenhouse gas emissions.

Catalysts used in reforming process, have issues such as, catalyst deactivation and
sintering, which causes lower productivity during reforming process. Deactivation of
catalyst normally occurs due to endothermicity and high temperature of reforming

reaction.

Based on the discussed problems and by considering the above-mentioned
perspective, following hypothesis is formulated by keeping in view the possible

solutions:

a) Gas flaring reduction can be mitigated, through its utilization towards

production of energy efficient renewable fuel.

b) Gas flaring reduction using photocatalytic Dry reforming Technology
is economical and environment friendly. Required low temperature

and green energy solution to gas flaring problem.

c) CoAl(LDHs)/g-C3N4 composite photocatalyst can enhance
the photocatalytic productivity of synthesis gas (CO,H2). Also have

batter stability then thermally driven Dry reforming process.



1.3 Project Objectives

Syngas Production through photocatalytic Dry reforming of Methane (DRM)

is a proficient strategy towards solution of Gas flaring reduction and further

utilization to energy efficient renewable fuels. In this regard following are the

objectives of the current study:

(a)

(b)

(©)

Gas flaring reduction through utilization in reformation to Synthesis

gas (H2,CO) for energy efficient fuel.

Synthesis of CoAl-LDH/g-C3N4 composite photocatalyst for higher
productivity of syngas. Characterization of synthesized catalyst
sample to study the morphology, structure and elemental

characteristics and its influence on higher yield of syngas.

Parameters Study on synthesized photocatalyst such as Feed ratio and

Stability.

1.4 Scope of Study

The scope of the study is as under, aims at gas flaring reduction and

utilization to efficient energy, improving the productivity of photocatalyst, towards

improving the performance of overall photocatalytic dry reforming of methane.

ii.

iii.

Synthesis of CoAl-LDH/g-C3N4 composite photocatalyst using Co-

precipitation method.

Characterization of photocatalyst so to study the structural, morphological

and surface characteristics using XRD,SEM,EDX, FTIR and PL.

Natural gas (CHs) along with Carbon dioxide (CO2) is Tested (flared gas)

as a feed in photoreactor for Dry reforming process to Produce synthesis



iv.  To test the stability of synthesized photocatalyst composite and evaluate
the effect of parameters such as feed ratio on productivity of

photocatalyst.
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