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ABSTRACT

Gas flaring reduction by utilizing methane for syngas production through dry gas 

reforming of methane is a favorable method, as compared to other syngas producing 

methods, as it utilizes both greenhouse gases (CO2 and CH4). Though, the dry 

reforming process is well studied, there are areas that are still being explored in 

optimizing the process. Currently, the focused area of research is improving the 

stability and activity of the catalysts used in the dry reforming of methane process. 

Activity of catalyst mainly depends upon support type, particle size, and dispersion 

on support, and synthesis method. Whereas catalyst deactivation is primarily due to 

coke deposition and sintering of metal precursor. In this work efficient well designed 

2D/2D CoAl-LDH/g-C3N4 heterojunction for photocatalytic dry reforming of 

methane (DRM) for syngas production has been designed and fabricated. CoAl-LDH 

with different concentration coupled with g-C3N4 first tested for optimization of 

photocatalytic syngas production (CO, H2), as prepared 15 wt.% CoAl-LDH/g-C3N4 

exhibited efficient syngas production with proficient selectivity for CO and H2 . 

Productivity of H2 of 15% wt. CoAl-LDH/g-C3N4 is about 4.8 fold that of pure 

CoAl-LDH and for CO is about 3.8 fold than that of pure CoAl-LDH. The improved 

photocatalytic activity could be attributed to unique structure and abundant active 

sties on surface. As compared to other heterojunction, 2D/2D CoAl-LDH/g-C3N4 

heterojunction exhibit batter coupling interfaces and strong interfacial interaction, 

which can easily suppress the photo induced charge carrier’s recombination and 

decreases the distance of transmission of charges. The good recyclability and 

efficient sorption process with different feed ratio (CH4/CO2) confirmed its stability 

and batter activity. Comparison with BRM process, gave opportunity to further 

extend the study for future improvement in shortcomings related to structure of 

heterojunction for better performance in BRM. Coupling CoAl-LDH with g-C3N4 in 

sheet-on-sheet heterostructure is an effective strategy towards syngas production 

through DRM process.
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ABSTRAK

Reduksi gas flaring melalui kaedah pembentukan semula gas dengan mengutilasi gas 

metana bagi pengeluaran sintesis gas merupakan satu prospek yang terbaik 

berbanding kaedah lain. Teknik ini mengutilasi kedua-dua gas rumah hijau (CO2 dan 

CH4). Walaupun kajian melalui teknik pembentukan semula gas kering telah meluas, 

namun dalam mengoptimasikan proses ini, kajian perlu diperluaskan. Fokus kajian 

kini hanyalah terhadap mengimprovisasi stabiliti dan aktiviti pemangkin dengan 

menggunakan kaedah pembentukan semula gas kering melalui gas metana. Aktiviti 

pemangkin bergantung kepada jenis sokongan, saiz zarah, dispersi keatas sokongan 

dan juga kaedah sintesis. Faktor penting yang menyebabkan deaktivasi pemangkin 

adalah disebabkan oleh pemendapan kok dan pesinteran logam prekursor. Dalam 

kajian ini, 2D/2D CoAl-LDH/g-C3N4 heterojungsi direka dengan efisien untuk 

pembentukan semula gas kering fotokatalisis menggunakan gas metana (drm) untuk 

pengeluaran gas sintesis telah di fabrikasi. CoAl-LDH menggunakan konsentrasi 

berbeza di pasangkan dengan g-C3N4 diuji untuk optimisasi pengeluaran fotokatalisis 

gas sintesis ((CO,H2), seperti yang disediakan 15 wt.% CoAl-LDH/g-C3N4 memiliki 

pengeluaran gas sintesis yang efisien dengan selektiviti yang profisien untuk CO and 

H2 . Produktiviti untuk H2 of 15% wt CoAl-LDH/g-C3N4 adalah sebanyak 4.8 fold 

dan CO adalah sebanyak 3.8 fold daripada CoAl-LDH asli. Peningkatan aktiviti 

fotokatalisis disebabkan struktur unik dan tapak aktif yang banyak di atas 

permukaan. Berbanding dengan heterojungsi lain, 2D/2D CoAl-LDH/g-C3N4 

heterojungsi memiliki bater interfasa gandingan dan interaksi interfasa yang kuat 

dimana memudahkan dalam menghalang rekombinasi foto-induksi karier cas dan 

mengurangkan jarak penularan cas. Kadar penggunaan semula yang baik dan 

penjerapan proses yang efisien dengan nisbah kemasukan yang berbeza (CH4/CO2) 

menentukan kestabilan dan aktiviti bater. Perbandingan proses BRM memberi 

peluang memperluaskan kajian struktur heterojungsi untuk prestasi yang lebih baik 

bagi penambahbaikan masa hadapan. Gandingan CoAl-LDH dan g-C3N4 diatas 

lapisan heterostruktur adalah merupakan satu strategi yang efektif terhadap 

pengeluaran sintesis gas melalui kaedah DRM.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Regardless of efforts to tackle global warming and climate change, the 

burning of fossil fuels is still found to be the main contributing factor for the increase 

of greenhouse gases in the atmosphere [1]. It is well known that oil and gas 

production sites and refineries are main sources of greenhouse gas emission due to 

releasing flare and flue gases. Flue gas is the mixture of gases produced during 

combustion of fossil fuels and acts as pollutant, whereas, flare gas emission occurs 

when the surplus process gas is burnt in gas flares before releasing to the atmosphere 

[2].

Natural Gas flaring is the process in which associated gas from wells, 

refineries and hydrocarbon processing plants are burned either for disposal purposes 

or as a way to release pressure [3]. This practice of burning gas is now recognised as 

an important environmental problem. About 150 billion cubic meter of natural gas is 

flared worldwide, which contaminates the surrounding environment with almost 400 

Mt carbon dioxide per year [3, 4]. The estimated losses of flared gas are the single 

largest loss in many industrial operations such as oil and gas production, chemical 

plants, refineries and coal plants. Wastes or losses occurred due to the flaring 

includes natural gas, fuel gas, nitrogen and process gases [5]

Methane, a prime component of hydrocarbon family, and considered as a 

cheapest energy source, compared to other fossil fuels. Yet often it is neglected as a 

major GHG contributor , with more severe potency of almost 30 times and lifetime 

of 100-year as compared to Carbon dioxide.[6] Oil and Gas industry is a major 

contributor to CH4 emission via gas flaring, the process in which methane gas is 

burned-off from oil and gas fields as a mean of safety measure for pressure
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relieve.[7] This practice of gas flaring cause not only environmental problems, but 

also contribute to wastage of gas, which otherwise would have been utilized for 

energy generation.[8] According to one estimate around 150 billion cubic meter of 

natural gas is flared as a routine practice in oil and gas fields around the world, which 

directly contribute to environmental contamination with almost 400 Mt CO2 per 

year.[1] Wastage of valuable gas from oil and gas industry is the single biggest loss 

in terms of volume of flared gas.

The situation of flaring may reduce, due to application of Dry reforming of 

methane (DRM), which utilizes both CO2 and CH4 for production of the industrially 

valuable synthesis gas ( syngas), which is mixture of CO and H2.[9] Given by 

equation (1.1).

CH4 + CO ^  2CO + 2H2, AH298 k = 247kJ  / mol
(11)

C O  + H 2 ^  CO + H 2O, AH298i = 41 kJ / mol (
(12)

Regardless of advantages of DRM process, the production of syngas from 

equation (1) requires energy intensive operating conditions, which is highly 

endothermic process ( temperature of 800 °C.[10].This heat requirement is supplied 

through combustion of fossil fuels, which further increase the GHG emission 

associated with syngas production. Moreover, catalyst deactivation during DRM 

process has remained a serious obstacle towards its industrial application.[11] Solar 

energy driven photocatalytic process, is a promising technique, which displaces 

conventional thermal reforming with solar reforming, thus reducing the reaction 

temperature thereby, avoiding CO2 emission by adopting the green approach to 

DRM, also provide better resistance to coke formation[6].

However, few studies reported on solar energy driven reaction of CH4 and 

CO2. In a recent study , it was investigated that plasmonic metal based catalysts can 

be used for the acceleration of DRM process.[12] Various studies reported for 

photocatalytic DRM using transition metal oxide semiconductor catalysts.[13-15] In 

one study, SrTiO3 catalyst exhibited 3.8% methane conversion under 700 °C
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reaction condition. In another study, Rh/SrTiO3 catalyst reported, which exhibited 

yield of almost 50% and DRM conversion at reaction condition of under 150 °C.[16] 

Moreover, various metal oxides such as, tin oxide (SnO2), titanium dioxide (TiO2), 

and tungsten oxide (WO3) were studied as a semiconductor photocatalysts for 

photocatalytic DRM process.[17] Furthermore, in various studies, magnesium oxide 

(MgO) was used at low temperature for reduction of CO2 to CO in the gas phase for 

Photocatalytic DRM reaction.[15] Recently, combination of Pt/TiO2 with SiO2 light 

diffuse reflection surface for efficient DRM photocatalytic reaction.[11] In another 

study La- modified TiO2 (La/TiO2) was used under UV light for photocatalytic 

DRM reaction.[10] In all these studies mentioned, the main issues encountered with 

respect to catalyst activity was, lower catalyst stability due to catalyst deactivation, 

higher heat requirement due to endothermicity of reaction and photothermal mode of 

heat addition, and expensive catalyst used.

Recently, layered double hydroxides, (LDHs) have received considerable 

attention due to its various applications in various fields, such as catalysts, use as 

absorbents for CO2, catalyst precursors, as anion exchangers photoactive materials, 

degradation of pollutants and hydrogen production.[18] LDHs have normally higher 

specific surface area, which implies that more active sites for catalytic reaction.[19] 

Layered double hydroxides are type of hydrotalcite clay, comprise of positive layer 

and interlayer anion for exchange. Among various layered materials, LDHs are 

significant layerd photocatalyst material with structure comprise of brucite like layer 

with MO6 ictahedra edge sharing structure.[20]Therefore, MO6 octahedra edge 

sharing structure helps in formation of two dimensional sheets (2D) consists of metal 

cations coordinated with OH group in six folds. LDHs have certain advantages of 

being uniform distribution of metallic cations, higher stability, lower cost, and 

adjustable composition.[21] Recently, layered double hydroxides materials attracted 

researchers’ attentions in photocatalysis. [22] As it has advantages of containing 

transition metal elements, tunable band gaps, environment friendly and higher 

photocatalytic activity under visible light. However, Pure LDHs exhibit lower 

catalytic activity due to high recombination rates of electron and hole and slow 

charge carriers mobility to the surface.[23] Among various layered double 

hydroxides materials CoAl-LDH found to be excellent photocatalytic agent due to 

its appropriate redox potential and higher visible light harvesting abilities.[24]
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Therefore, its application particularly focused for various processes comprise of 

photoreduction reactions under visible-light irradiation., also for photocatalytic 

degradation reactions.[20]

Graphitic carbon nitrade (g-C3N4), a non-metallic semiconductor, due to its 

excellent abilities of exhibiting lower cost, suitable band gap position (2.7 eV), and 

higher stability is desirable for its application towards efficient energy production 

owing to presence of earth-abundant elements.[25] Therefore, g-C3N4 application 

towards DRM is promising for higher conversion without thermal system constrain. 

However, in spite of promising activity, g-C3N4 still faced with restriction of 

limited activity due to higher recombination rate.[10] Hence, requirement of further 

modification necessary to achieve the desired results of higher activity.

Various literature regarding restricting charge carriers through modification 

of its intrinsic structure have been reported.[10, 26] Two-dimensional (2D) 

morphology system for photocatalytic process have proved to be helpful in 

suppressing charge carrier recombination also reducing the distance of transmission 

for charge carriers.[27] Several studies confirmed the fabrication of g-C3N4 with 

material such as LDHs (NiAl-LDH), Znln2S4 and phosphorus (black) increased the 

charge carrier separation.[22, 28] Therefore, doubled layer hydroxides (LDHs) are 

preferred for its unique double layered structure and excellent photocatalytic 

performance can be utilized with g-C3N4 to lower the charge recombination and 

enhance the photocatalytic activity.[29] CoAl-LDH has been used previously in 

various studies for different applications, such as CO2 reduction, degradation of 

pollutants like RhB and Congo red, and recently for photocatalytic hydrogen 

production.[23] However, CoAl-LDH application for syngas production in dry 

reforming of methane, never reported before.

Over the last few years, performance of LDHs has been improved by 

compounding various materials.[30] In current study, CoAl-LDH combined with g- 

C3N4 for photocatalytic reforming of methane to syngas (CO,H2) by suppressing 

the charge carriers recombination and enhancing the syngas production. CoAl-LDH 

was synthesized through co-precipitation method and g-C3N4 was obtained through

4



calcination, and later CoAl-LDH was coupled in different percentages with g-C3N4. 

The performance of synthesized layered 2D composite was tested through dry 

reforming of methane in fixed bed photoreactor under visible light irradiation. The 

2D/2D CoAl-LDH/g-C3N4 composite exhibited higher photocatalytic activity for 

syngas production. In addition, the composite was tested with variation in feed ratio 

of CH4/CO2 to examine the effect on yield and selectivity of H2 and CO (syngas). 

Comparison between dry reforming and bi reforming was conducted to evaluate the 

catalyst performance for yield. Finally, catalyst stability was evaluated for catalyst 

life determination in terms of continuous production of CO and H2 under same 

operating condition in various cycles. The construction of CoAl-LDH composite 

with g-C3N4 will pave path for reducing GHG emissions and inhibit wastage of 

valuable energy resource through gas flaring processing and allow reforming of 

natural gas (methane) to efficient renewable fuel through DRM photocatalytic 

process.

1.2 Problem Statement and Research Hypothesis

The recent studies over carbon dioxide (CO2) utilization technologies with 

respect to controlling greenhouse gas (GHG) emissions has often neglected methane 

(CH4 ), which is another main GHG contributor with impacts 25 times than that of 

CO2 also the lifetime span of a 100-year, leading to more severely environmental 

deterioration[6]. Oil and Gas industry is the main contributor towards methane 

emission and burning of natural gas, which is often called as gas flaring, a routine 

practice in oil and gas industry. Natural gas flaring practice wastes valuable energy 

resource and enhances global warming effects.

There are different natural gas utilization technologies, among them syngas 

production through reforming methods is a best option of natural gas utilization in 

Gas to liquid technology (GTL) process, because of GTL is being marked as a clean 

and environmentally friendly fuel source worldwide[7]. Syngas production is a first 

primary step in GTL process, as it is used further as a feed for conversion into 

synthetic crude, in a reaction based on Fischer-Tropsch (FT ) process. Besides,

5



Syngas can be produced through various reforming methods i.e. Steam reforming of 

methane (SRM), Partial oxidation of methane (POM).Dry reforming of methane 

(DRM).DRM can be considered more suitable for Fischer-Tropsch synthesis because 

of H2/CO molar ratio of unity, whereas Steam reforming of Methane (SRM) process 

gives higher molar ratio of H2/CO, which limits its usage in FT 

process[31].However, in all above reforming technologies, the energy requirement is 

very high, needs high temperatures, which result into further combustion of fossil 

fuel, thus contributing to CO2 emission. Natural gas flaring reduction through 

technologies such as LPG, LNG and GTL are expensive because of more energy 

requirement and more greenhouse gas emissions.

Catalysts used in reforming process, have issues such as, catalyst deactivation and 

sintering, which causes lower productivity during reforming process. Deactivation of 

catalyst normally occurs due to endothermicity and high temperature of reforming 

reaction.

Based on the discussed problems and by considering the above-mentioned 

perspective, following hypothesis is formulated by keeping in view the possible 

solutions:

a) Gas flaring reduction can be mitigated, through its utilization towards 

production of energy efficient renewable fuel.

b) Gas flaring reduction using photocatalytic Dry reforming Technology 

is economical and environment friendly. Required low temperature 

and green energy solution to gas flaring problem.

c) CoAl(LDHs)/g-C3N4 composite photocatalyst can enhance

the photocatalytic productivity of synthesis gas (CO,H2). Also have 

batter stability then thermally driven Dry reforming process.

6



1.3 Project Objectives

Syngas Production through photocatalytic Dry reforming of Methane (DRM) 

is a proficient strategy towards solution of Gas flaring reduction and further 

utilization to energy efficient renewable fuels. In this regard following are the 

objectives of the current study:

(a) Gas flaring reduction through utilization in reformation to Synthesis 

gas (H2,CO) for energy efficient fuel.

(b) Synthesis of CoAl-LDH/g-C3N4 composite photocatalyst for higher 

productivity of syngas. Characterization of synthesized catalyst 

sample to study the morphology, structure and elemental 

characteristics and its influence on higher yield of syngas.

(c) Parameters Study on synthesized photocatalyst such as Feed ratio and 

Stability.

1.4 Scope of Study

The scope of the study is as under, aims at gas flaring reduction and 

utilization to efficient energy, improving the productivity of photocatalyst, towards 

improving the performance of overall photocatalytic dry reforming of methane.

i. Synthesis of CoAl-LDH/g-C3N4 composite photocatalyst using Co

precipitation method.

ii. Characterization of photocatalyst so to study the structural, morphological 

and surface characteristics using XRD,SEM,EDX, FTIR and PL.

iii. Natural gas (CH4) along with Carbon dioxide (CO2) is Tested (flared gas) 

as a feed in photoreactor for Dry reforming process to Produce synthesis 

gas.

7



iv. To test the stability of synthesized photocatalyst composite and evaluate 

the effect of parameters such as feed ratio on productivity of 

photocatalyst.

8
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