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ABSTRACT 

Electrical utility services are evolving from centralized conventional systems to 

distributed grids (DGs) attributing to clean energy production, customer participation and 

low energy cost. Integration of renewable energy (RE) systems into existing grids results 

in complex grid structure which requires optimization methods in planning and 

operational schemes. In RE system planning, capacity sizing and component placements 

are typically implemented using classical methods, application software and intelligent-

based methods. The software-based methods are static, hence, cannot be tuned to a 

customized application. Whereas, intelligent-based methods produce results that are 

acceptable, however, not optimal. Linear programming (LP) based algorithms as classical 

methods are preferred due to its simplicity, speed and accuracy which yields global 

optimal results without branching at local solutions. The mixed integer linear 

programming (MILP) is used in microgrid’s components sizing. However, MILP has 

limitations of large formulations, high computational burdens and hardly consider multi-

objective analysis. To overcome the MILP problems, nested integer linear programming 

(NILP) is proposed in this study to implement a multi-configurational sizing in residential 

nanogrid to achieve low energy cost. A residential located in sub-Saharan semiarid 

climates of northern Nigeria is chosen as a case study. The proposed NILP is implemented 

in a multi-stage hybridization of relaxation LP and MILP in a nested loop for nanogrid 

configurations using photovoltaic (PV), wind turbine (WT) and battery energy storage 

system (BESS). Effectiveness of the NILP is verified by comparison with the classical 

MILP and particle swarm optimization (PSO). Operation schemes in RE systems include 

power dispatch and demand side management (DSM). The DSM is preferred as it allows 

more options for customer participation and can simply follow supplies. DSM is 

implemented using the conventional time-of-use (𝐶𝑇𝑂𝑈) methods. However, the 𝐶𝑇𝑂𝑈 is 

time-bound, utility-centred, incur additional energy costs and affects customer comforts. 

To balance the conflicting objectives of energy cost and customer comfort, the time-of-

use fitness (TOUF) which is an improved version of 𝐶𝑇𝑂𝑈 has been proposed. The method 

is introduced to achieve load management for the nanogrid’s optimal energy utilization 

and to reduce consumption cost. The proposed TOUF considered local RE supplies, 

BESS, grid interaction and customer demands based on a fitness function (𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛). The 

𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is a demand response initiative used alternately for energy based on real-time 

energy cost to define a fitness costs (𝐹𝑐𝑜𝑠𝑡) as the energy consumption cost. Both the 

sizing and load management schemes are implemented using MATLAB programming. 

The NILP achieved reductions in nanogrid’s capacity, the levelized cost of energy 

(LCOE), and net present costs (NPC) as compared to the MILP. The PV/WT hybrid 

nanogrid configuration achieves NPC and LCOE reductions by 11% and 33% compared 

to MILP and PSO, respectively. The TOUF achieved up to 43.40% and 53.09% 𝐹𝑐𝑜𝑠𝑡 
reductions under the BESS support. The autonomous nanogrid operations were analysed 

using the Markov Chains as a stochastic tool. The probabilistic information indicates that 

the proposed nanogrid is able to achieve up to 61.54% autonomy in a 25-year lifetime 

analysis. 
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ABSTRAK 

Perkhidmatan utiliti elektrik berkembang dari sistem konvensional terpusat ke 

grid teragih (DG) disebabkan penghasilan tenaga bersih, penyertaan pelanggan dan kos 

tenaga yang rendah. Integrasi sistem tenaga boleh diperbaharui (RE) ke dalam grid sedia 

ada menyebabkan struktur grid menjadi kompleks dan memerlukan kaedah 

pengoptimuman dalam perancangan dan skim operasi. Dalam perancangan sistem RE, 

pensaizan kapasiti dan penempatan komponen biasanya dilaksanakan menggunakan 

kaedah klasik, perisian aplikasi dan kaedah berasaskan kecerdasan. Kaedah berasaskan 

perisian adalah bersifat statik, justeru itu, tidak dapat ditalakan kepada aplikasi tersuai. 

Manakala, kaedah berasaskan kecerdasan menghasilkan keputusan yang boleh diterima, 

namun, tidak optimum. Algoritma berasaskan pengaturcaraan linear (LP) sebagai kaedah 

klasik lebih disukai disebabkan keringkasan, kelajuan dan ketepatannya yang 

menghasilkan keputusan optimum global tanpa bercabang pada penyelesaian tempatan. 

Pengaturcaraan linear integer campuran (MILP) digunakan dalam pensaizan komponen 

microgrid. Walau bagaimanapun, MILP mempunyai had pada jumlah rumus yang besar, 

beban komputasi yang tinggi dan sukar mempertimbangkan analisis pelbagai objektif. 

Untuk mengatasi masalah MILP, pengaturcaraan linear integer bersarang (NILP) 

dicadangkan dalam kajian ini untuk melaksanakan pensaizan pelbagai konfigurasi dalam 

nanogrid kediaman untuk mencapai kos tenaga yang rendah. Satu kediaman di iklim sub-

Sahara di utara Nigeria dipilih sebagai kes kajian. NILP yang dicadangkan dilaksanakan 

dalam hibridisasi pelbagai tahap kelonggaran LP dan MILP dalam gelung bersarang 

untuk konfigurasi nanogrid menggunakan fotovoltaik (PV), turbin angin (WT) dan sistem 

simpanan tenaga bateri (BESS). Keberkesanan NILP disahkan dengan perbandingan 

dengan MILP klasik dan Pengoptimuman Kawanan Zarah (PSO). Skim operasi dalam 

sistem RE termasuk penghantaran kuasa dan pengurusan sisi permintaan (DSM). DSM 

lebih disukai kerana ia memberi lebih banyak pilihan untuk penyertaan pelanggan dan 

mudah mengikut bekalan.  DSM dilaksanakan menggunakan kaedah time-of-use 

konvensional (𝐶𝑇𝑂𝑈). Walau bagaimanapun, 𝐶𝑇𝑂𝑈 bargantung pada masa, berpusat pada 

utiliti, menanggung kos tenaga tambahan dan mempengaruhi keselesaan pelanggan. 

Untuk mengimbangi objektif bertentangan di antara kos tenaga dan keselesaan 

pelanggan, time-of-use fitness (TOUF) yang merupakan versi 𝐶𝑇𝑂𝑈 yang diperbaik telah 

dicadangkan. Kaedah ini diperkenalkan untuk mencapai pengurusan beban bagi 

penggunaan tenaga optimum nanogrid dan mengurangkan kos penggunaan. TOUF yang 

dicadangkan mempertimbangkan bekalan RE tempatan, BESS, interaksi grid dan 

permintaan pelanggan berdasarkan fungsi kecocokan (𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛). 𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 adalah 

inisiatif respons permintaan yang digunakan secara bergantian untuk tenaga berdasarkan 

kos tenaga masa nyata untuk menentukan kos kecocokan (𝐹𝑐𝑜𝑠𝑡) sebagai kos penggunaan 

tenaga. Kedua-dua skim pensaizan dan pengurusan beban dilaksanakan dengan 

menggunakan program MATLAB.  NILP mencapai pengurangan kapasiti nanogrid, kos 

tenaga yang diratakan (LCOE), dan kos kini bersih (NPC) berbanding dengan MILP. 

Konfigurasi nanogrid hibrid PV/WT mencapai pengurangan NPC dan LCOE masing-

masing, sebanyak 11% dan 33% berbanding MILP dan PSO. TOUF mencapai 

pengurangan sehingga 43.40% dan 53.09% 𝐹𝑐𝑜𝑠𝑡 dengan sokongan BESS. Operasi 

nanogrid autonomi dianalisa menggunakan Markov Chains sebagai alat stokastik. 

Maklumat kebarangkalian menunjukkan bahawa nanogrid yang dicadangkan dapat 

mencapai sehingga 61.54% jangkauan autonomi dalam analisis sepanjang 25 tahun.      
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Electrical utilities are considered as universal service obligations [1]. The 

assertion may be attributed to impacts of electricity supply to residential, commercial 

and industrial developments. There are many sources in electrical power generation, 

which include thermal systems operating on fossil fuels (such as coal, natural gas and 

diesel), hydro systems, renewable energy (RE), biotechnologies and chemical 

processes. In large power systems, generation voltages ranging between 5 kV to 34.5 

kV are kept at distance from load centers due to factors such as technology, economy 

and environment. Generation and transmission systems are coupled using large power 

transformers with capacity ranging between 75 MVA to 500 MVA [2]. Referring to 

Consider Figure 1.1, where the step-up transformers are normally used for generation-

transmission systems coupling and for controlling lower generation voltages to higher 

transmission voltages. 

Transmission

(66 kV – 765 kV)

Generation

(5 kV – 34.5kV)

Distribution

(120 V – 33 kV)

Step-up

Transformers

Step-down

Transformers

 

Figure 1.1    Basic structure of a conventional grid system 
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Transmission infrastructure are generally rated in kV due to the voltage size 

they handle. The range of voltages mostly handled in transmission systems are 66 kV 

to 765 kV [2]. The voltages are transported in bulk to load centers and stepped down 

for distribution purposes. Power ratings in distribution system transformers mostly 

depends on customer demands in the supply location, while voltage sizes range within 

120 V to 240 V (single-phase), 220/420 V (three-phase) to 33 kV (three-phase). 

Electricity at transmission and distribution levels reaches customers through retails.  

In reference [3], two systems of retails were discussed as illustrated in Figure 1.2. The 

forward contracts, which is an electricity purchase by retailers from generation for 

regular intervals of time that are usually long periods, and spot markets that enable 

retailers to periodically purchase electricity according to customer demands. 

GenCo TranCo

Forward

Contract 

DisCos Customer

Spot 

Purchase

Bulk 

Purchase

Bulk 

Purchase

Bulk 

Purchase

Bulk 

Purchase

Bulk 

Purchase

Retail

Customer

CustomerRetail

Retail

 

Figure 1.2    Features of electricity retail system in a conventional grid [3] 

 

Under a span of nearly two decades, Nigerian Electricity Supply Industry 

(NESI) has been implementing reforms that is transforming the monopolized structure 

of the defunct National Electric Power Authority (NEPA) as the sole operator in the 

NESI. The reforms have been carried out through transitory frameworks of the Power 

Holding Company of Nigeria (PHCN) into the currently autonomous Generation 

Companies (GenCos), Transmission Company of Nigeria (TCN) and Distribution 

Companies (DisCos). The effort was to break the monopoly of a single structure of 
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NEPA affected by number of issues that include poor maintenance, low revenues, high 

losses, power theft and poor tariffs described in Figure 1.3. It is reported in [4] that 

part of Nigeria’s electricity industry’s poor performance arose from unmetered and 

estimated billings. While poor tariffs and estimated billings are attributed to poor 

performance of Nigerian DisCos as electricity retailers in the new power structure, the 

country’s transmission infrastructure continues to remain radial which highlights 

concerns for reliability. The 7.4% losses incurred in transmission system is thus higher 

than global benchmarked losses of 2 – 6%. Moreover, GenCos’ production from 

records shown in Table 1.1 are much lower than the generator’s installed capacities. 

Low

revenue

Poor 

maintenance

High 

losses

Power theft

Poor 

tariffs
NESI

 

Figure 1.3    Issues related to Nigerian Electricity Supply Industry’s poor 

performance [4] 

 

 

Table 1.1    Nigerian GenCos installed and available generation [5] 

System Installed Capacity 

(MW) 

Available capacity 

(MW) 

Thermal Generation 8,457.00 4,996 

Hydro Generation 1,938.40 1,060 

Total 10,395 6,056 
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The need to prepare existing power grids such the NESI against challenges of 

21st century is highlighted in reference [6]. In that regard, reliability, efficiency, cost 

effectiveness and environment are mentioned in reference [7], [8] and [9] as major 

factors to be considered. Challenges affecting performance of Conventional Grids 

(CG) include high costs of fuels [10], transmission losses [11], [12], carbon emissions 

[13] and initial costs [14]. Part of the solutions discussed in literature include reliability 

improvement through increased generation [15], [16]. Distributed Grid (DG) 

structures can be used to reduce transmission losses [17], and the need for expansion 

of the existing structure could hence be minimized [18]. The DGs are good in 

renewable energy (RE) integration for reduced carbon emissions and minimization of 

fuel costs [19], [20], [21] and [22]. Photovoltaic (PV) cells, wind turbines (WT) and 

fuel cells (FC) are some examples of RE generating components. There are RE support 

in low capacity generations (microgeneration) for customers to optionally be part of 

electricity production through a term referred to as “prosumption” [23]. Penetration of 

DG resources into CGs as proposed in [24] and [25] could however result into 

emergence of complex structures. Hence, grouping of distributed energy resources 

(DER) into smaller and functional units of microgrids and nanogrids that can operate 

in autonomous modes are suggested in references [25] and [26].  

Integration of RE technologies into existing CGs face numerous challenges, 

such that effective control is needed to maintain and stabilize system parameters. 

Moreover, the control is needed for power balance and economic dispatch of resources 

under seamless grid crossovers [27]. There are lots of discussions in literature relating 

to the issues of developments and integrations of RE systems into existing CGs. Hence, 

the foregoing literature investigations highlight the potentials of RE systems towards 

contributions to the transformations and performance of CGs such as NESI. Realizing 

the RE potentials is important to the trending issues regarding the preferred 

characteristics of modern power grids, typical of the 21st century NESI. 
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1.2 Problem Statement 

Integration of RE systems into NESI structures suggests an effort towards a 

reliable and more cost effective energy supplies. Example of such CG integrations with 

RE systems used mixed integer linear programming (MILP) methods. The MILP 

algorithm achieves relatively lower costs of energy and lower net present costs (NPC) 

through optimal sizing and operations of RE based community microgrid connected 

to a main grid. The RE-based sizing scheme utilized advantages such as simplicity, 

speed, and accuracy of the MILP. MILP produces results that are optimally global 

without branching at local solutions. However, MILP does not consider nonlinear 

effects. It considers all time periods at once, may have high dimension problems and 

time consuming. Hence, the foregoing indicates that the MILP results obtained 

indicate it’s limited multi-objective capabilities. Hence, a need arises for de-

compositioning high dimensions of the MILP for multi-configurational designs and 

energy cost reduction in RE-based system interacting with main grids.  

Real-time costs of energy in RE systems differ from fixed energy tariffs in the 

CG system. In grid-connected systems, customers are subjected to difficulties in 

implementing decisions between the fixed and varying energy prices and as such, 

residential customer comforts are mostly compromised. In this regard, demand side 

management (DSM) is mostly considered as it ensures customer participation. 

Conventional time-of-use (𝐶𝑇𝑂𝑈) methods are used in achieving DSM strategies such 

as peak shaving, valley filling, load shifting and energy arbitrage. The foregoing 

strategies are traditional and mostly suitable to CG systems, where power generation 

are easily predictable under varying load conditions. Moreover, the 𝐶𝑇𝑂𝑈 methods are 

time-bound and mainly utility-centered. Hence, a modified 𝐶𝑇𝑂𝑈 may need to be 

developed and implemented in a grid connected RE system for consumption cost 

reductions and preservation of customer comforts. 
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1.3 Objectives of the Study 

The aim of this study is to develop and implement algorithms for optimal sizing 

and DSM implementations in a grid-connected RE-based nanogrid to achieve low 

energy cost.  The study aim is proposed to be achieved based on the following 

objectives: 

1. to develop and a nested integer linear programming (NILP) algorithm as an 

improved MILP algorithm for optimal sizing of the RE components in a 

proposed grid-connected PV/WT/Battery nanogrid to reduce the energy cost 

and net present cost. 

2. to design a time-of-use fitness (TOUF) as an improved 𝐶𝑇𝑂𝑈 algorithm for 

implementation of optimal load management in the proposed nanogrid 

operations to reduce the energy consumption cost, sustainable for customer 

comforts and to improve the nanogrid’s autonomy. 

3. to benchmark the performance of the proposed system optimization with the 

referenced MILP and intelligent-based particle swarm optimization (PSO) 

method. 

4. to analyze the worthiness of energy interactions between the nanogrid’s RE 

supply and main grid’s energy imports using Markov Chains as statistical tool 

of analysis. 

 

1.4 Scope of the Study 

The aims of the proposed study are the optimal sizing and operations in a 

PV/WT/Battery grid-connected residential nanogrid. The following scopes are 

considered: 

(a) energy demands in the proposed nanogrid comprise of all domestic appliances 

in the five selected residential buildings in Danladi Nasidi Housing Estate 
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Kano, Nigeria. The load profile in the case study is based on load estimation 

method derived from the customer demands survey. 

(b) the local RE supply in the nanogrid comprises of the power generated from PV 

array, wind system, and battery stored energy configured based on the case 

study location’s solar irradiance, ambient temperature and wind speed. The 

study considers the foregoing weather resources and corresponding RE 

generation based on hourly-average for a year-long analysis. The RE system in 

the nanogrid interacts with an 11 kV/415 V, 500 kVA main grid feeder. The 

proposed NILP consider all the RE, customer demands and main grid 

parameters in optimizing the nanogrid system capacities.  

(c) the study considers the cost of energy in US$. The differences in the cost of 

energy among the RE sources and the main grid in designing a load 

management system using the proposed TOUF.  

(d) the economic objectives in the proposed study include optimizations for lower 

levelized cost of energy (LCOE), lower NPC, and lower cost of energy 

consumption. While the technical objectives include optimizations for capacity 

reduction, reliability improvement and increased supply availability. The 

overall study investigates the foregoing nanogrid’s techno-economic 

performance base on a 25-year life span.  

(e) Reliability and stability analysis are based on Markov Chains as statistical tool 

to investigate worthiness of two-states transitions between local RE generation 

and energy imports from main grid.  

(f) All algorithms are implemented in MATLAB environments using m-file 

scripts, without consideration for hardware investigations. 

1.5 Significance of the Study 

The significance of the study highlights the contributions of the proposed 

research in the area of the study as follows: 
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(a) introduction of NILP as improved MILP optimization tool in optimal sizing of 

PV/WT/Battery nanogrid system using the location’s weather data for reduced 

energy cost and low system’s net present cost. 

(b) Introduction of a TOUF framework as improved 𝐶𝑇𝑂𝑈 method for optimal load 

management in the proposed nanogrid operations for a reduction in energy 

consumption cost, with regard to the customer comforts and increased nanogrid 

autonomy. 

(c) the use of Markov Chains in determining operational stability and economic 

prospects of the proposed grid-connected nanogrid. 

 

1.6 Methodology Used in the Study 

The proposed study methodology describes the sequential steps in 

implementation of the proposed algorithms. The methodology used in development of 

this work is categorized based on application of the proposed algorithms to implement 

the proposed schemes of sizing and load management, summarized as follows:  

 preparation of literature review through consultations of literature materials as 

a strategy for underlying basic theories and concepts covering the intended area 

of the research. State of the art methodologies used in accordance with 

respective achievements and shortcomings in the related areas are also 

investigated. 

 the case study data collection and analysis. This include the case study 

location’s weather data such as solar radiation, ambient temperature and wind 

speeds. Other component of data collection is the location’s residential 

customer surveyed load data.  

 reference case analysis, case study location’s weather and load data collection 

and analysis for study implementation and results analysis. 
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 implementations of the proposed NILP were carried out using MATLAB m-

file script simulations to achieve optimal components sizing in a grid-

connected residential nanogrid for energy cost reduction. 

 the optimal load management schemes in the proposed nanogrid is 

implemented based on the proposed TOUF methods through simulations 

carried out in MATLAB m-file scripts for reduction in costs and consumptions 

of energy with regard to preservation of customer comforts.  

 Markov Chains is used as statistical tool of analysis in forecasting energy 

prospects and system stability for the entire life span of the proposed nanogrid. 

Probabilistic information obtained from Markov model developed for two 

states of the nanogrid energy supply is important for decision making among 

utilities, customers and other project’s stake holders. 

 

1.7 Organization of the Report 

The thesis is arranged in five chapters. Beginning with Chapter 1 containing 

general overviews such as the study background information, statement of the 

problem, study objectives, scopes of the study, significance of the study, 

methodologies used in research implementations.  

Chapter 2 presents a literature review of most recent, most relevant and most 

related works in the area of the proposed research. The most prominently discussed 

area in the literature review include evolutions of power system structure from 

vertically structured conventional grids (CG) to emerging distributed grid (DG) 

systems, optimization algorithms as they are applied to DG planning and operation 

schemes as well as presentations of table of comparisons for analysis and identification 

of research study opportunities.  

Chapter 3 discusses key points used as methodologies in the proposed research. 

The points include brief overview of Nigerian electricity industry as a basis for 



 

10 

justifications in the choice of case study location. The chapter also presents reference 

study analysis, the case study overview and general details of the proposed NILP and 

TOUF algorithms used in implementation of sizing and load management schemes. 

The developed nanogrid is also modelled based on two-state transitions for analysis 

using Markov Chains.  

Chapter 4 elaborates the detail of results obtained from implementations of the 

proposed NILP and TOUF algorithms with respect to the proposed sizing and load 

management schemes. Results of the Markov Chains implementations are also 

presented. 

Chapter 5 presents the conclusions and contributions of the work. This include 

the research outcomes, the research’s contribution to knowledge and recommendations 

for future works. 
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Appendix A Definition of New Terms Used in the Thesis 

 

The methodologies used in the proposed study introduced terminologies that may not 

be traceable to conventional use. Some of the terminologies may lead a reader of this 

work to ambiguities as the terms appears and sounds similar. Brief meanings of the 

new terms used in the proposed methodologies are hence presented in this section to 

possibly reduce level of ambiguities. It is believed that the itemized definitions will 

simplify most of the concepts used in developing the methodologies applied in the 

proposed work.  

 

1. Nested integer linear programming:  

the nested integer linear programming (NILP) is the term given to the optimization 

algorithm introduced in this work to implement optimal sizing scheme for the proposed 

nanogrid components. The algorithm is developed as an offshoot of the known MILP 

through decomposition methods. 

  

2. Time-of-use fitness: 

the time-of-use fitness is another term introduced in this work and given to the 

methodology to be used in implementation of flexible load scheduling as DSM strategy 

for optimal operation of the proposed nanogrid. The methodology is a modified aspect 

of the time-of-use tariffs popularly used in achieving DSM strategies. 

 

3. Fitness function: 

fitness function 𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is described here as customer ability to afford costs of either 

nanogrid sourced energy 𝑃𝑁𝑔 or the main grid’s imported energy 𝑃𝑀𝑔. Fitness function 

are usually determined by the level of customer demands falling within the magnitudes 

of nanogrid generated power or main grid’s imported power for a given time 𝑡. 

 

4. Fitness cost: 

fitness cost 𝐹𝑐𝑜𝑠𝑡 is the cost of energy to be borne by a customer for a given time 𝑡, 

usually determined by the product of corresponding customer real-time demands and 

fitness functions for a given time 𝑡. 
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5. Flexible fitness: 

flexible fitness 𝐹𝑓𝑙𝑒𝑥 is the fitness function applied to the energy served under RE based 

nanogrid’s generated power 𝑃𝑁𝑔. The energy served under this condition is expected 

to have a lower cost, low carbon foot print and under complete nanogrid subsistence. 

  

6. Critical fitness: 

critical fitness 𝐹𝑐𝑟𝑖𝑡 refers to fitness function applied to energy served by the main grid 

imported power 𝑃𝑀𝑔. The energy served under this condition may incur higher costs, 

support traditionally vertical power system structures that operate with enormous 

environmental effects.  
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