
MXENE MODIFIED LAYERED DOUBLE HYDROXIDE NANOCOMPOSITE 

FOR PHOTOCATALYTIC CARBON DIOXIDE REDUCTION TO RENEWABLE 

FUELS  

AZMAT ALI KHAN 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

School of Chemical and Energy Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

DECEMBER 2021 



iv 

DEDICATION 

This thesis is dedicated to my father for giving me strength to reach for the 

stars and chase my dreams, to my mother who always prayed for me and all other 

family members for their support 



v 

ACKNOWLEDGEMENT 

First and foremost, praises and thanks to the Almighty Allah, for His showers 

of blessings throughout my research work to complete the research successfully.  

I wish to express my sincere appreciation to my main supervisor, Dr. 

Muhammad Tahir, for encouragement, guidance, critics and friendship. I am also very 

thankful to my co-supervisor Dr. Ir. Zaki Yamani Zakaria for his support. Without 

their continued support and interest, this thesis would not have been the same as 

presented here. 

My fellow postgraduate student should also be recognised for their support. 

My sincere appreciation also extends to all my colleagues and others who have 

provided assistance at various occasions. Their views and tips were useful indeed. I 

am grateful to my parents for their prayers. Also, I am thankful to wife for 

understanding, prayers and continuous support. I am also grateful to my brothers for 

their support. 



vi 

ABSTRACT 

Photocatalytic conversion of carbon dioxide (CO2) to solar fuels is a promising 

solution to resolve the energy crisis and global warming issues. The overall efficiency 

of photoreduction of CO2 to fuels can be improved through the development of highly 

efficient catalyst and suitable photoreactor configuration. Hence, the main objective 

of this research work was to design a photocatalytic reactor system and synthesize 

cobalt-aluminium-lanthanum-layered double hydroxide (CoAlLa-LDH) modified 

with graphitic carbon nitride (g-C3N4) and titanium carbon (Ti3C2TA/R) MXene for 

enhanced photocatalytic reduction of CO2 to renewable fuels. Initially, a novel 

CoAlLa-LDH was synthesized by co-precipitation method that has hexagonal 

nanosheet structure. The Ti3C2TA/R was synthesized through controlled etching with 

hydrogen fluoride acid that resulted in the formation of layered structured Ti3C2 

MXene embedded with anatase and rutile phases of titanium dioxide (TiO2). The 

Ti3C2TA/R having layered structure and embedded TiO2 effectively acted as electrons 

reservoir and electrons mediator, respectively. Graphitic carbon nitride (g-C3N4) 

nanosheets were obtained through thermal heating and subsequent sonication. g-C3N4, 

CoAlLa-LDH and Ti3C2TA/R were hybridized to obtain g-C3N4/CoAlLa-LDH, g-

C3N4/Ti3C2TA/R, Ti3C2TA/R/CoAlLa-LDH and g-C3N4/Ti3C2TA/R/CoAlLa-LDH 

composites with layer-by-layer assemblies. The performance of photocatalysts was 

investigated through photocatalytic reduction of CO2 with water (H2O), dryreforming 

(DRM) and bireforming (BRM). Among LDHs the Co2Al0.95La0.05-LDH showed 

maximum photocatalytic reduction of CO2 with H2O resulting in production rate of 

21.80 and 25.5 µmolegcat-1h-1 for CO and CH4, respectively. The g-

C3N4/Ti3C2TA/R/Co2Al0.95La0.05-LDH sample resulted in maximum CO and CH4 

production rate of 106 and 49.8 µmole gcat-1h-1 through photocatalytic reduction of 

CO2 with H2O. The g-C3N4/Ti3C2TA/R sample showed very good performance in 

photocatalytic DRM with production of 73.31 and 51.24 µmole gcat-1h-1 for CO and 

H2, respectively. The g-C3N4/Ti3C2TA/R/Co2Al0.95La0.05-LDH sample, through 

photocatalytic BRM showed maximum CO and H2 production of 47.81 and 73.31 

µmole gcat-1h-1 with higher selectivity towards H2 production that is a high-quality 

syngas. The best performing g-C3N4/Ti3C2TA/R/Co2Al0.95La0.05-LDH catalyst in the 

fixed bed photoreactor for photocatalytic BRM was compared with multistage mesh 

photoreactor (MSM). The MSM showed syngas production of 1.81 and 1.22 folds 

higher as compared to fixed bed photoreactor for CO and H2 respectively. The effects 

of various parameters such as amount of catalyst, feed ratio and illumination time for 

the photocatalytic reduction of CO2 was studied to optimize yield and selectivity of 

fuel products through response surface methodology. It was found that the optimum 

CO production was obtained at 0.143 g, 4.48 h and 1.67 while the optimum H2 

production obtained was at 0.143 g, 4.93 h, 1.41 of catalyst loading, time and feed 

ratio, respectively. Finally, Langmuir-Hinshelwood model was developed to 

investigate adsorption behaviours and photocatalytic oxidation and reduction process, 

fitted well with the experimental data. It was determined that CO and H2 production 

were dependent on quantity of CO2 and CH4 in the feed, respectively. In conclusion 

the Ti3C2TA/R and g-C3N4 modified CoAlLa-LDH catalyst can produce high quality 

renewable syngas fuel with high selectivity towards H2 production. 



vii 

ABSTRAK 

Fotomangkin penukaran karbon dioksida (CO2) kepada bahan api suria 
merupakan penyelesaian yang berpotensi untuk menyelesaikan krisis tenaga dan isu 
pemanasan global. Kecekapan keseluruhan fotopenurunan CO2 kepada bahan api 
dapat ditambah baik melalui pembangunan mangkin yang sangat cekap dan 
konfigurasi fotoreaktor yang sesuai. Oleh itu, objektif utama penyelidikan ini adalah 
untuk mereka bentuk sistem reaktor fotomangkin dan mensintesis dwihidroksida 
berlapis kobalt-aluminium-lantanum (CoAlLa-LDH) diubah suai dengan nitridia 
karbon bergrafit (g-C3N4) dan MXene karbon titanium (Ti3C2TA/R) untuk penurunan 
fotomangkin CO2 yang dipertingkatkan kepada bahan api boleh diperbaharui. Pada 
awalnya, CoAlLa-LDH novel disintesis melalui kaedah ko-pemendakan yang 
mempunyai struktur nanolembaran heksagon. Ti3C2TA/R  disintesis melalui punaran 
terkawal dengan asid hidrogen florida yang menghasilkan pembentukan struktur 
berlapis Ti3C2 MXene terbenam dengan fasa anatase dan rutil titanium dioksida 
(TiO2).  Ti3C2TA/R yang mempunyai struktur berlapis dan TiO2 terbenam ini masing-
masing bertindak dengan berkesan sebagai takungan elektron dan pengantara elektron. 
Nanolembaran karbon nitrida bergrafit (g-C3N4) diperoleh melalui pemanasan terma 
dan sonikasi berikutnya. g-C3N4, CoAlLa-LDH dan Ti3C2TA/R dihibridkan untuk 
mendapatkan komposit g-C3N4/CoAlLa-LDH, g-C3N4/Ti3C2TA/R, Ti3C2TA/R/CoAlLa-
LDH dan g-C3N4/Ti3C2TA/R/CoAlLa-LDH dengan gabungan lapisan demi lapisan. 
Prestasi fotomangkin disiasat melalui penurunan fotomangkin CO2 dengan air (H2O), 
pembentukan semula kering metana (DRM) dan dwipembentukan semula metana 
(BRM). Co2Al0.95La0.05-LDH menunjukkan penurunan fotomangkin CO2 dengan H2 
yang maksimum berbanding LDH lain dengan kadar penghasilan CO dan CH4 masing-
masing 21.80 and 25.5 µmol gcat

-1h-1. Sampel g-C3N4/Ti3C2TA/R/Co2Al0.95La0.05-LDH 
memberikan keputusan kadar pengeluaran maksimum CO dan CH4 masing-masing 
sebanyak 106 and 49.8 µmol gcat

-1h-1 melalui penurunan fotomangkin CO2 dengan 
H2O. Sampel g-C3N4/Ti3C2TA/R menunjukkan prestasi yang sangat baik dalam DRM 
fotomangkin dengan pengeluaran CO dan H2 masing-masing sebanyak 73.31 dan 
51.24 µmol gcat

-1h-1. Bagi sampel g-C3N4/Ti3C2TA/R/Co2Al0.95La0.05-LDH pula, BRM 
fotomangkin menunjukkan pengeluaran maksimum CO dan H2 masing-masing 
sebanyak 47.81 dan 73.31 µmol gcat

-1h-1 dengan kememilihan lebih tinggi kepada 
pengeluaran H2 yang merupakan singas berkualiti tinggi. Mangkin g-
C3N4/Ti3C2TA/R/Co2Al0.95La0.05-LDH berprestasi terbaik dalam fotoreaktor lapisan 
tetap untuk BRM fotomangkin dibandingkan dengan fotoreaktor jejaring berbilang 
tahap (MSM). MSM menunjukkan pengeluaran singas CO dan H2 masing-masing 
sebanyak 1.81 dan 1.22 kali ganda lebih tinggi berbanding fotoreaktor lapisan tetap. 
Kesan daripada pelbagai parameter seperti jumlah mangkin, nisbah suapan dan masa 
pencahayaan untuk penurunan fotomangkin CO2 telah dikaji untuk mengoptimumkan 
hasil dan kememilihan produk bahan api melalui kaedah gerak balas permukaan. 
Didapati bahawa pengeluaran CO optimum diperoleh pada 0.143 g, 4.48 j dan 1.41 
manakala pengeluaran H2 optimum diperoleh pada 0.143 g, 4.93 j, 1.41 masing-masing 
bagi pemuatan mangkin, masa dan nisbah suapan. Akhir sekali, model Langmuir-
Hinshelwood yang dibangunkan untuk mengkaji kelakuan penjerapan dan proses 
pengoksidaan dan penurunan fotomangkin, sangat bertepatan dengan data eksperimen. 
Ditentukan bahawa pengeluaran CO dan H2 masing-masing bersandar pada kuantiti 
CO2 dan CH4 dalam suapan. Kesimpulannya, mangkin CoAlLa-LDH diubah suai 
Ti3C2TA/R dan g-C3N4 dapat menghasilkan bahan api singas boleh diperbaharui 
berkualiti tinggi dengan kememilihan tinggi untuk pengeluaran H2. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Energy is vital for obtaining primary needs as well as for maintaining secure 

and improved living standards. This excessive energy usage is causing high use of 

fossil fuels, leading to energy dearth and production of CO2. Moreover, CO2 is one of 

the major greenhouse gases which results in global warming, a major environmental 

concern [1, 2]. Different approaches have been employed to mitigate CO2 effects, in 

particular, reduction of CO2 emission at the source, CO2 capture and storage; and 

reutilization of CO2 by conversion to value added chemicals. Among all, CO2 

utilization for the production of renewable fuels is the more attractive pathway, thereby 

relieving our dependency on traditional fossil fuels. However, these technologies have 

disadvantages that include: high electrical voltage and high temperature requirements 

to break the stable CO2 molecule, limitations of raw materials, high cost of operation, 

and unsustainability [3]. Therefore, the employment of conversion of CO2 to fuels 

through photocatalysis would be effective alternative to other processes [4]. 

The photocatalytic CO2 reduction can be obtained through various reductants 

to obtain the desired fuel products. Through photocatalytic CO2 reduction with water 

(H2O) results in formation of methane (CH4) and carbon monoxide (CO). The 

photocatalytic dry reforming (DRM) is conducted in the presence methane as reductant 

for the formation of syngas that is the combination of CO and hydrogen (H2). The 

photocatalytic bireforming of methane (BRM) is conducted in the existence of H2O 

and CH4 resulting in the formation of syngas (CO, H2) that has appeared as prospective 

energy source in several petrochemical industries to generate synthetic fuels through 

Fischer–Tropsch process [5].  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/synthesis-gas
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/petrochemical-industry
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/synthetic-fuel
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Usually, the DRM and BRM processes are conducted at elevated temperature 

and demand high input energy, thus making the process uneconomical. In this 

scenario, photocatalytic DRM and BRM provides a cleaner technology by utilizing 

only light irradiation, while the process occurs at room temperature and atmospheric 

pressure. 

The sunlight energy is acquired and collected in molecular bonds, similar to 

the natural photosynthesis process [6]. Photocatalysis over semiconductors is activated 

by the light of energy absorption, larger than their band gap, resulting in origination of 

excited electron (e-) and a positive hole (h+) pair that subsequently reduce and oxidize 

CO2 and reductant, respectively. In photocatalysis, the excitation of electrons occur 

when light falls on the surface of photocatalyst which leads to the conversion of CO2 

to fuel [7]. The CO2 conversion by phototechnology would satisfy the energy 

challenges and solve the environmental problems [8]. However, the efficiency of 

photocatalytic activity and selectivity is lower for CO2 photoreduction that is needed 

to be improved. The performance of photocatalytic process can be improved by the 

use of novel photocatalyst in the efficient photoreactors [9]. 

Although, substantial development in the strategies to enhance the efficiency 

of semiconductor materials has been accomplished, however, the practical applications 

of these photocatalyst for CO2 reduction have still limited conversion efficiency due 

to low utilization of light and fast charge carrier recombination. To make CO2 

conversion technique practically economic and industrial scalable, research should 

aim on increasing the overall CO2 photoconversion efficiency and selectivity [10]. 

Hence, for the conversion of CO2 into valuable chemicals such as CO, CH3OH, CH4, 

HCOOH and HCHO numerous semiconductors such as TiO2 [11], ZnO [12], WO3 [13] 

, SnO2, CdS, α-Fe2O3 [14], Cu2O [15, 16], and SiC [17] have been implemented to 

fabricate profecient photocatalytic systems for CO2 photo-reduction to hydrocarbon 

fuels. However, the practical applications of these photocatalyst for CO2 reduction are 

still limited by the efficiency due to less utilization of light and quick charge carrier 

recombination.  
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In this scenario, graphitic carbon nitride (g-C3N4), a visible light active 

semiconductor material, has attracted considerable interest because of the distinct 

layered structure, excellent thermal and chemical stabilities, low expense and simple 

synthesis. However, the photocatalytic activity of pristine g-C3N4 for CO2 reduction is 

still very low due to rapid charge recombination. For this purpose, the photocatalytic 

CO2 reduction efficiency improvement is obtained through coupling g-C3N4 with a 

second semiconductor, cocatalyst and/or photosensitizers to fabricate a multi-

component composite photocatalyst with enhanced photocatalytic performance. 

In the quest for materials having photocatalytic properties, high adsorption 

capacity and alkaline nature, the Layered Double Hydroxide (LDH) is getting attention 

as a potential photocatalyst due to its high adsorption capacity, high surface area, and 

semiconductor properties [18]. Moreover, the alkaline nature of LDH helps to adsorb 

the acidic CO2. LDHs, with the general stoichiometry 

[M2+
1−xM3+

x(OH)2]x+(An)x/n•mH2O, are a class of 2D layered materials encompassing 

positively charged edge-sharing MO6 octahedra layers with charge compensating 

anions between the interlayers [19]. In this regard, the earth-abundant Zn, Ni and Co 

based LDH catalysts have drawn consideration as photocatalysts for CO2 reduction 

[20]. 

Among the LDHs, CoAl-LDH has found widespread application for 

photoreduction of CO2 due to its strong performance and stability [21]. However, 

pristine LDHs usually display weak quantum efficiency under light irradiation because 

of sluggish charge carrier movement and high electron–hole recombination. 

Approaches to enhance LDH performance include research on ternary LDHs with the 

modification or doping of cations has reflected the properties of added cation that 

resulted in the improvement in photocatalytic activity. Doping of semiconductors 

results in: (i) modification of the structure surface, (ii) improved spectral response, (iii) 

variation in the bandgap, (iv) reduction in the electron–holes recombination and (v) 

formation of crystalline defects, resulting in improvement in photocatalytic activity 

[22, 23].  

https://www.sciencedirect.com/topics/chemical-engineering/carbon-nitride
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In this scenario, Ahmad et al [24] found that the incorporation of third metal 

Cu to the ZnGa-LDH improved the photocatalytic activity. Similarly, Parida et al [25] 

studied the influence on textural properties and photoactivity of Mg/Al+Fe-LDH by 

varying the atomic ratios of Al3+/Fe3+. Parida et al [26] further extended the work to 

study the effect of Co divalent cation Cu+Co/Cr LDH by altering the atomic ratio of 

(Cu2+/Co2+) to observe the effect of Co2+ on electronic and structural properties for 

photocatalytic activity of Cu/Cr LDHs. The combined effect of binary cations, 

enhanced charge carrier capability of cobalt and even pores dissemination led to 

enhanced photocatalytic activity. 

LDHs are all exciting materials with attractive properties but their applications 

are still limited due to their inherent shortages [27]. Therefore, a series of strategies 

have been adopted to couple LDH materials with other materials to improve the CO2 

photocatalytic reduction efficiency. For example, compounding with other conductive 

substances such as Pt/ZnCr LDH [28], Ag/Zn3Ga-LDH [29], Ru/MgAl-LDH [30], 

rGO/NiTi-LDH [31], and CoAl-LDHs/RGO [32] have been utilized to improve the 

photocatalytic activity of LDHs. Nevertheless, the efficiency of these materials is still 

low to curb large-scale application. Another strategy is combining LDH with other 

semiconductors is one of the most efficient tactics to improve the photogenerated 

charge carriers separation efficiency during the photocatalytic process. For instance, 

the coupling of g-C3N4 and NiAl-LDH resulted in the formation of 2D/2D interface 

heterostructures that showed the production of CO and H2. However, the selectivity 

towards H2 production was very low resulting in production of a low-quality syngas 

[33]. Similarly, urchin-like g-C3N4/NiAl-LDH heterojunction was constructed for 

excellent CO production, however, the study on the production of other fuels such as 

CH4 and H2 were not conducted. Therefore, the coupling of LDH material with a 

cocatalyst having highly active sites is one of the most effective approach to enhance 

the performance of LDHs for CO2 reduction to selective fuels such as H2 and CH4 is 

very important [34]. 

Titanium Carbide (Ti3C2) a typical MXene has been enormously studied as a 

cheap cocatalyst due to their outstanding electrical conductivity, elemental 

composition adjustability, even layered structure and controllable surface functional 
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groups. Ti3C2 possesses 2D structure and therefore has the possibility to form intimate 

2D/2D interface with other 2D materials. The resultant photocatalyst form the intimate 

connection that can greatly enhance the photo-induced electron-hole pairs separation. 

For example, Cao et al. [35] hybridized ultrathin Ti3C2 with Bi2WO6 nanosheets to 

form a 2D/2D Ti3C2/Bi2WO6 heterojunction, resulting in the substantially improved 

photocatalytic CO2 reduction in comparison to pristine Bi2WO6 nanosheets. The Ti3C2 

has also been coupled with g-C3N4 that has resulted in enhanced photocatalytic activity 

towards CO2 reduction. For example, Yang et al. [22] also formed 2D/2D Ti3C2/g-

C3N4 ultrathin heterojunction that increased photocatalytic H2O2 production activity, 

attributed to the outstanding electronic conductivity of Ti3C2 for boosting spatial 

charge carrier separation. Similarly, Ti3C2 was combined with a photocatalytic 

material (BiOBr) that demonstrated superb photocatalytic activities in H2O 

detoxification and splitting [20]. The coupling of Ti3C2 has also been done successfully 

to enhance the photocatalytic reduction of CO2. For instance, Co-Co layered double 

hydroxide has been coupled with Ti3C2TX nanosheets (Co-Co LDH/TNS) to integrate 

the functional and structural merits of active Co species with conductive Ti3C2TX 

nanosheets for the formation of hierarchical nanoarray architecture composed of 

ultrathin nanosheets, which promoted the separation of photogenerated charge carriers 

and accelerated electrons transmission. Yang et al [18] fabricated urchin-like CoZnAl-

LDH/RGO/g-C3N4 heterojunction that formed Z-Scheme heterojunction resulting in 

the restriction of the recombination of photoinduced electron-hole pairs that caused 

the enhancement of the oxidizability and reducibility of CoZnAl-LDH and g-C3N4. Z-

scheme photocatalysts are named as due to their charge transfer mechanism similarity 

to natural photosynthesis, in which the charge-carrier transportation pathway follow a 

two-step photoexcitation that resembles the English letter “Z”. Although distinct 

works have been done on Ti3C2 coupling with g-C3N4 or LDH, however, further 

research is required to study the effect of binary and ternary composite to generate 

photocatalysts with excellent photocatalytic properties towards CO2 reduction. 

After exploring the photocatalytic system process optimization is important to 

identify the optimum reaction conditions such as catalyst loading, time and feed ratio 

towards in achieving the maximum fuel production is necessary. To understand the 

interaction between input process parameters and output responses such as feed 

conversion and product yield is necessary. Therefore, the surface response surface 
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methodology (RSM) has been used for experimental design, optimize and investigate 

the effect on conversion of reactant and products yield. Through this technique 

Delavari et al [36] was able to achieve maximum find the optimized conversion of CO 

and CH4 up to 37.9% and 48.7%, respectively. Umar et al [37] optimized H2 

production by employing RSM technique. Therefore, RSM can be a useful technique 

to optimize the photocatalytic reaction process conditions. understand the kinetics of 

a photocatalytic reaction is important in order to determine the rate determining step 

and the right pathway. Delavari et al [36] employed Langmuir–Hinshelwood model to 

find yield rates of products reliant on effective reactants adsorption and products 

desorption on the catalyst surface.  

Tahir et al [38] was able to modulate the reaction of CO2 and H2O vapours over 

the larger mesoporous In-doped TiO2 catalyst surface area. Therefore, the L-H model 

can be helpful to modulate the photocatalytic CO2 reduction to study the effect of rate 

constants on the photocatalytic activity. 

In this study, Ti3C2TA/R MXene and g-C3N4 modified CoAlLa-LDH structure 

composite is synthesized and test for photocatalytic activity through CO2 reduction 

with H2O, DRM and BRM. The Z-scheme formation between Ti3C2TA/R MXene and 

g-C3N4 modified CoAlLa-LDH possessing the merits of conductive and 

semiconductive components can exhibits photocatalytic activity. The best performing 

catalyst is used to compare the result between fixed bed reactor and Multistage mesh 

photoreactor (MSM). The effects of various parameters such as amount of catalyst, 

feedstock gases ratio and illumination time for the photocatalytic reduction of CO2 was 

studied to optimize yield and selectivity of fuel products through response surface 

methodology (RSM). The Langmuir-Hinshelwood model is used to study the 

adsorption behaviours and photocatalytic oxidation and reduction process. 

  

https://www.sciencedirect.com/topics/engineering/catalyst-surface
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1.2 Problem Statement and Hypothesis 

The fossil fuels exhaustion and the devastating environmental pollution arising 

from their combustion have been known as two key challenges in the future. With the 

diminution of fossil-fuel reserves and emission of greenhouse gas CO2, an important 

challenge faced by human beings is to search a clean and sustainable alternate-energy 

sources. Instead of CO2 sequestration, CO2 can be captured and reused as a carbon 

source for the production of other valuable chemicals. However, breaking stable CO2 

molecule requires higher energy input, making this process costly. Different 

approaches have been used to mitigate CO2 effects, in particular, reduction of CO2 

emission at the source, CO2 capture and storage; and reutilization of CO2 by 

conversion to value added chemicals. Among these approaches, CO2 utilization for the 

production of valuables fuels and chemicals is the more attractive approach for 

production of renewable fuels. The reutilization of CO2 to fuels can be obtained 

through: chemical conversions, electrochemical reductions, biological conversions, 

reforming and photochemical reductions [39]. Many photocatalysts are in use but yet 

lower CO2 conversion, lesser yield rates and selectivity were observed [11].  

Among them, g-C3N4, a visible light-responsive semiconductor material, has 

drawn substantial interest due to the distinct layered structure, excellent chemical and 

thermal stabilities, low cost and simple synthesis. However, the photocatalytic activity 

of pure g-C3N4 for CO2 reduction is still very low and mainly limited owing to the 

rapid charge recombination. The as-prepared g-C3N4 usually has high recombination 

rate of electrons and holes in bulk g-C3N4, which highly impact the photocatalytic 

activity. In this regard, several approaches have been thus adopted to improve 

photocatalytic CO2 reduction activity of g-C3N4 photocatalysts [40]. The coupling of 

g-C3N4 with other semiconductors having appropriate band edge positions and high 

sorption capacity have been adopted to further promote the photocatalytic efficiency. 

However, the improvements were very little that caused various disadvantages, for 

example, shielding of irradiations, trapping of charges produced, using redox active 

sites, unselective adsorption of reactants and products, etc.[41]. This urges to find new 

and highly efficient composite photocatalyst for photocatalytic reduction of CO2 to 

duels under UV and visible light irradiations.  
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Moreover, the fabrication of a novel photoreactor that serve larger exposed 

surface area to the light irradiations is needed so that photons can effectively and 

constantly be distributed throughout the entire photocatalyst surface. To this point, the 

challenges and possible solution strategies are: 

1. Many semiconductors have been used as photocatalysts for CO2 reduction, 

however the developed photocatalysts have weak light harvesting in visible 

light region and pose problem of fast charge carrier recombination. Among 

semiconductor materials, g-C3N4 is widely investigated because of abundant 

availability, comparatively cheap and numerous other advantageous. Also, the 

exploration of novel LDH photocatalyst by fine tuning the structural, 

compositional, band-gap and surface reaction sites promote light harvesting 

and retarding the charge recombination for practical application as a 

photocatalyst for the conversion of CO2 to fuel. 

2. The incorporation of Co-based LDHs catalyst that respond to visible light 

photocatalytic performance, have better surface charge transfer and low 

recombination of electron−hole would show high photocatalytic activity 

towards CO2 photoreduction. The addition of electrons rich lanthanum (La) to 

the CoAlLa-LDH would enhance the photocatalytic activity by enhancing the 

reductive sites to increase the separation of photogenerated charges due to the 

formation of vacancy rich ternary CoAlLa-LDH. The presence aluminum in 

the LDHs have shown high selectivity towards CO2 reduction and the Co2+ 

electron transfer to the Al3+ electrodeficient cation produce a delay in the rate 

of the electron–hole pair recombination. Furthermore, the presence of Al3+ 

imposes superior crystallinity to the LDH. 

3. The Ti3C2 MXene with a large work function, good structural stability, and 

excellent visible light harvesting ability is electronically and catalytically 

considered as a suitable CO2 reduction cocatalyst that can promote the 

migration and separation of photo-induced charge carriers because of its strong 

electronic conductivity. The Ti3C2 through controlled treatment could be 

converted Ti3C2TA/R with enhanced photocatalytic properties due to the 

formation of TiO2. 
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4. A photostable photocatalyst is highly needed that has high light absorption and 

utilization efficiency, superior charge separation, impedes recombination, 

absorbs in visible region and has a larger reactive surface area to adsorb hogh 

amount of CO2. Nevertheless, by coupling of g-C3N4, tri metallic CoAlLa-LDH 

and Ti3C2 materials would result in the formation of a composite with high 

photocatalytic activity that is ascribed to the strong interfacial interaction with 

formation of Z-scheme and electron rich linkers of oxygen defective La/Ti sites 

for superior charge-transfer separation. The CoAlLa-LDH and g-C3N4 would 

form a Z-scheme mechanism for electrons transfer whereas the Ti3C2TA/R with 

the presence of TiO2 and Ti3C2 act as electrons mediator and electrons reservoir 

respectively. The substantially improved photocatalytic CO2 reduction would 

be enhanced further due to the synergistic effect of electron rich lanthanum 

doped CoAlLa-LDH coupling with negatively charged highly conductive 

Ti3C2TA/R and semiconducting g-C3N4 leading to improved charge separation. 

5. Maximum utilization of photons has always been a problem of concern in the 

photoreactors therefore, the fabrication of photocatalysts on mesh may provide 

large illuminated surface area to reactor volume ratio and efficient light and 

catalyst utilization/distribution. Hence, growing of CoAlLa-LDH, g-C3N4 and 

Ti3C2TA/R in multistage mesh (MSM) photoreactor to develop photocatalytic 

system is envisaged to success for the enhancement of the photoreduction of 

CO2 to fuels. 

6. The optimization of operating parameters would further be fruitful to maximize 

syngas (CO and H2) production and selectivity. This would also be helpful to 

optimize operating the catalyst loading, reaction time and feed ratio. The 

Langmuir–Hinshelwood model developed to study the effect on dependent on 

desorption of the reactants surface reaction and desorption of products over the 

catalyst surface. 

https://www.sciencedirect.com/topics/engineering/catalyst-surface
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1.3 Research Objectives 

The main objective of the research work is to increase the efficiency of 

photocatalytic reduction of CO2 to fuels through fabricating efficient photocatalytic 

system. The objectives of this work include: 

1. To synthesize and characterize Ti3C2TA/R and g-C3N4 modified CoAlLa-LDH 

composites for reduction of CO2 under light irradaiations; 

2. To investigate the photocatalytic performance of synthesized photocatalysts 

for CO2 reductions to fuels using different reforming systems and 

photoreactors; 

3. To conduct the optimization study of the parameters such as reaction time, 

effect of loading and feed ratio using response surface methodology; 

4.  To develop kinetic model for the determination of reaction rate parameters in 

photocatalytic reduction of CO2 for the obtained heterojunction. 

1.4 Scope of the Research  

This research is aimed on solving some of the basic problems associated to low 

CO2 photoreduction efficiency and selectivity towards fuel. In this viewpoint, 

synthesize and characterization of g-C3N4 and Ti3C2TA/R modified LDH photocatalysts 

were examined. The modification of LDH photocatalysts with g-C3N4 and Ti3C2TA/R 

were studied for photocatalytic reduction of CO2 with H2O. Some operating 

parameters effect such as mass of photocatalyst loading, feed ratios, and irradiation 

times were discussed. The effect of reductants such as H2O and CH4 and were studied 

on the production of fuels. The reaction mechanism of CO2 reduction and quantum 

efficiency were studied and analyzed. The CO2 conversion to fuels efficiency is 

associated to maximize yield rates of fuel products. The desired products obtained 

were CO and CH4 when CO2 was reduced in the presence of H2O, while CO and H2, 

a potential syngas when CO2 was reduced in the presence of CH4 through 
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photocatalytic dry reforming of methane (DRM) and in the presence of H2O and CH4 

through photocatalytic bireforming of methane (BRM). Therefore, the detail on 

research scopes is as follows: 

1. The photocatalyst such as g-C3N4, Ti3C2, Ti3C2TA/R, CoAl-LDH, CoLa-LDH, 

CoAlLa-LDH, Ti3C2TA/R/CoAlLa-LDH, g-C3N4/CoAlLa-LDH, g-

C3N4/Ti3C2TA/R/CoAlLa-LDH were synthesized. The LDHs were synthesized 

using coprecipitation, and subsequent hydrothermal treatment method. Ti3C2 

and Ti3C2TA/R were obtained through controlled etching of Ti3AlC2. The 

prepared catalysts were characterized using some equipment analysis such as 

XRD, FESEM, FTIR, HRTEM, PL, RAMAN, XPS, and UV-Visible 

spectroscopy. The crystallinity, phase, morphology and structures, metals 

transition states and optical properties were determined through these 

characterizations. 

2. The photoactivity of catalyst samples were conducted to evaluate the 

performance of the catalyst samples. The fixed bed photoreactor was utilized 

to test the yield of CO, CH4 through photocatalytic reduction of CO2 with H2O 

while yield of CO and H2 were tested for photocatalytic reduction of CO2 with 

CH4 and H2O+CH4 through photocatalytic DRM and BRM, respectively. The 

photocatalysts were spread in the bottom of fixed bed photoreactor. The light 

used was a 35W HID Xe lamp having 20 mWcm−2 light intensity fitted with a 

concentrator. Multistage Mesh (MSM) photoreactor was employed to compare 

the performance with Fixed bed reactor through photocatalytic BRM with the 

efficient performing photocatalyst. 

3. The optimization of process parameters was conducted by utilizing response 

surface methodology (RSM). The parameters selected for optimization were 

catalyst loading, reaction time and effect of feed ratio. 

4. The kinetic model was developed using Langmuir Hinshelwood mechanism to 

determine rate of reaction. A model equation was derived to examine the effect 

of parameters on the photocatalytic reaction. 
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1.5 Significance of the Study 

The photocatalytic reduction of CO2 was conducted to obtain CO and CH4 in the 

presence of H2O. Photocatalytic DRM and BRM were conducted to obtain syngas 

(CO+H2) in the presence of CH4 and CH4+H2O respectively. The photocatalyst 

composite obtained showed very good performance. The numerous outcomes of the 

research are described below: 

1. A highly active ternary CoAlLa-LDH was formed through La3+ incorporation 

resulting in improvement of photogenerated charge carrier separation. 

2. A facile etching strategy was adopted to construct hierarchical TiO2A/R 

nucleates on Ti3C2 nanosheets that form Ti3C2/TiO2A/R (Ti3C2TA/R), where 

nanoscale TiO2A/R were in-situ formed and uniformly imbedded to cover the 

edges of the Ti3C2. 

3.  Electrons rich CoAlLa-LDH hybridization with TiO2A/R embedded Ti3C2 

MXene and g-C3N4 through electrostatic assembly strategy resulting in 

formation of 2D/2D/2D hierarchical architecture with enhanced photocatalytic 

activity.  

4. A new study for investigation of effect of photocatalytic CO2 reduction with 

CH4 and CO2+CH4 through photocatalytic DRM and BRM techniques 

respectively. 

5. The effect of employment of MSM photoreactor on the photocatalytic through 

the increase of surface area and light irradiation utilization. 

1.6 Outline of Thesis 

This thesis is comprised of 7 chapters excluding all introductory pages, table 

of content and abstract. Chapter 1 consists of the introductory statements, problem 

statement, hypothesis, objectives, scope, study significance and outline of thesis. The 

literature survey on basics of photocatalysis and CO2 reduction basics understanding 
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of photoreduction of CO2, literature on Layered double hydroxides (LDH) and Ti3C2 

MXene, literature on photoreactors, characterization techniques, development of 

kinetic models and Response surface methodology (RSM) were deliberated in Chapter 

2.  

In Chapter 3 a comprehensive explanation of the research methodology and 

order of the research, details of synthesize methods for the catalysts and carry out the 

photocatalytic experiments are provided. The equipment’s employed for 

characterizations and the type of reactors employed for reduction of CO2. The results 

obtained from the analysis of characterization are discussed in Chapter 4. The 

photocatalytic activity test though reduction with CO2 with H2O, DRM and BRM are 

discussed for different catalysts are conducted in chapter 5.  Response surface 

methodology (RSM) employed for the optimization of parameters and L-H model 

developed for the photocatalytic process and are discussed in Chapter 6. Chapter 7 

concludes the thesis with conclusions obtained from the research work and suggested 

recommendations for further research. 
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