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ABSTRACT 
 

 

 

 

Muon absolute lifetime is a measured lifetime of the trapped muons particle in 

a target nucleus by the ordinary muon capture (OMC) process. OMC is the probe for 

neutrino and astro-antineutrino nuclear response (NNR) that is relevant to double beta 

decay (DBD). The total OMC rates with relative capture strength can be used to 

determine the muon matrix element. The OMC rates for several DBD candidates 

reported in the theoretical and experimental studies show the quenching effect in the 

experimental OMC rate values which lead to high discrepancies in the DBD nuclear 

matrix element (NME). Ruthenium (Ru) is one of the DBD nucleus that is important 

for neutrino studies in nuclear and astroparticle physics using muon capture reactions. 

The present experimental work is the first measurement on Ru for NNR study by OMC 

experiment. Muon irradiation will transform the 𝐴 𝑋 nucleus to 𝐴 𝑌 nucleus via the 

exchange of weak bosons. A new synthesis method of Ru thin film target is developed 

in the present study to fulfil the muon irradiation criteria. A ruthenium oxide (RuO2) 

thin film target is carefully synthesised using normal evaporation method. Poly (vinyl 

alcohol) (PVA) and RuO2 powder are mixed with H2O separately to form two 

solutions. The thin film is analysed using several instruments to investigate the target’s 

characteristics. Field emission scanning electron microscope with energy dispersive 

X-ray (FESEM-EDX) is used to determine the thickness, uniformity, morphology and 

elemental identification of the thin film. Inductively coupled plasma-triple quadrupole 

mass spectrometer (ICPMS) and inductively coupled plasma-optical emission 

spectrometer (ICPOES) are essential for analyses as they can confirm the 

concentration of natural contamination (40K, 238U, 232Th) in the thin film. X-ray 

diffraction (XRD), Raman, and Fourier transform infrared with attenuated total 

reflection (FTIR-ATR) are used for extended analyses to confirm the hydration 

phenomena observed in FESEM-EDX. The target was irradiated using negative muons 

at MuSIC facility at Osaka University, Japan. The muon to electron decay and 

radioisotope (RI) gamma-rays are processed and recorded by scintillation detectors 

and high purity germanium (HPGe) detectors. The new synthesis method is suitable 

for multiple productions of thin film targets. The final thickness for the OMC 

experiment can be controlled as obtained from some hydration evidence of RuO2 thin 

film. The muon absolute lifetime of Ru obtained in this experiment is 132.7 ns, 

equivalent to 7.54 × 106 s −1 total muon capture rate. Present observations confirm 

slight quenching to the effective axial coupling constant (geff) parameter at about 33% 

error. The experimental OMC rates of Ru can deduce the absolute neutrino and 

antineutrino nuclear responses for DBD and neutrino properties of astrophysics 

origin. 



viii 

 

𝑍 

𝑍−1 

A 

 

 

 

ABSTRAK 
 

 

 

 

Jangka hayat mutlak muon adalah ukuran jangka hayat zarah muon yang 

terperangkap dalam nukleus sasaran melalui proses penangkapan muon biasa (OMC). 

OMC adalah penduga untuk sambutan nuklear neutrino dan astro-antineutrino (NNR) 

yang berkait dengan pereputan beta berganda (DBD). Jumlah kadar OMC dengan 

kekuatan tangkapan relatif boleh digunakan untuk menentukan elemen matriks muon. 

Kadar OMC untuk beberapa calon DBD yang dilaporkan dalam kajian teori dan 

eksperimen menunjukkan kesan pelindapkejutan dalam nilai kadar OMC eksperimen 

yang membawa kepada percanggahan tinggi dalam elemen matriks nuklear (NME) 

DBD. Ruthenium (Ru) adalah salah satu nukleus DBD yang penting untuk kajian 

neutrino dalam fizik nuklear dan astropartikel menggunakan tindak balas tangkapan 

muon. Kajian eksperimen ini adalah pengukuran pertama pada Ru untuk kajian NNR 

menggunakan eksperimen OMC. Sinaran muon akan mengubah nukleus 𝐴 𝑋 kepada 

nukleus 𝐴 𝑌 melalui pertukaran boson lemah. Kaedah sintesis baharu sasaran filem 

tipis Ru telah dibangunkan dalam kajian ini untuk memenuhi kriteria penyinaran 

muon. Sasaran filem tipis ruthenium oksida (RuO2) disintesis dengan teliti 

menggunakan kaedah penyejatan biasa. Poli (vinil alkohol) (PVA) dan serbuk RuO2 

dicampur dengan H2O secara berasingan untuk membentuk dua campuran. Filem tipis 

dianalisa menggunakan beberapa instrumen untuk mengkaji ciri-ciri sasaran. 

Mikroskop elektron pengimbasan pancaran medan dengan sebaran tenaga sinar-X 

(FESEM-EDX) digunakan untuk menentukan ketebalan, keseragaman, morfologi dan 

penentuan unsur filem tipis. Spektrometer jisim plasma berganding aruhan – catur 

kutub empat tigaan (ICPMS) dan spektrofotometer pancaran optik – plasma 

berganding aruhan (ICPOES) adalah penting untuk analisis kerana ia dapat 

mengesahkan kepekatan pencemaran semulajadi (40K, 238U, 232Th) dalam filem tipis. 

Belauan sinar-X (XRD), Raman, dan spektroskopi inframerah transformasi Fourier 

dengan pengecilan jumlah pantulan (FTIR-ATR) digunakan untuk analisis lanjutan 

untuk mengesahkan fenomena penghidratan yang diperhatikan dalam FESEM-EDX. 

Sasaran itu disinari menggunakan muon negatif di MuSIC, Universiti Osaka, Jepun. 

Pereputan muon kepada elektron dan radioisotop (RI) sinar gama diproses dan 

direkodkan oleh pengesan sintilasi dan pengesan germanium berkepekatan tinggi 

(HPGe). Kaedah sintesis baharu ini sesuai untuk penghasilan sasaran filem tipis secara 

berulang. Ketebalan muktamad untuk experimen OMC boleh dikawal seperti yang 

diperolehi daripada bukti penghidratan filem tipis RuO2. Jangka hayat mutlak muon 

Ru yang diperolehi dalam eksperimen ini adalah 132.7 ns, bersamaan dengan 7.54 × 

106 s −1 jumlah kadar tangkapan muon. Cerapan mengesahkan sedikit pelindapkejutan 

ke atas parameter pemalar gandingan paksi berkesan (geff ) kira-kira 33% ralat. Kadar 

OMC Ru eksperimen dapat mendeduksi sambutan nuklear neutrino dan antineutrino 

mutlak untuk sifat DBD dan neutrino untuk asal-usul astrofizik. 
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CHAPTER 1

INTRODUCTION

1.1 Research Background

In the standard model (SM), a muon (`) is a kind of lepton with a mass of 105

MeV/c2 that interacts via weak boson by exchange with its associated neutrinos (h`).

On average, from positive muon (`+) and negative muon (`−) decays, the reported

lifetime is 2.2`s [1]. The decay of `+ is mostly contributed by free muon decay, but `−

muon decay is material-dependent. Identifying the lifetime is difficult for `− due to the

presence of matter and considering the stoppage and disappearance of `− in the matter

that may affect muon capture rates in the nuclei. Due to the interaction with matter, the

lifetime of `− is much smaller as the A’s mass number increases.

The study of neutrino nuclear response (NNR) is useful to investigate the

fundamental properties of neutrinos that have come to light over decades, such as the

nature of a neutrino: Majorana or Dirac, mass hierarchy or absolute mass, the lepton

sector-CP phase, solar neutrino source and the fluxes, supernova neutrino intensities

and nucleosynthesis [2]. Many experimental works have been done to investigate

neutrinos’ properties via nuclear reaction, such as single beta decay (SBD) or electron

capture (EC), inverse beta decay (IBD) and double beta decay (DBD). A review of these

experimental works has been summarised in the references [3]. Physicists have used

these processes to extract the neutrino mass average (Mave) provided by the nuclear

matrix elements (NME). NME includes the nucleonic and non-nucleonic correlations

effects from the nuclear structure.

DBD is a rare nuclear transition. The slowest process in nature happens in the

area of weak interaction in nuclei. It comes in two modes, which are neutrinoless VV

decay (0hVV) and two neutrinos VV decay (2hVV). NNR in SBD and IBD cases refers

to the excitation energy range of the remaining nucleus after neutrino emission. The

1



square root of NME (M0h and M2h) in DBD indicates the parent’s transition to the

daughter nucleus through the multilevel intermediate state (Jc spin state). Investigating

neutrino properties beyond the standard model has been an interest among scientists

in experimental and theoretical fields. However, the feasible method to investigate the

Majorana nature of neutrinos is by 0hVV decay [4]. 0hVV is a lepton number violating

mode where the neutrino only occurs as a virtual particle, which is not allowed in the

standard model.

Figure 1.1: VV decay of 100Mo to 100Ru through intermediate nuclei (100Tc). The
ordinary muon capture (OMC) on 100Ru can access the V+ side of VV decay.

Ordinarymuon capture (OMC) can extract the singleM (V+)matrix by accessing

the high Jc spin state of nuclei that are similar to the 0hVV process [5]. Figure 1.1

shows the OMC reaction can be a probe to study the intermediate nuclei of 100Tc from

the DBD of 100Mo to 100Ru from the V+ side. Furthermore, the muon capture may

excite the target nuclei up to 100 MeV excitation energy (equivalent to Jc states = ±6)

2



more than other probes. One can obtain the muon capture strength by measuring the

delayed W-rays after OMC and comparing the results with the proton-neutron emission

model (PNEM) [6]. The theoretical pn-QRPA and QRPA can be used to reproduce

the experimental ` capture strength and evaluate the OMC rate and other nuclear

parameters [7, 8]

From Eq. 1.1, the OMC rate from the OMC experiment can be determined by

direct measurement of muon absolute lifetime [9] or partial ` capture rates from bound

states [4]. The relations between muon absolute lifetime, total capture rate and partial

capture rate can be expressed by;

1
g
= ΛC = Λ2 +&Λ3 (1.1)

where muon absolute lifetime (g) is the inverse of the total muon capture rate, ΛC , that

is also the sum product of partial capture rate, Λ2, and decay rate, Λ3 . The Huff factor,

Q, is included as a corrector for the unbound electron in the shell. Note that Q is

approximately 1 for light nuclei, which is much smaller for the medium-heavy nuclei.

The OMC rate prediction on 100Ru using the pn-QRPA and QRPAmodel shows

a large difference value [7, 8]. Thus, the comparison with the experimental OMC rate is

needed to evaluate the 0hVV decay of NME accuracy. Using the material with natural

isotopic abundance of ruthenium ( NatRu) in the form of RuO2 powder would act as a

control system to the 100Ru data later.

In the muon capture reaction, a negative muon `− is stopped in the proton in

the nucleus and transformed into a neutron by reducing one proton number with the

emission of the muon neutrino, as shown in Eq. 1.2 and Eq. 1.3.

`− +1
1 ? −→

1
0 = + h` (1.2)

`− +�/ - −→�
/−1 - + h` (1.3)
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Suppose the final nucleus is in the excited states. In that case, it will release RI gamma

rays possessing the same A and Z-1 [10, 11]. The experimental statistics of both RI

gamma rays and electron decay can be enhanced using suitable target thickness.

Reviewing the previous OMC experiment, several targets with different target

designs have been used, such as gas, liquid, bulk, powder, and thin film. Since the VV

decay nuclei occur in heavy and medium-heavy nuclei, the target must be thin; up to`m

to mm [12]. A film type target thickness can be adjusted based on the desired muon

beam intensity. In addition, a target with less contaminants and uniformly distributed

increases the sensitivity of gamma detections [13]. These requirements are necessary

to extract more experimental events in the OMC experiment and reduce the energy loss

in the target [14, 15, 16].

The preparation of the thin film target used the normal evaporation process,

which is the simplest way to fabricate samples of any metal or non-metals and enriched

or natural isotopes. Moreover, the physical, structural and elemental analyses presented

are helpful to get more information about the characteristics of the target for the muon

capture experiment.

1.2 Problem Statement

This study covers the measurement of muon absolute lifetime of ruthenium

targets through an OMC experiment to investigate the neutrino properties in NNR for

DBD study. The OMC rate can be measured or calculated from the muon absolute

lifetime. Therefore, the researchers compared OMC rates from several DBD nuclei to

investigate the problem, including the quenching effect from the NME of DBD.

From previous works, the theoretical OMC rates using pn-QRPA calculated by

Jokiniemi and Suhonen [7] show a greater value than the experimental rate reported by

Suzuki and Measday [9] and Zinatulina [4] and also than using Primakoff’s equation

prediction [17]. Meanwhile, using the theoretical QRPA model, Simkovic [8] had

obtained a value of OMC rate lower than that in the experiment by Suzuki and Daniya
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and predicted by Goulard Primakoff’s (GP) equation. The differences in OMC rates

from both theoretical calculations are due to the assumption of both models’ nucleonic

and non-nucleonic nuclear structure effects.

Suzuki and Measday reported the OMC rate for nuclei with Z=1 until Z=94 by

showing an increasing pattern as a function of Z [9]. On the other hand, Primakoff

obtained the OMC rates from the subtraction of the Pauli Exclusion Principle in the

nuclear environment from the OMC rates of hydrogen [17]. He also provided the

extension to the Pauli Exclusion Principle for heavy nuclei. The partial capture rates

for nuclei in the range of 36 ≤ / ≤ 62 were experimentally observed by Zinatulina [4].

Theoretically, Jokiniemi and Suhonen compare the relative capture strength obtained

from the experiment by Hashim [6] and deduced the absolute capture strength using

suitable axial-vector coupling parameters.

An enriched or high purity target helps minimise other beta decay contributions

during the measurement and analysis of the RI production experiments [10, 18].

However, there are possible contaminations from beta decay in Suzuki muon absolute

lifetime measurements due to the use of self-supporting powder-type targets [9].

This problem leads to the OMC target being prepared to suit the OMC experiment

and enhance the OMC outcome. The value of the theoretical muon capture rate

from Jokiniemi shows a large quenching of the structural parameter geff
A that is in

accordance with the earlier study of beta decay [7]. Hence, the approximation of

muon disappearance rate from experimental work, which corresponds to the inverse of

electron decay lifetime, would affect the differences.

The targets used in the previous OMC experiment were either gas, liquid or

bulk, including powder targets. The gas and liquid targets require a particular container

to contain them at a specific pressure [19, 20]. In contrast, they are the preferred type

for bulk targets due to their handling credibility and lack of requirement for special

preparation [21]. Powder targets are packed into a flat container made of polyethylene

film to hold the powder during the experiment [4]. Thin film is another good option

for a target compared to the powder form since it is uniformly distributed and easy to

handle [14].
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1.3 Research Objectives

The research objectives are listed as follows:

1. To fabricate the RuO2 thin-film target for OMC experiments by the normal

evaporation method.

2. To characterise RuO2 thin-film targets (hydrate and anhydrous) in terms of

morphology, elemental and structural properties.

3. To evaluate the muonic X-ray and gamma-ray for total muons stopped in target

and radioisotope production after muon capture.

4. To determine the muon absolute lifetime of ruthenium.

1.4 Scope of Study

The present study of the OMC rate of ruthenium, as well as the fabrication

and characterisation of RuO2 thin film is included as preliminary work to measure the

muon absolute lifetime for NNR. The film preparation adopts a new synthesis process

from the normal evaporation technique. Here, two types of RuO2 thin film, hydrate and

anhydrous, are fabricated where the morphology, elemental and structural analyses are

compared. FESEM-EDX checks the thin film’s thickness and uniformity distributions.

ICPMS and ICP-OES observe and identify elemental impurities. Meanwhile, the

observed hydration in the hydrate thin film is further examined by XRD, FTIR, and

Raman analysis. Several thin film pieces are stacked into 260 mg/cm2 thickness and

irradiated by high intense muons from the MuSIC beamline at 45 MeV/c2 for 1 hour

and 30 minutes. Three scintillation counters act as a trigger counter for the muon

stopping signal to differentiate the data recorded for muonic X-rays, RI gamma rays,

and electron decay. The measurements and the analyses are reported on and discussed.
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1.5 Significance of Study

The outcome of the present work is important for 0hVV studies since the

fundamental properties of neutrinos have yet to be concluded. The extraction of

the properties of neutrinos from 0hVV DBD experiments is important in providing the

information on neutrino effective mass and the nature of massive neutrinos at the V+

side of NME DBD. Furthermore, the finding of neutrino mass and Majorana neutrino

could help the comprehension of physics beyond the standard model (SM) where for

0hVV, the neutrino only occurs as a virtual particle which is not allowed in SM. The

OMC process can provide the single matrix elements of V+. Hence, the muon absolute

lifetimemeasurement fromOMCexperiments can provide information ofmuon capture

strength distribution that later will contribute to the theoretical evaluation in QRPA and

pn-QRPA for DBD.

1.6 Thesis Outline

This thesis contains five chapters. Chapter 1 includes the research background,

problem statement, four objectives, scope and the significance of the study. Chapter

2 is the literature review, where the discussion of previous data is presented. This

chapter explains in detail the current research based on the problem statement, including

the summary of comparative literature. Chapter 3 presents the methodology of the

project, including the explanation of the experimental technique and introduction to

the new synthesis process that produces the RuO2 thin film target. This chapter

is divided into three parts: the estimation method for thin film thickness, synthesis

process of the thin film, analysis of the thin film’s properties using several instruments,

the experiment of the muon irradiation process and the method of analysis of muon

irradiation experiments, including the efficiency and resolution of the detector used.

Chapter 4 presents the results of the muon absolute lifetime experiment in conjunction

with the muon capture rate. The outcome analysis of the OMC process is analysed for

muonic X-ray and gamma-ray identification. This chapter includes the comparison of

two thin films that were used in the current study, which are hydrate and anhydrous.
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Chapter 5 explains the conclusion of the current study and the recommendations for

future studies.
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