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ABSTRACT 

Tax is a source of revenue or income for a government to achieve a country’s macro 

economic objectives in the areas of fiscal and monetary policies. However, the effects of 

tax burden may cause economic recession, financial crises, as well as poor standard of 

living and economic hardship for the people. In order to tackle these challenges, there is a 

need for short-term, medium-term, and long-term periods of forecasting models to be 

developed. In general, financial time series forecasting models are not tax-revenue based-

models. Thus, existing models are inadequate to gauge the relationship between tax-based 

variables that can be particularly volatile. This research bred a model that used data with 

distinguished variables, obtained from the bulletin of the National Bureau of Statistics and 

the Central Bank of Nigeria. In this study, Vector Autoregressive model (VAR) and the 

functional Generalized Autoregression Conditional Heteroscedasticity family (fGARCH) 

models were combined to consider the behaviour of the financial time series (tax revenue) 

data. However, because of the high persistence of volatility in the data, the GARCH family 

model alone is unable to capture the leverage effects in the structural changes of the time 

series. Hence, the Auto-regression Hidden Markov Model (ARHMM) was proposed to 

handle this issue.  The results show that the VAR with the hybrid of fGARCH models were 

unable to capture the volatile behaviour of the tax revenue data. On the other hand, the 

proposed model that used the ARHMM to capture the intensity of volatility persistence 

performed better. The out-of-sample forecasting accuracy gave less than ten percent of the 

Mean Absolute Percentage Error (MAPE) for the proposed model. The simulation study 

has proven that the VARARHMMfGARCH proposed model produced better results as 

compared to the hybrid of the traditional VAR-fGARCH model. The newly joint VAR-

ARHMM-fGARCH model offers an effective forecasting approach for future tax revenue 

data.      
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ABSTRAK 

Cukai ialah sumber hasil atau pendapatan bagi sesebuah kerajaan untuk mencapai 

objektif makroekonomi negara dalam dasar polisi fiskal dan monetari.  Walau 

bagaimanapun, kesan beban cukai boleh menyebabkan kemelesetan ekonomi, krisis 

kewangan, serta taraf hidup yang lemah dan kesusahan ekonomi kepada rakyat. Untuk 

menangani cabaran ini, terdapat keperluan untuk model ramalan jangka pendek, jangka 

sederhana, dan jangka panjang dibangunkan. Secara umum, model ramalan siri masa 

kewangan bukan berasaskan model hasil cukai. Oleh itu, model sedia ada tidak mencukupi 

untuk mengukur hubungan antara pembolehubah berasaskan cukai yang bersifat tidak 

menentu. Penyelidikan ini menghasilkan model yang menggunakan data dengan 

pembolehubah yang berbeza, yang diperoleh daripada Biro Statistik Kebangsaan dan Bank 

Pusat Nigeria. Dalam kajian ini, model Autoregresif Vektor (VAR) dan keluarga 

Heteroskedastisiti Bersyarat Autoregresif Teritlak (fGARCH) telah digabungkan untuk 

mengambil kira sifat data siri masa kewangan (hasil cukai). Walau bagaimanapun, kerana 

ketidaktentuan yang tinggi dalam data ini, model keluarga GARCH sahaja tidak dapat 

menangkap kesan keumpilan dalam perubahan struktur siri masa. Oleh itu, Model Markov 

Tersembunyi Regresi Auto (ARHMM) telah dicadangkan untuk menangani masalah ini. 

Keputusan menunjukkan bahawa VAR dengan hibrid model fGARCH tidak dapat 

menangkap sifat ketidaktentuan dalam data hasil cukai. Walau bagaimanapun, model yang 

dicadangkan yang menggunakan ARHMM untuk menangkap intensiti ketidaktentuan, 

menunjukkan prestasi yang lebih baik. Ketepatan ramalan luar sampel memberikan kurang 

daripada sepuluh peratus Ralat Peratusan Mutlak Min (MAPE) untuk model yang 

dicadangkan. Kajian simulasi telah membuktikan bahawa model cadangan VAR-

ARHMMfGARCH menghasilkan keputusan yang lebih baik berbanding dengan hibrid 

model VARfGARCH tradisional. Model VAR-ARHMM-fGARCH yang baru 

menawarkan pendekatan ramalan yang efektif untuk data hasil cukai di masa hadapan. 

 

 

 

 

 



viii 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xiii 

LIST OF FIGURES xv 

LIST OF ABBREVIATIONS xvii 

LIST OF SYMBOLS xx 

LIST OF APPENDICES xxii 

CHAPTER 1 INTRODUCTION 1 

1.1 Introduction 1 

1.2 Overview/Background 1 

1.3 The Problem Statement 3 

1.4 Research Questions 4 

1.5 Research Objectives 5 

1.6 Significance of the Study 5 

1.7 Scope of the Study 6 

1.8 Thesis Organization 7 

CHAPTER 2 LITERATURE REVIEW 9 

2.1 Introduction 9 

2.2 Time Series Analysis (TSA) 9 

2.3 Univariate Time Series 10 

2.4 Vector Autoregressive Model 11 

2.5 Multivariate Volatility Modelling 20 



ix 

2.6 Hybrid Model 33 

2.7 Hidden Markov Model (HMM) 39 

2.7.1 Autoregressive Hidden Markov Model 45 

2.8 The Research Gap 46 

2.9 Chapter Summary 47 

CHAPTER 3    RESEARCH METHODOLOGY 49 

3.1 Introduction 49 

3.2 Data Collection 49 

3.3 Time Series Analysis (TSA) 50 

3.3.1 Stationarity Test 50 

3.4 Univariate Autoregressive Model 52 

3.5 Multivariate Linear Time Series (MTS) Modelling 52 

3.5.1 Vector Autoregressive (VAR) Model 55 

3.5.2 Selection of Lag Length 56 

3.5.3 Model Estimation of Vector Autoregression 

(VAR) 57 

3.5.4 Structural Analysis 59 

3.5.4.1 Cointegration Test 59 

3.5.4.2 Granger Causality Test 61 

3.5.4.3 Impulse Response Function 62 

3.5.5 Residual Analysis 64 

3.5.5.1 The Autocorrelation 64 

3.5.5.2 Test for Heteroscedasticity 66 

3.6 Multivariate Volatility Models 67 

3.7 The hidden Markov model (HMM) 68 

3.7.1 Autoregressive hidden Markov model 

(ARHMM) Structure 71 

3.7.1.1 The Likelihood Function 74 

3.7.1.2 Scaling Technique 76 

3.7.1.3 Parameter Estimation for ARHMM 77 

3.8 Autoregressive Conditional Heteroscedasticity 

(ARCH) Family Models 80 



x 

3.8.1 The GARCH (p, q) Model 81 

3.8.2 Exponentially Weighted Moving Average 

(EWMA) 83 

3.8.3 Go GARCH Model 83 

3.8.4 Functional Generalized Autoregressive 

Conditional Heteroscedasticity (fGARCH) 

Model 85 

3.8.5 Parameter Estimation 86 

3.9 The Hybrid Models 87 

3.9.1 The VAR-GARCH Model 88 

3.9.2 The VAR-EWMA Model 88 

3.9.3 The VAR-GO-GARCH Model 89 

3.9.4 The VAR-fGARCH Model 93 

3.10 The Algorithm of the Proposed Hybrid VAR-

ARHMM-GARCH family Model 94 

3.10.1 The Algorithm for Hybrid VAR-ARHMM-

GARCH Model 94 

3.10.2 Algorithm for Hybrid VAR-ARHMM-EWMA 

Model 96 

3.10.3 The Algorithm for Hybrid VAR-ARHMM-

GO-GARCH Model 98 

3.10.4 The Algorithm for Hybrid VAR-AR(p)HMM-

fGARCH Model 100 

3.11 Forecasting 102 

3.12 Comparison of the Models 104 

3.13 Simulation Method 105 

3.14 Chapter Summary 107 

CHAPTER 4 MULTIVARIATE ANALYSIS 109 

4.1 Introduction 109 

4.2 Descriptive Statistics of Financial Data series 109 

4.3 Univariate Modelling 110 

4.4 Multivariate Linear Modelling 120 

4.4.1 Stationarity and Unit Root Tests 120 

4.4.2 VAR Lag Selection 121 



xi 

4.5 Structural Analysis 123 

4.5.1 Granger Causality Test 127 

4.6 Impulse response function 128 

4.7 Chapter Summary 134 

CHAPTER 5 HYBRID VAR WITH GARCH FAMILY 

MODELS AND SIMULATION 135 

5.1 Introduction 135 

5.2 Volatility Modelling 135 

5.3 Application of Models 136 

5.3.1 VAR-GARCH Model 136 

5.3.2 VAR-EWMA Model 140 

5.3.3 VAR-GO-GARCH Model 144 

5.3.4 VAR-fGARCH model 149 

5.3.4.1 Graphical presentation of VAR-

fGARCH Performance 149 

5.3.4.2 VAR-fGARCH Model Estimation 151 

5.4 Models Comparison 155 

5.5 VAR-ARHMM Model Estimation 157 

5.6 VAR-ARHMM-GARCH family Models Estimation 159 

5.6.1 VAR-ARHMM-GARCH Models Estimation 160 

5.6.2 VAR-ARHMM-EWMA Model Estimation 162 

5.6.3 VAR-ARHMM-Go-GARCH Model 

Estimation 165 

5.6.4 VAR-ARHMM-fGARCH model Estimation 167 

5.7 Performance Ability of the Model Forecast Amongst 

Tested Models 170 

5.8 Models Comparison 177 

5.9 Simulation 180 

5.10 Comparison of Simulated Data 190 

5.11 Chapter Summary 191 

  



xii 

CHAPTER 6 CONCLUSION AND FUTURE RESEARCH 193 

6.1 Conclusion 193 

6.2 Future Research 195 

REFERENCES 197 

LIST OF PUBLICATIONS 249 
 

  



xiii 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2. 1 Summary of VAR model literature reviewed 16 

Table 2. 2 Summary of Volatility modelled literature reviewed 29 

Table 2. 3 Summary of Hybrid model literature reviewed 36 

Table 4. 1 Summary of the descriptive statistics of the Tax revenue 

variables (component) 110 

Table 4. 2 Parameter estimations of CEDTax, PPTax and STax 116 

Table 4. 3 Parameter estimations of PITax, and CTax 117 

Table 4. 4 Unit root testing for stationary of the data 120 

Table 4. 5 Vector Autoregression VAR Lag selection 122 

Table 4. 6 Information criteria for model estimation. 123 

Table 4. 7 Johansen cointegration test 126 

Table 4. 8 Causality test 127 

Table 4. 9 Residual analysis 134 

Table 5. 1 VAR-GARCH parameter estimation. 139 

Table 5. 2 The Accuracy Measures VAR-GARCH Model 140 

Table 5. 3 VAR-EWMA parameter estimation. 143 

Table 5. 4 The Accuracy Measures VAR-EWMA Model 144 

Table 5. 5 VAR-Go-GARCH parameter estimation. 148 

Table 5. 6 The accuracy measures for the VAR-GO-GARCH model 148 

Table 5. 7 VAR-fGARCH parameter estimation. 152 

Table 5. 8 The accuracy measures for the VAR-fGARCH model 153 

Table 5. 9 Residual analysis. 154 

Table 5. 10 Cross-validation analysis. 156 

Table 5. 11 ARHMM parameter estimation for each variable VAR(2) 158 

Table 5. 12 ARHMM parameter estimation for each variable VAR(6) 159 



xiv 

Table 5. 13 PARAMETER ESTIMATION for VAR(2)-ARHMM-

GARCH 160 

Table 5. 14 PARAMETER ESTIMATION for VAR(6)-ARHMM-

GARCH 161 

Table 5. 15 Adequacy Checking 162 

Table 5. 16 PARAMETER ESTIMATION for VAR(2)-ARHMM-

EWMA 163 

Table 5. 17 PARAMETER ESTIMATION for VAR(6)-ARHMM-

EWMA 163 

Table 5. 18 Adequacy Checking 164 

Table 5. 19 PARAMETER ESTIMATION for VAR(2)-ARHMM-Go-

GARCH 165 

Table 5. 20 PARAMETER ESTIMATION for VAR (6)-ARHMM-Go-

GARCH 166 

Table 5. 21 Adequacy Checking 167 

Table 5. 22 PARAMETER ESTIMATION for VAR(2)-ARHMM-

fGARCH 168 

Table 5. 23 PARAMETER ESTIMATION For VAR(6)-ARHMM-

fGARCH 168 

Table 5. 24 Adequacy Checking 169 

Table 5. 25 Cross-validation analysis VAR (2). 177 

Table 5. 26 Cross-validation Analysis VAR (6). 179 

Table 5. 27 CED-Tax Simulation 183 

Table 5. 28 PP-Tax simulation 184 

Table 5. 29 S-Tax simulation 186 

Table 5. 30 PI-Tax simulation. 187 

Table 5. 31 C-Tax simulation. 189 

Table 5. 32 Cross-validation analysis for simulation 191 

 

 

  



xv 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 2.1 Illustration of state transition 44 

Figure 3.1 VAR modeling flowchart 55 

Figure 3.2 The flowchart of the tax revenue framework 108 

Figure 4.1 (a)-(e). Displays ACF and PACF for Original Data 112 

Figure 4.2 (a)-(e). Displays ACF and PACF After 1st Differencing 114 

Figure 4.3 Time series plot after differencing 115 

Figure 4.4 (a)-(e). Diagnostic checking 119 

Figure 4.5 Correlograms. 121 

Figure 4.6 (a)-(e). Impulse response function for VAR(2) 130 

Figure 4.7 (a)-(e) Impulse response function for VAR(6) 133 

Figure 5.1 (a)-(e). Indicating estimated values of the VAR(2)-GARCH 

model 137 

Figure 5.2 (a)-(e) Indicating estimated values of the VAR(6)-GARCH 

model 138 

Figure 5.3 (a)-(e). Indicating estimated values of the VAR(2)-EWMA 

model 141 

Figure 5.4 (a)-(e). Indicating estimated values of the VAR(6)-EWMA 

model 142 

Figure 5.5 (a)-(e). Indicating estimated values of the VAR(2)-GO-

GARCH model 145 

Figure 5.6 (a)-(e). Indicating estimated values of the VAR(6)-GO-

GARCH model 146 

Figure 5.7 (a)-(e). Indicating estimated values of the parameter for the 

VAR(2)-fGARCH model 150 

Figure 5.8 (a)-(e). Indicating estimated values of the parameter for the 

VAR(6)-fGARCH model 151 

Figure 5.9 (a)-(e). Forecasting plot for VAR (2) 171 

Figure 5.10 (a)-(e). Forecasting plot for VAR (6) 172 

Figure 5.11 (a)-(e). Volatility Forecast plot for VAR (2) 173 



xvi 

Figure 5.12 (a)-(e). Volatility Forecast plot for VAR (6) 174 

Figure 5.13 (a)-(e). Shows the volatility levels for VAR (6) 175 

Figure 5.14 (a)-(e). Shows the volatility levels for VAR (6) 176 

Figure 5.15 Boxplot of the simulated data mean 182 

 

  



xvii 

LIST OF ABBREVIATIONS 

AIC  - Autocorrelation Function 

AIC - Akaike Information Criterion 

ADF  - ADF - Augmented Dickey-Fuller 

ANN - Artificial neural network 

AP - Affinity Propagation  

APARCH - Generalized Autoregressive Conditional Heteroscedasticity 

ARCH  - Autoregressive Conditional Heteroscedasticity 

ARFIMA - Autoregressive Fractional Integrated Moving Average 

ARIMA  - Autoregressive Integrated Moving Average 

ARMA - ARMA - Autoregressive Moving Average 

BC  -  Before Christ 

BEKK  - Baba, Engle, Kraft, and Kroner 

BIC  - Bayesian Information Criteria 

BVAR  - Bayesian Vector Autoregression 

CCC  - Constant conditional correlation 

C-Tax - Company Tax 

CED-Tax - Customs and Exercise Duty Tax 

DCC - Dynamic conditional correlation 

EM  - Expectation Maximization 

ES  - Expected Shortfall 

EGARCH - Exponential Generalized Autoregressive Conditional 

Heteroscedasticity 

FGARCH - Functional Generalized Autoregressive Conditional 

Heteroscedasticity 

GARCH - Generalized Autoregressive Conditional Heteroscedasticity 

GDP  - Gross Domestic Product 

GLM  - Generalized Linear Model 

GLS  - Generalised Least Square 

GRA  - Grey Relationship Analysis 

HMM  - Hidden Markov Model 



xviii 

HMM-FA  - Hidden Markov Model-based Financial Analysis 

HQ  - Hannah Quine  

KNN  - Kernel Neural Network 

LASSO  - Least Absolute Shrinkage and Selection Operator 

LM  - Lagrange Multiplier 

LS-SVR  - Least Square-Support Vector Regression 

MAE  - Mean Absolute Error 

MAPE  - Mean Absolute Percentage Error 

ME  - Mean Error 

MGARCH - Multivariate Generalized Autoregressive Conditional 

Heteroscedasticity 

MLE  - Maximum likelihood estimation 

MSE  - Mean Square Error 

MTS  - Multivariate Time Series 

OLS - Ordinary Least Square 

OLSCS - Ordinary Least Square-cumulative Sum 

PACF  - Partial Autoregression Function  

PI-Tax - Personal Income Tax 

PP-Tax - Property Tax 

QGARCH - Quadratic Generalized Autoregressive Conditional 

Heteroscedasticity 

RMSE - Root Mean Square Error 

SARIMA - Seasonal autoregressive integrated moving average 

S-Tax - Sales Tax 

SGARCH - Skew generalized autoregressive conditional 

heteroscedasticity 

SV  - Stochastic Volatility 

SVM  - Support vector machine 

TGARCH  - Threshold generalized autoregressive conditional 

heteroscedasticity 

TR  - Tax Revenue 

TSA  - Time series analysis 

VAR  - Vector autoregressive 



xix 

VARMA  - Vector autoregressive moving average 

VAT - Value Add Tax 

VECM - Vector error correction model 

   

 

  



xx 

LIST OF SYMBOLS 

tX  -  Time series 

  -  Mean 

2  -  Variance 

tX   -  Difference series 

tz   -  Exogenous regressor 

t   -  Error term 

p  -  Autoregressive parameter 

d  -  Degree of integration 

q                

( )B  

- 

- 

Moving average parameter 

Polynomial of order p 

( )B  - Polynomial of order q 

P  - Seasonal autoregressive parameter 

Q  - Seasonal moving average parameter 

( )s

p B  - Polynomial of order P 

( )s

p B  - Polynomial of order Q 

L - Log-likelihood 

K  - Number of variables 

tu  

t  

- Independent white noise 

Standardized residuals 

Q - Dynamic conditional correlation matrix 



xxi 

( ) +  - Volatility persistence measure 

  - Initial state probabilities 

ija  - Transition state probability distribution 

k

jb  - Emission probability 

 

  



xxii 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

Appendix A Univariate (ARIMA) Models Selections Tables 229 

Appendix B Diagram of Fit and Residuals for Tax Revenue 

Component 232 

Appendix C MAE results for 40 simulated data 237 

Appendix D MAPE results for 40 simulated data 241 

Appendix E RMSE results for 40 simulated data 246 

 

 



 

1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

This chapter presents an overview or background of the study, by highlighting 

some key concepts relating to taxation, tax revenue, and tax revenue forecasting. This 

was followed by the statement of the problem, justifying the need and the novelty 

involved for undertaken research on this topic, especially as it relates to a developing 

economy (i.e., Nigeria) which is characterized by poor tax revenue performance. 

Conversely, this is followed by a statement on the research questions and objectives 

of the study. Also, the scope of the study was defined, in addition to the statement on 

the significance of the research.  

1.2 Overview/Background 

Taxation is the principal source of every successful economy globally and 

successful tax administration is a tradition as old as taxation itself (Desai and Hines 

Jr., 2004). The appraisal act amongst maximizing tax revenues and abating the effect 

on the public in which the state must involve was apparent as early as 2350 BC 

(Emmanuel., 2017). The challenge of tax is highly significant in the global economy. 

One of the oldest means of Taxation by which the cost of providing essential services 

for the majority of people existing in a specified geographical area is funded (Ngerebo 

and Masa., 2012). Universally, the responsibility of governments is to provide some 

basic infrastructures for their citizens. The obligatory functions of government might 

be obliged its citizens to include redistribution of income, provision of services in the 

form of public goods and stabilization of the economy (Herbert., 2018). 
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Tax revenue (TR) has been defined in different ways depending on the angle 

or the aim of the individual studies, however, it is defined as the amount of revenue 

generated from the collection of tax over a given period. To raise enough revenue is 

the primary function of the tax system to finance vital expenditures on the services 

provided by the government (Oates, 1966; Okoye & Ezejiofor, 2014). Hence, as a way 

of developing financial time series forecasting, this study focuses on tax revenue 

contribution towards economic conditions of development. 

Tax revenue is classified into many categories: 1) Direct tax. This is generated 

through either sale of the ticket (receipt) or charges for the break of law and order or 

offense committed by individuals or companies; 2) Indirect tax. This is generated 

through personal income tax, sales tax, company tax, etc. 3) Petroleum tax. This is 

derived from the sales premium motor spirit PMS; and 4) Value-added tax (or VAT), 

which is built-in consumer products (Afolabi, 2010). The fulfilment of these 

responsibilities depends largely on the amount of generated revenue by the 

government thru numerous means (Clark & Wilson, 1961; Stoker, 2016). Tax revenue 

is the total sum of resources collected either per hour, per week, per month, per quarter, 

and per annum which are referred to as time-series data (Philip and Olalekan., 2017). 

Forecasting financial time series data is the method in which the previous year’s data 

is used to make a forecast referring to the record of the data itself (Dave and Adam., 

2016).  

Ifere. et al. (2014) worked on Tax Innovation, Administration, and Revenue 

Generation in Nigeria: Case of Cross River State. However, since there’s a correlation 

amongst the variables, then there exists heteroscedasticity in the data. Although, a 

great number of the literature review applied linear models on tax revenue data.   

However, in recent times there are numerous kinds of literature reviewed, it is 

obvious that volatility in the financial time series data (tax revenue) still suffers a great 

challenge from both the data and the model that were used to capture the 

heteroscedasticity in the data. Meanwhile, different types of multivariate time series 

forecasting models have been utilized and yet the problem persists. More so we 

observed that there is a high correlation exists in the tax revenue data which also 
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constrain another problem in the data. Consequently, most of the financial time series 

modeling and forecasting concentrated on stock exchange data, though a lot of 

research has been advancing in hybrid models to model and forecast short-term and 

long-term predictions of the stock market. Besides there are no much studies on tax 

revenue that has hybrid models or forecast to this effect, in which this study is 

undertaken to hybrid models that can address the issues of high correlation, and 

volatility that are residing in the tax revenue data, this will go long way to minimize 

the tax revenue challenges for Nigeria and states with related economic structures. 

1.3 The Problem Statement  

Breeding an analytic time series model to describe the relationships among 

highly correlated explanatory variables has been quite challenging due to the difficult 

nature and the inadequate knowledge of the basic mechanisms that are accountable for 

the relationship. In some cases, the univariate time series analysis is adequate. While, 

in some situations, it may be restricted. The univariate analysis focuses on a single 

variable (component), but for some variables, they are correlated and needed to be 

incorporated in the analysis as well. This study proposes a multivariate model for 

modeling and forecasting for effective management of tax administration and revenue 

growth in Nigeria.  

VAR modeling is regarded as appropriate for the estimation if it does not 

exhibit significant autocorrelation and heteroscedastic effects which can be captured 

by the nonlinear multivariate GARCH family models.  Furthermore, it is very well 

known that volatility is one of the properties of financial time series associated with 

risk (Kogan et al 2009; Leal and Napoletano, 2019) which is indicated by the sum of 

the two parameters in GARCH models.  It was debated that financial volatility is in 

two stages; high and low, a common feature of these models seems to be switching 

between low and high activity regimes with heavy-tailed durations of regimes which 

might be due to certain factors which GARCH models alone cannot capture 

(Lamoureux and Lastrapes, 1990; Fulvio et al., 2005) and the results may be 

misleading (Polzehl and Spokoiny, 2006). This study tends to develop and evaluate a 

https://scholar.google.com/citations?user=BNR4vnwAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=HZJZesQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=8lWV03oAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=edIy5-0AAAAJ&hl=en&oi=sra
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pioneering multivariate GARCH family model that will take into consideration the 

volatility stages in financial time series. Among the conservative ways of measuring 

risk connected with the behavior of financial time series are done thorough studies of 

the variance (McNeil and Frey, 2000; Malakhov and Simon, 2018). Meanwhile, very 

few financial kinds of literature emphasize resolving both challenges, 

heteroscedasticity, and persistence in volatility. Thus, in this study, these two 

challenges will be tackled utilizing financial (tax revenue) data series The standard 

time-homogeneous discrete HMMs has been used by researchers for volatility levels 

classification but these models (HMM) suffer from limited dynamic expressiveness 

due to their finite number of states, which affect their performances in classifying the 

volatility levels.  

Autoregressive Hidden Markov Models (ARHMMs) are an extension of the 

standard discrete HMMs that is another HMM family models have been developed 

with the goal of improving the performance of classification levels. The hybrid models 

were proven to be a better model and give higher accuracy compared to conventional 

single models in modeling applications. However, the combination of the VAR, 

ARHMM and GARCH family model will be interesting and effective in classifying 

the volatility levels. 

1.4 Research Questions  

Hence, our focal research questions are hereby summarized as follows:  

1.  Do autocorrelation and heteroscedasticity affect the behaviour and 

characteristics of the financial time series (tax revenue) data? 

2. Can the benchmark models VAR treat the autocorrelation and 

heteroscedasticity incorporating GARCH family models? 

3. Does the proposed model reduce the volatility persistency in the residual of 

financial tax revenue variables? 

https://scholar.google.com/citations?user=fFFOHecAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=gLVB_N0AAAAJ&hl=en&oi=sra
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4. Does the proposed model capable of improving the tax revenue forecasting? 

1.5 Research Objectives  

This study is aimed at modelling tax revenue using the proposed model, with 

the following objectives:  

1. To identify the tax revenue series data structure, behaviour, and characteristics 

of federal inland revenue service (FIRS) of Nigeria. 

2. To model the correlation and heteroscedasticity residual time series utilizing 

the multivariate model. 

3. To propose a model ARHMM-based-VAR model to reduce the identified 

persistent volatility in the residual. 

4. To evaluate the performance of the proposed model in (iii) through simulation. 

1.6 Significance of the Study 

Choosing the best model is very significant in modeling the multivariable (tax 

revenue) data since it can assist the tax authorities in the decision-making 

process on tax administration management for future planning and development. 

Moreover, tax revenue modeling from the optimal measuring model will give 

a factual insight into the long-term running plan. Consequently, the anticipated 

computation is designed for future economic growth and development. Hence, this 

thesis will contribute to the financial time series in numerous ways as explained below. 

This study designs a hybrid model of VAR and functional generalized autoregression 

conditional heteroscedasticity GARCH family model, that is, the VAR-GARCH 

family model.  
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Although the multivariable tax revenue data can perform better with the 

application of the linear model, the presence of heteroscedasticity must be checked to 

reconfirm the adequacy of the model constructed. The existence of this effect indicates 

that the linear model is not appropriate to fit the data behavior. Plus, the 

heteroscedasticity effect is a major concern in regression analysis as its presence can 

invalidate the statistical test of significance. Therefore, this research highlights the 

handling of heteroscedasticity (leverage effect). Moreover, this study introduces the 

HMM model using the expectation-maximization (EM) algorithm to the base of the 

VAR model by separating the volatility into two levels. The proposed approach offers 

a valuable way of modeling the relationship between the conditional mean and 

variance of a process that exhibits strong persistence in its level while considering the 

time-varying volatility. 

1.7 Scope of the Study 

The covering scope of data for this study were obtained from Central Bank of 

Nigeria (CBN) and National Bureau of Statistics (NBS) for 456 (four hundred and 

fifty-six) months spanning from 1981 to 2018 other includes (i) descriptive analysis of 

tax revenue data series in identifying the design and features of the tax revenue 

variables (ii) modeling the linear behaviour of tax revenue data stationarity and 

structural changes (iii) Incorporate VAR with GARCH family models to enhance the 

understanding the persistent volatility of tax revenue data, (iv) propose probabilistic 

technique with hidden states model for volatility persistency reduction, (v) use the 

proposed hybrid model performance and compare with other models, and (vi)  And 

lastly run the simulation analysis.  
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1.8 Thesis Organization  

The organization of this study begins with Chapter one presenting the 

introduction to the study. Sequentially, Chapter two presents the reviews of the related 

kinds of literature, and Chapter three discusses the development of the theoretical 

method utilized in the study. Chapter 4 investigates the analysis and findings of the 

study. It deals with the main features of tax revenue variables, the mean and variance 

model, the terse but limitations of the preceding model. The model’s performance and 

use of the proposed model for simulation analysis are in Chapter 5. Finally, Chapter 6 

draws out the conclusion of this study and recommends future research works. 
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