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ABSTRACT 

A multiscale hybrid finite element and finite volume method (MSHFEFVM) was 

introduced for high gradient boundary value problems by coupling an adaptive finite 

element and node centred finite volume schemes. Starting with the traditional four-node 

finite element method, additional nodes were inserted automatically at high gradient 

regions by an adaptive algorithm based on refinement criteria. A posteriori error 

estimation and error indicator were formulated. The error estimation was residual-based, 

while the error indicator was gradient-based. Using the information from the gradient-

based error indicator, a p-refinement indicator was used to decide whether a given 

element should be refined or not via adaptive algorithm. Two sets of elements were used 

to design the adaptive algorithm which are the regular elements and transition elements. 

The regular elements are the linear and quadratic elements, while the transition elements 

are the elements having both quadratic and linear sides. These elements are useful in 

transitioning from linear to quadratic elements during the implementation of the adaptive 

algorithm. The coupling resulted in a multiscale finite element method (MSFEM). The 

MSFEM was applied to some two-dimensional high gradient problems with promising 

results. The MSFEM was extended to solve the time dependent partial differential 

problems. The results obtained showed good agreement with the analytical results. A 

node centred finite volume method was coupled with the MSFEM to form a 

MSHFEFVM based on concurrent continuum-continuum coupling using a handshake 

coupling technique that allows information passing between the two coupled methods on 

a fly. The proposed hybrid technique was first applied to some two-dimensional 

localised high gradient problems with available analytical solutions. This application was 

necessary to analyse and validate the performance and accuracy of the MSHFEFVM. 

The obtained numerical results from the analysis in terms of error and execution time 

showed an encouraging performance of the scheme compared to the traditional finite 

element, the node centred finite volume and the MSFEM. Finally, the MSHFEFVM was 

applied to two standard localised high gradient problems and two engineering problems, 

which are electrostatics and torsion problems. The application showed a promising 

performance of the new scheme. The numerical results show that the combination of 

these two techniques can help to solve high gradient problems with accuracy and 

minimum execution time.   
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ABSTRAK 

Unsur terhingga hibrid multiskala dan kaedah isipadu terhingga (MSHFEFVM) 

diperkenalkan untuk menyelesaikan masalah nilai sempadan berkecerunan tinggi dengan 

menggandingkan unsur terhingga secara adaptif dan skema isipadu terhingga berpusat 

pada nod. Bermula dengan kaedah unsur terhingga empat nod tradisional, nod tambahan 

dimasukkan secara automatik di kawasan kecerunan tinggi oleh algoritma adaptif 

berdasarkan kriteria penyempurnaan. Anggaran ralat posteriori dan penunjuk ralat 

dirumuskan. Anggaran ralat adalah berdasarkan sisa, sementara penunjuk ralat 

berdasarkan kecerunan. Menggunakan maklumat dari penunjuk ralat berdasarkan 

kecerunan, penunjuk penambahbaikan p digunakan untuk memutuskan sama ada elemen 

tertentu harus diperhaluskan atau tidak melalui algoritma adaptif. Dua set unsur 

digunakan untuk merancang algoritma adaptif iaitu unsur biasa dan unsur peralihan. 

Unsur biasa adalah unsur linear dan kuadratik, sementara unsur peralihan adalah unsur 

yang mempunyai sisi kuadratik dan linear. Semua unsur ini berguna dalam peralihan dari 

unsur linear ke kuadratik semasa pelaksanaan algoritma adaptif. Gandingan ini 

menghasilkan kaedah unsur terhingga multiskala (MSFEM). MSFEM diterapkan pada 

beberapa masalah kecerunan tinggi dua dimensi dengan keputusan yang memuaskan. 

MSFEM diperluas untuk menyelesaikan masalah pembezaan separa yang bersandar pada 

masa. Keputusan yang diperoleh menunjukkan persetujuan yang baik dengan hasil 

analisis. Kaedah isipadu terhingga berpusat pada nod digandingkan dengan MSFEM 

untuk membentuk MSHFEFVM berdasarkan gandingan kontinum-kontinum serentak 

menggunakan teknik gandingan jabat tangan yang membolehkan maklumat disampaikan 

antara kedua-dua kaedah terganding dengan cepat. Teknik hibrid yang dicadangkan 

pertama kali diterapkan pada beberapa masalah berkecerunan tinggi dua dimensi yang 

disetempatkan dengan penyelesaian analisis yang tersedia. Aplikasi ini diperlukan untuk 

menganalisis dan mengesahkan prestasi dan ketepatan MSHFEFVM. Keputusan 

berangka yang diperoleh dari analisis dari segi ralat dan masa pelaksanaan menunjukkan 

prestasi skema yang memberangsangkan berbanding dengan unsur terhingga tradisional, 

isipadu terhingga berpusat dan MSFEM. Akhirnya, MSHFEFVM diaplikasikan pada dua 

masalah kecerunan tinggi yang disetempatkan dan dua masalah kejuruteraan, iaitu 

masalah elektrostatik dan kilasan. Pengaplikasian ini telah menunjukkan prestasi skema 

baharu yang memberangsangkan. Keputusan berangka menunjukkan bahawa gabungan 

kedua-dua teknik tersebut dapat membantu menyelesaikan masalah kecerunan tinggi 

dengan tepat dan masa pelaksanaan minimum.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Motivation 

With the rapid advance in computer power, numerical simulations have 

become a very important method for solving questions in engineering and science. 

Instead of adopting the traditional theoretical practice using assumptions and 

approximations to simplify problems, this numerical approach addresses the original 

problem in all its detail with little assumptions. Providing validation for theories, 

providing insight into experimental results, and providing help in interpreting or even 

discovering new phenomena on varied scales, hence, it is a valuable instrument in 

science (Jebahi et al., 2016; Zeng and Qin, 2018). 

 

A numerical simulation can typically be divided into four scales. The 

nanoscopic scale, where phenomena related to the behavior of electrons become 

significant, the microscopic scale, where phenomena related to the behavior of atoms 

are considered. The mesoscopic scale at which defects in lattices are studied. The 

macroscopic scale which allows continuum mechanics to explain macroscopic 

phenomena. Each scale has been addressed by several numerical methods (Weinan 

and Lu, 2011; Jebahi et al., 2016; Zeng and Qin, 2018). 

 

There are two classes of numerical methods: discrete methods (DM) and 

continuum methods (CM). Discrete mechanics is the first class and covers the first 

three scales. They are quantum mechanical methods (QMs) used for nanoscopic 

analysis, atomistic methods (AMs) used for microscopic analysis, and mesoscopic 

discrete methods (MDMs) used for mesoscopic analysis. Although the class can 

provide extremely accurate results, but it is considerably time-consuming and is only 

suitable for small physical systems (Weinan and Lu, 2011; Jebahi et al., 2016; Zeng 

and Qin, 2018). Continuous methods (CMs) are based on continuum mechanics and 

are focused on solving macroscopic problems. Nonetheless, handling additional 
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episodes of fine scale phenomena is generally necessary. Although continuous 

methods are less accurate than discrete ones, but they are relatively inexpensive and 

flexible for large systems (Jebahi et al., 2016; Zeng and Qin, 2018). 

 

Simulations of modern materials have been challenged by multiscale 

phenomena. Such phenomena require on one scale an extremely accurate and 

computationally expensive description, and on another scale a coarser description 

that avoids prohibitively large calculations. Since all DMs and CMs methods alone 

are not sufficient to describe the entire system, so coupling approaches combining 

different methods at different scales would be beneficial in distributing computation 

effort as needed. As a result, multiple multiscale coupling approaches have since 

been developed to assess mechanical behavior of materials at all relevant scales 

while retaining accuracy of the individual approaches at each scale (Jebahi et al., 

2016; Zeng and Qin, 2018). From all developed multiscale approaches, the 

concurrent continnum-continnm multiscale methods are very few. Most of the 

concurrent models in the literature are coupling of atomicity and countinnum models 

(Fish, 2010; Yamashita et al.,2016). Thus, the motivation for the adoption of the 

concurrent continnum-continnm multiscale model in this work. 

 

1.2 Background of the Problem 

The academic interest in the adoption of multiscale methods for solving 

physics and engineering problems has been on the increase. This ramped interest had 

been inspired by factors such as the complex and ‘multiscale’ nature of many 

application problems across wide spheres of knowledge, the breakthroughs, and 

rapid appreciations in computing science, and essentially the imperative accuracy 

and efficiency that highly detailed multiscale and multi-physics problems require. It 

is usually too exorbitant to compute on the tiniest scale problems that integrate a 

wide range of scales in the coefficients or solutions. This is without regard to when 

sophisticated super-computers are deployed. This is largely due to the many 

unknowns inherent in finest scales, especially if what is of interest are relatively 

longer lengths and time scales. 



 

3 

Computing on a coarser scale, however, exclusively, may tend towards 

inaccuracy, as finest scale properties usually seriously impinge on coarse-scale 

behaviours. Moreover, the case had always been that the coarse-scale properties and 

guiding equations lack proper definition. It is worthy of note that existing multiscale 

methods are a hybrid of fine-scale and coarse-scale computational techniques aimed 

at efficiently resolving the most important fine-scale data without the need for a 

recourse to direct computation usually associated with global fine-scale problems. 

As encapsulated in Car and Parrinello (1985), Zhang et al. (1999), and Li and 

Weinan (2005), the foregoing has application in solid mechanics where the coarse-

scale (macroscopic) continuum theory conflates molecular dynamics on the fine-

scale (microscopic) to achieve accuracy in the appreciation of macroscopic 

properties of materials. It also has application in computational fluid dynamics where 

hydrodynamics and kinetic models, which are respectively on coarse-scale and fine-

scale, are integrated to capture the allocation of shocks (Le Tallec and Mallinger, 

1997; Schwartzentruber and Boyd, 2006). Multiscale methods equally have 

application in the critical study of turbulent flow (Pal and Ganesan, 2015) and nano 

materials (Liu et al., 2004). Flow in porous media is another important application 

area for multiscale methods.  

1.3 Statement of the Problem 

Over the years, there have been satisfactory results associated with the 

adoption of the adaptive finite element method (AFEM) and finite volume method 

(FVM) is offering a panacea to various kinds of problems that exhibit rapid changes 

or sharp fronts or wiggles in their numerical solutions (high gradient problems). 

However, hybridizing the AFEM and finite volume (AFEM/FVM) methods allows 

the creation of multiscale models that afford the employment of different material 

models at different levels in different subdomains of the same system. While some 

parts allow for the adoption of the FV model, AFEM, on the premise of the 

continuum mechanics model, can be used in other parts. The FVM is ultimately 

suitable for modelling materials with the tendency for discontinuities and failure, 
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mostly typified by fracture, shocks, inter alia (Fallah et al., 2000). The AFEM, on the 

other hand, is usually involved linear and nonlinear continuous material behaviour in 

solving high gradient problems. 

However, this work aims at treating FVM and AFEM as complementary 

methods in a bid to optimize the advantages of each method. This will have utility in 

high gradient problems, where numerical errors are inevitable with sudden 

modifications in numerical solutions.  The study is desired to obtain and optimize the 

hybridized properties of AFEM and FVM. Also, to refine high gradient zones locally 

to enhance potential solutions' accuracy, thereby developing a numerical model that 

requires less computational cost and time. The research will ultimately clarify the 

following questions: 

1. How can the advantages of both AFEM and FVM be optimized? 

2. How can multiscale hybridization of AFEM and FVM be achieved?  

3. How can the solution accuracy in the newly proposed multiscale hybrid 

method be improved? 

4. Where and how can the newly proposed multiscale hybrid technique be 

applied? 

5. How can the speed of the new multiscale hybrid technique be optimized? 

1.4 The Study Objectives 

The ultimate objective is to conflate the adaptive finite element method with 

the finite volume method to afford enhanced solutions to high gradient problems.  

The following are the main objectives to achieve the goal: 

1. To develop an adaptive finite element method (AFEM).  

 

2. To develop a coupled AFEM and finite volume method (FVM).  

 

3. To compare the numerical results of the models with existing analytical 

solutions.  
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1.5 Scope of the Study 

Several collections of hybrid techniques exist in literature; however, this 

work focuses on the coupling of p-adaptive finite element (p-AFEM) method and 

finite volume method to produce a multiscale hybrid technique with improved 

accuracy and efficiency. The formulation and application of the anticipated new 

technique are restricted to regular high gradient problems in two-dimension. The 

tools used to compute the numerical results are codes written in OCTAVE and 

MAPLE programming languages. 

1.6 Significance of the Study 

In most of the previous studies, the sequential continuum-continuum 

multiscale models were considered chiefly. This has created a wide gap in the study 

of the concurrent continuum-continuum models. In order to bridge the gap, this work 

is based on coupling a concurrent continuum-continuum multiscale model. The 

coupling of two continuum methods, the Lagrange method (AFEM) and the Eulerian 

method (FVM), is considered. The work is premised on the accuracy of AFEM and 

the speed of FVM to develop an improved mathematical model and algorithm. The 

proposed hybrid technique, envisaged as the research outcome, can produce higher 

precision results, and require less time for numerical operations. This makes it a 

veritable technique for solving large domain size and deformations problems.  The 

acquired results equally have practical applications in studying high gradient 

problems in both engineering and mathematical fields. In addition, the outcomes can 

stimulate new gaps that can be leveraged upon for further research in related areas. 

1.7 The Thesis Layout 

The work consist of six chapters and the chapters are structured as follows: 

The background of the problem is introduced in chapter 1, followed by the problem 

statement and the study objectives. Also, analysis is done on the study scope and 

significance. Finally, the layout of the thesis is established.  
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Chapter 2 provides a comprehensive review of earlier studies on FE 

technique, FV technique, multiscale techniques, multiscale FE techniques, multiscale 

FV techniques, hybrid multiscale FE/FV technique, adaptive techniques, Runge-

Kutta methods, high gradient boundary value problems, the intricate reasons for 

coupling and the research gap.  

In Chapter 3, the finite element method and the finite volume methods are 

designed. The validation techniques and robust residual error analysis theorem based 

on matrix condition numbers are discussed.  

Chapter 4 is based on the development of the 𝑝-adaptive finite element 

method (𝑝-AFEM), time-dependent FEM, 𝑝-adaptive finite element method error 

analysis and the numerical validation of the techniques.  

In Chapter 5, a proposed numerical technique hinged on the coupling of  𝑝-

AFEM and finite volume method is designed. The formulation of error analysis for 

the new technique is included. The efficiency and feasibility of the proposed new 

technique are validated with high gradient problems having accessible analytical 

solutions. The new method is finally applied to two standard high gradient problems 

and two engineering problems namely the electrostatic and torsion problems. 

Lastly, in Chapter 6, the conclusions are drawn, and recommendations for 

future research are illustrated. 
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