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ABSTRACT 

 

 

Quantum ESPRESSO (QE) is a computer simulation package based on Density 

Functional Theory (DFT) for calculating electronic and structural properties of a 

material at ground state, which gives an excellent balance of accuracy and 

computational cost. For a macromolecular system with a large number of atoms, it 

takes several hours to execute even a simple calculation. The integration of parallel 

library has made the package compatible to distributes work on many processors 

through the use of MPI. The computational cost is still challenging as single computer 

have a limited number of processors. A parallel computing environment of multi-nodes 

computing system called MPI Cluster is set up on a Linux Operating System to 

minimize the cost by providing more processors for parallelism. This dissertation 

investigation evaluates the performance of QE on the multi-node cluster system called 

MPI-Cluster. We distribute various k-points sampling workload over different MPI 

processors, to measure the speedup and scalability our multi-note cluster system. The 

result suggests that the improvement to scaling of speedup over many processors is 

limited only if the number of k-point to parallelize is greater than the number of 

processors. We also found the limit of speedup for parallelization of bands calculation 

is partially independent of the number of bands used and is linearly decreases as the 

number of MPI processors increased. 
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ABSTRAK 

Quantum ESPRESSO (QE) adalah pakej simulasi komputer berdasarkan teori 

fungsian ketumpatan (DFT) untuk mengira sifat-sifat elektronik dan struktur sesuatu 

bahan pada keadaan dasar, yang memberikan keseimbangan ketepatan dan kos 

komputasi yang sangat baik. Untuk sistem makromolekul dengan sejumlah besar 

atom, diperlukan beberapa jam untuk melaksanakan pengiraan yang mudah. 

Penyepaduan perpustakaan selari telah menjadikan pakej itu serasi untuk mengedarkan 

kerja pada banyak pemproses melalui penggunaan MPI. Kos pengiraan masih 

mencabar kerana komputer tunggal mempunyai bilangan pemproses terhad. 

Persekitaran pengkomputeran selari sistem pengkomputeran pelbagai nod yang 

dipanggil MPI-Cluster ditubuhkan pada Sistem Operasi Linux untuk meminimumkan 

kos dengan menyediakan lebih banyak pemproses bagi parallelism. Siasatan disertasi 

ini menilai prestasi QE pada sistem kluster multi-node yang dipanggil MPI-Cluster. 

Kami juga telah mengagihkan pelbagai beban kerja pensampelan k-mata ke atas teras 

yang berbeza, untuk mengukur kelajuan dan skalabiliti sistem cluster multi-note kami. 

Hasilnya menunjukkan bahawa penambahbaikan untuk mempercepatkan kelajuan 

lebih banyak pemproses hanya terhad jika bilangan k-point untuk dipasangkan adalah 

lebih besar dari jumlah pemproses. Kami juga mendapati had laju kepantasan untuk 

pengkompilasi pengiraan band sebahagiannya tidak bergantung kepada bilangan band 

yang digunakan dan ia berkurangan kerana bilangan teras meningkat. 
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INTRODUCTION 

1.1 Research Background 

Nowadays computers have become an integral part of computational science 

to solve numerical problems. For problems which may not be easily solved 

analytically, computers and numerical method are of crucial importance. The field of 

computational chemistry deals mainly with calculation such as determination of 

energies, charge distribution, electronics and magnetic properties of compound or 

material. Its aim is to explain the molecular and electronics process observed in an 

experiment in order to predict them. 

  The emergence of Density functional theory (DFT) [1] in 1968 has been a 

great achievement that contributed significantly in theoretical studies of electronic and 

structural properties of a material. It is an approach to describe the quantum behaviour 

of the atom in setting up a practical value. It is a well-established quantum mechanical 

method for electronic calculations for molecules. Principally, in electronic structure 

calculations, a molecular system is described by a set of functions that depend on the 

set of coordinates of all the particles in the system. This set of function is known as a 

wave function in quantum mechanics.  The energy of the system is calculated from the 

wave function through quantum mechanical operations and from the solution of these 

wave functions. The complex nature of the wave function makes the evaluation of the 

full system very complex and highly computationally expensive even for the simplest 

molecules. The Hohenberg-Kohn [2] formalism of DFT approximates this ab-initio 

approach and proposes electronics density instead of electronics coordinates wave 

function. Electronic structure calculations were one of the main areas of application in 

high-performance computing (HPC) for the last decades. Over the past years, this 

method has rapidly grown as the cutting edge of the quantum mechanical theory that 

has been used by a large number of researchers in material science and other 
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disciplines.  While the methods used for these calculations have changed, the approach 

adopted by Car-Parrinello in 1985 [3] was one of the most common to be used. The 

Car-Parrinello method is a type of molecular dynamics, usually employing periodic 

boundary conditions, plane-wave basis sets, and density functional theory. 

First-principles calculation within a framework of DFT is a renounced method 

for investigating material properties at the ground state. DFT in principle provides a 

true description of electronic behaviour and structural parameters at the atomic level 

of bulk material at ground states within some allowed approximation. The accuracy of 

calculation using the DFT approach is spanned within an error limit of 10-3 eV [4].  

As a result of the extensive applications of DFT in studying electronic 

properties of a material, hundreds of computational software packages for material 

modelling and simulation arose among them is Quantum ESPRESSO (QE) [5]. It is a 

free, open-source software suite available under the GNU (General Public License). It 

is an embedded suite of computer code written primarily in Fortran for the calculation 

of electronics-structure and material modelling.  

The suite is designed to operate on different kind of computer architectures and 

is equipped with various layers of mathematical libraries [6]. The code is able to run 

in series and in parallel, targeting multi-core operation systems through the multi-

threaded parallel libraries such as BLAS or LAPACK [7] distributed using the 

Message Passing Interface (MPI) [8] 

1.2 Message Passing Interface (MPI) 

There is a computational demand from many sectors of research for greater 

computational speed from a computer system than is currently possible [9]. There are 

some specific applications like high energy simulation, engineering calculations, 

material science and simulations, which must be performed quickly. High-speed 

systems are greatly needed in these areas. One way to increase computational speed is 

to use multiple processors to solve a problem. The problem is split into parts, each of 
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which is performed by a separate processor in parallel. When the multiple processors 

work in parallel they need an interface by which they can communicate. The MPI is a 

library used by multiple processors to send messages back and forth using send and 

receive commands. This approach provides a significant increase in performance. 

MPI’s goals are performance, scalability and portability. These features make 

MPI the most dominant model used in high-performance computing today. It has 

become the de facto standard for communication between different processors both for 

shared memory and distributed memory.  

1.3 Problem Statement  

One of the major challenges of theoretical studies for materials using material 

simulation software packages is computational time consumption. The complex nature 

of simulating some material has led to computational time to remain very high which 

pose a great challenge in computational condensed matter. Therefore, there is a 

growing demand for much more efficient implementations of DFT. Parallel computing 

involves the use of multiple processors (cores) of central processing units (CPU) of a 

computer to minimize these challenges. Researchers have been using parallel 

computing for several years when working on a computationally difficult task such as 

simulation in high energy physics and bulk materials. The challenges still continue as 

every computer have a limited number of processors that will available to contribute 

to parallel computing. A large complex problem requires hundreds or even thousands 

of processing hour to solve one problem and which is not feasible to achieve in an 

ordinary computer. As such, the use of an interconnected set of computers called 

Cluster emerges which allows simultaneous use of many computer processors to solve 

one computational problem. Clustered computers are specifically designed to take a 

large set of data and divide them into component parts and distribute them across the 

system entire processors thereby allowing the Cluster’s individual node to process 

their unique task and finally collect them in their entirety.  
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 QE suite is fitted with parallelism libraries code that enables it to split work 

into chunks of data or workload and distribute it across multiple processors of the 

system thereby minimizing the computational cost. In this work, we established a 

computational environment on a Linux operating system called MPI Cluster, where 

QE is being configured to use any number of processing resources available. The main 

aim of this dissertation will not improve a scientific code, but to investigate the 

distribution of parallelism over a locally connected cluster. We will investigate the 

parallel scalability of QE over MPI-Cluster for performing ground state total energy 

calculation; which is particularly important as often the total energy calculation needs 

to be performed many times during the geometry optimization of the atomic and 

electronic structure.  

1.4 Research Objectives  

(a) To evaluate the parallel computational performance of Linux multi-node 

cluster system for simulation of a material based base on DFT approach. 

(b) To evaluate the effect of parallelism on DFT ground state energy calculations 

for computing Self-Consistency Field (SCF) and bands. 

(c) To analyze parallel performance (speed-up) and scalability of the application 

of Quantum ESPRESSO simulation package on a Linux multi-node cluster 

system. 

 

1.5 Scope of the Research  

In this research, a high-performance computing multi-node cluster system is 

established on the Linux Operation system using LAN wireless communication. QE 

being the simulation package used for this work, is configure to share common 

computer processors of the cluster system. The following approach is adopted to 

achieve our objective. 
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(i) An MPI cluster of 5 computers with a total of 44 cores (mpi processors) 

is set up on a Linux operating system.  

(ii) QE is installed to use the available computer processors of the cluster. 

 

1.6 Thesis outline 

Chapter 1, discussed the background of research, problem statement and scope 

of the study. Chapter 2 provide the basic theory and mathematical background of 

quantum mechanics that explained concepts of DFT and some overview of previous 

work done on topological insulators. The current parallelisation level of QE is briefly 

described and the basic concept of cluster computing is also introduced in Chapter 2. 

Chapter 3 present the basic steps for establishing MPI Cluster, computational details 

and method adopted. Performance of QE in MPI Cluster has been evaluated and 

presented in Chapter 4. The result for parallelization strategy over k-points and bands 

is presented in Chapter 4 and finally, the performance tests Result for scalability and 

speedup of QE over MPI-Cluster is also presented in Chapter 4. Chapter 5 summarizes 

the work and provides   outlook for future work. List of references and appendices are 

presented at the end of this thesis. 
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