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ABSTRACT 

One of the most critical issues encountered by polymeric membranes for gas 

separation process is the trade-off effect between gas permeability and selectivity. 

The aim of this work is to develop a simple yet effective coating technique to modify 

the surface properties of commonly used polysulfone (PSF) hollow fiber membranes 

to address the trade-off challenge on CO2/CH4 and O2/N2 separation issue. More 

specifically, the first objective of this work is to study the effects of different types of 

PSF hollow fiber support on the gas separation performance of surface-coated 

membranes by varying significant imperative parameters, i.e., air gap (1–4 cm), dope 

extrusion rate (1–2 mL/min), bore fluid rate (0.33–0.67 mL/min) and polymer 

concentration (15–35 wt.%). Results showed that the support membrane spun at 

highest air gap of 4 cm and lowest dope extrusion rate at 1 mL/min were ideal for the 

coated membrane preparation owing to its good structural integrity that could 

produce a membrane with optimum balance composition for gas permeance and 

selectivity. The findings also revealed that the support membrane made of 25 wt.% 

PSF was the best for single layer coating and the membrane coated with polyether 

block amide (Pebax) performed better in terms of selectivity than the membrane 

coated with polydimethylsiloxane (PDMS) because Pebax solution tended to form 

denser layer as a result of its higher solution viscosity. However, the Pebax solution 

is prone to penetrate into the pores of support membrane, and thus lowering its 

permeability. Due to this, the second objective of this work is to investigate the 

efficiency of multilayer coating technique by forming Pebax (1–9 wt%) as selective 

outer layer and PDMS (3 wt%) as gutter layer on the PSF membrane surface. Results 

indicated that the optimized multilayer coated membrane at 3 wt% Pebax could 

achieve CO2/CH4 and O2/N2 selectivity of 35.19 and 6.56, respectively. As a 

comparison, the membrane coated with 1 wt% Pebax only showed 29.47 and 6.07, 

respectively. To further enhance the performance of multilayer coated membrane, the 

third objective of this work is to evaluate the impacts of graphene oxide (GO) 

loading from 0–1.0 wt% on the Pebax selective layer on the membrane performance. 

Experimental findings revealed that incorporating 0.8 wt% GO into the composites 

could further improve membrane performance, achieving selectivity as high as 52.57 

and 8.05 for CO2/CH4 and O2/N2, respectively. This is due to formation of improved 

tortuous structure that created higher resistance to larger gas molecules (CH4 and N2) 

compared to smaller gas molecules (CO2 and O2). In conclusion, it can be said that 

the newly developed multilayer coating technique that combines polymeric materials 

and nanofillers could overcome the drawbacks of typical PSF membranes, producing 

a multilayer composite hollow fiber membrane with improved surface properties for 

gas separation. 
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ABSTRAK 

Salah satu isu yang kritikal yang dihadapi oleh membran polimer untuk 

proses pemisahan gas adalah tidak keseimbangan di antara kebolehtelapan dan 

pemilihan gas. Tujuan kerja ini adalah untuk menghasilkan teknik salutan yang 

mudah lagi berkesan untuk mengubahsuai ciri permukaan membran gentian 

berongga polisulfon (PSF) untuk mengatasi ketidak keseimbangan pemisahan gas 

CO2/CH4 dan O2/N2. Untuk lebih terperinci, objektif pertama kerja ini adalah untuk 

mengkaji kesan kepelbagaian membran gentian berongga PSF yang dijadikan 

sebagai sokongan bagi proses salutan dengan mempelbagaikan beberapa parameter 

penting seperti sela udara (1–4 cm), kadar penyemperitan dop (1–2 mL/min), kadar 

cecair penggerek (0.33–0.67 mL/min) dan kepekatan polimer (15–35 wt%). Hasil 

eksperimen menunjukkan bahawa membran sokongan yang dipintal pada sela udara 

yang tinggi pada 4 cm dan kadar penyemperitan dop yang rendah  pada 1 mL/min 

didapati sesuai untuk proses salutan kerana memiliki kekuatan stuktur yang bagus 

yang mempunyai keseimbangan komposisi yang optima bagi kebolehtelapan dan 

pemilihan gas yang baik. Hasil kajian juga menunjukkan membran sokongan yang 

dihasilkan dari 25 wt% PSF adalah paling bagus untuk digunakan bagi proses satu 

lapisan salutan dan membran yang disaluti dengan polieter blok amida (Pebax) 

menunjukkan prestasi yang lebih baik dari segi pemilihan gas berbanding membran 

yang disaluti oleh poli-dimetil-siloksana (PDMS) kerana cairan Pebax 

berkecenderungan untuk menghasilkan lapisan yang lebih padat. Namun begitu, 

larutan Pebax yang kerap memasuki liang membran sokongan menjadikan 

kebolehtelapan gas menurun. Dalam pandangan ini, objektif kedua kerja ini adalah 

untuk mengkaji kecekapan teknik salutan lapisan pelbagai dengan menggunakan 

Pebax (1–9 wt%) sebagai lapisan pemilih luaran dan PDMS (3 wt%) sebagai lapisan 

tengah ke atas permukaan membran PSF. Keputusan analisis menunjukkan membran 

salutan pelbagai pada 3 wt% Pebax dapat mencapai pemilihan gas CO2/CH4 dan 

O2/N2 secara optimum masing-masing 35.19 dan 6.56. Sebagai bandingan, salutan 

membran 1 wt% Pebax masing-masing hanya menunjukkan 29.47 dan 6.07. Bagi 

menaikkan lagi prestasi membran salutan pelbagai, objektif ketiga kerja ini adalah 

untuk menilai impak muatan grafena oksida (GO) pada 0.0–1.0 wt% dalam lapisan 

pemilih Pebax ke atas prestasi membran. Penemuan kajian mendedahkan bahawa 

gabungan 0.8 wt% GO ke dalam membran dapat menaikkan lagi prestasi membran, 

mencapai pemilihan gas masing-masing yang setinggi 52.57 dan 8.05 bagi CO2/CH4 

dan O2/N2,. Ini oleh kerana pembentukan struktur liang berliku yang memberikan 

rintangan tinggi kepada molekul gas yang lebih besar (CH4 dan N2) berbanding 

molekul gas yang lebih kecil (CO2 dan O2). Kesimpulannya, penghasilan teknik 

salutan lapisan pelbagai baru dengan cairan salutan dan pengisian-nano yang sesuai 

dapat mengatasi kelemahan teknik salutan konvensional bagi pengubahsuaian 

permukaan membran, menghasilkan membrane gentian berongga dengan ciri 

permukaan yang ditambah baik untuk pemisahan gas. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Gas separation is an important unit operation employed widely in different 

sectors. Its industrial applications include carbon dioxide (CO2) capture, 

CO2/methane (CH4) separation and hydrogen enrichment. Gas separation is also used 

in medical field to produce oxygen (O2)-enriched gas from the ambient air. In recent 

years, membrane-based gas separation processes have been the subject of 

considerable research and have attracted the interest of industry, which is always 

looking for a new technology that is less invasive in terms of environment impact 

and efficient from an economic point of view (Ahmed et al., 2020). In the last 40 

years, the use of membranes in separation process has grown very rapid due to its 

inherent advantages in comparison to the traditional methods such as cryogenic 

distillation and adsorbent (Javaid, 2005; Baker, 2012; Kargari et al., 2020). 

Polymeric membrane offers energy efficient with low capital cost, flexible 

process, ease of scale up and high efficient of raw material. Various polymers have 

been used as based material, mixing and coating altogether to achieve desired need 

of gas separation including polyether sulfone (PES), polyvinylidene fluoride 

(PVDF), polyvinyl chloride (PVC) and polysulfone (PSF). These polymers are 

known for their toughness and stability at relatively high temperatures. However, 

polymeric membranes are limited by the trade-off between selectivity and 

permeability and very few have been found to exceed the Robeson upper bound for 

gas separation (Robeson, 2008; Bryan et al., 2014).  

To improve polymeric membrane performance, a considerable research effort 

has been put in to modify membrane surface properties through blending with 

secondary polymers such as polyvinylpyrrolidone (PVP), polyaniline (PANI) and 
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polyethylene glycol (PEG) (Kajekar et al., 2015; Ovcharova et al., 2017), 

incorporation with inorganic nanoparticles such as zeolite and silica (Wahab et al., 

2012; Zulhairun et al., 2017), UV-assisted graft polymerization (Xueli et al., 2013), 

plasma-to-induced graft polymerization (Chittrakarn et al., 2016), surface coating 

using polymeric materials (Liu et al., 2004a; Liu et al., 2004b; Suleman et al., 2016), 

etc. 

Of these modification methods, surface coating is considered the easiest one 

to be carried out. This method uses secondary polymer (usually different from the 

support membrane) to improve membrane gas separation performance without 

affecting the structural integrity. The coating layer aims to seal not only the pinholes 

(defects) on the surface of skin layer, but also help improving gas pair selectivity 

(Ismail et al., 1999; Ng et al., 2004). Polydimethylsiloxane (PDMS) and polyether 

block amide (Pebax) materials are two polymers that have been used widely as in the 

coating solution as their ability in handling gas separation process. Although single-

layer coated membranes were reported to perform better than the uncoated 

membrane, studies had shown that using two different materials to form dual-layer 

coated membrane could outperform single-layer coated membrane as it combines the 

positive features of two different materials (Chen et al., 2014; Wang et al., 2014a).  

To fabricate multilayer membrane, gutter layer is first established on the 

membrane surface to provide a smooth and defect-free surface before a selective 

layer coating solution is used. Gutter layer is also important to reduce the possible 

penetration of the selective layer coating solution into the porous support layer (Dai 

et al., 2016a). PDMS is suitable used for gutter layer as it is highly permeable, 

smooth and had potential to prevent the diluted polymer solution from penetrating 

into the porous structure which tends to block the pores. Compared to poly-1-

trimethylsilyl-1-propynel (PTMSP), PDMS with a unique flexible siloxane backbone 

is favourable as a gutter layer as it experiences slower performance loss than PTMSP 

(Chen et al., 2014).  
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With respect to selective layer, the unique structure of Pebax that consists of 

both crystal polyamide (glassy polymer) and amorphous polyether (rubbery polymer) 

is able to provide a balancing increase in both permeability and selectivity (Wang et 

al., 2014a; Wang et al., 2014b; Ren et al., 2012; Ahmadpour et al., 2014). However, 

it must be pointed out that the membrane made of pure Pebax has technical 

challenges as it suffers from low mechanical strength that prevents it from being 

used. Therefore, Pebax can only be considered as coating material to modify 

membrane properties. 

The properties of selective layer are reported to be further improved upon 

incorporation of inorganic nanomaterials. Zulhairun et al. (2015), for instance, 

introduced metal organic framework (MOF) - Cu3(BTC)2 into polydimethysiloxane 

(PDMS) coating solution and reported that the hybrid coating layer improved the 

CO2 permeance of PDMS-coated membrane (without Cu3(BTC)2 incorporation) by 

28.6%, leading to increase in CO2/CH4 and CO2/N2 selectivities from 28.06 to 30.46 

and from 31.34 to 33.40, respectively. The improved membrane performance was 

explained by the fact that Cu3(BTC)2 showed higher affinity towards CO2 due to the 

coordinatively unsaturated copper sites in its crystal network. This provided 

exceptionally high adsorptive capability for polar molecules, resulting in the increase 

of gas permeance and selectivities.  

In addition, Liang et al. (2018) reported that when beta-cyclodextrin (β-

CD)/polymers of intrinsic microporosity (PIMs) coating solution was applied on the 

PDMS-coated membrane surface, the resultant multilayer coated membrane was able 

to increase the N2, O2 and CO2 permeance of the membrane (without β-CD 

incorporation) by 53.4%, 63.9% and 66.8%, respectively. In addition, the presence of 

β-CD in the PIMs layer was reported to enhance the selectivity of O2/N2 and CO2/N2 

of membrane by 9.4% and 8.8%, respectively. The authors elucidated that the 

incorporation of three dimensional β-CD into the main polymer chains of PIM had 

created more micro-pore volumes or free fraction volume (FFV) which increased 

CO2 sorption capacity. 
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In view of this, the aim of this work is to develop a multilayer coating 

technique that is suitable to fabricate hollow fiber membrane with nanofillers 

incorporated into its selective layer for enhanced gas separation. Graphene Oxide 

(GO) nanosheet was selected in this work as it has been previously demonstrated to 

improve the gas separation performance of mixed matrix membrane (MMM) (Dai et 

al., 2016b; Jamil et al., 2019).  

1.2 Problem Statement 

Membrane-based gas separation is becoming increasingly popular due to its 

inherent advantages over the traditional methods such as cryogenics distillation and 

adsorbent bed processes. Although the commercial PSF is widely used in producing 

membrane for industrial gas separation, it still suffers from trade-off relationship 

between permeability and perm-selectivity (Robeson, 2008). Thus, such polymeric 

membrane needs to be modified in order to increase its affinity against gas 

permeance.  

A conventional anisotropic polymeric membrane with dense skin layer can 

offer a reasonably good gas pair selectivity, but the properties of dense layer (e.g., 

thickness, density, porosity, etc.) are difficult to be precisely controlled via phase 

inversion technique. Hence, surface coating using a secondary polymer has been 

employed to solve this issue. This approach can develop a thinner dense layer made 

of different polymers on the surface of microporous PSF substrate, but the 

performance of the thin layer is still governed by the characteristics of the PSF 

substrate. In view of this, an optimization on both the PSF substrate properties and 

coating conditions is required in order to achieve desired outcomes.  

Among the surface coating techniques that are used for the membrane surface 

modification, dip-coating method using PDMS solution is widely performed owing 

to its simplicity and low manufacturing cost. However, it must be pointed out that 

PDMS is mainly used to seal the defects on the membrane surface and does not 

really improve gas pair selectivity. Compared to PDMS, Pebax is a much better 
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candidate as a selective layer to improve both membrane permeance and selectivity 

due to its unique structure that consists of both crystal polyamide (glassy polymer) 

and amorphous polyether (rubbery polymer). The presence of both glassy and rubber 

polymers tends to increase the membrane permeability and selectivity 

simultaneously. 

Although the membranes coated with single polymer are always performing 

better compared to the uncoated membrane, these coated membranes are still not able 

to exceed the Robeson upper bound theory. Thus, two steps coating process using 

two different materials are found to be effective as it combines the positive features 

of each material used. Furthermore, single coating using Pebax always has tendency 

to penetrate into porous support layer and reduce the efficiency of the composite 

membrane. Thus, PDMS as gutter layer is needed to avoid the phenomenon. 

Previously, Wang et al. (2014a) applied multilayer coating on polyacrylonitrile 

(PAN) flat sheet membrane and reported that the membrane permeance and 

selectivity were higher compared to single layer coating. Furthermore, by applying 

two-step coating approach, one can ensure the defects on substrate hollow fiber 

membrane to be completely sealed before a highly selective layer is coated on the 

membrane surface. 

Currently, the typical polymeric membranes are suffered from permeability-

selectivity trade-off effect and one strategy that can be adopted to address the issue is 

by introducing inorganic nanofillers into the membrane matrix. Inorganic membranes 

though are reported to exhibit much better selectivities than those of polymeric 

membranes, its high manufacturing cost remains a main concern to many. Besides, 

inorganic membrane exhibits significantly lower packing density (m
2
/m

3
) compared 

to the polymeric membrane, particularly in hollow fiber configuration. Thus, in order 

to take the unique advantages of inorganic materials, the incorporation of inorganic 

nanofiller into polymeric membrane matrix is one of the current main research 

focuses for the membrane development (Qin and Chung, 2004; Zulhairun et al., 

2014a; Zulhairun et al., 2014b; Kiadehi et al., 2015).  
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One of the popular nanofillers reported in the literature and suitable for 

membrane gas separation process is GO nanosheet. GO nanosheet is selected in this 

work as it was previously demonstrated to have positive roles in improving the gas 

separation performance of MMM (Dai et al., 2016b; Jamil et al., 2019). However, 

this high-performance 2D nanomaterial is quite expensive. Thus, a new approach is 

required in order to minimize the usage of GO during membrane fabrication. Instead 

of adding large amount of GO directly into dope solution to form MMM, only a very 

small amount of GO is required for the coating solution that is used to form a thin 

layer on top of the membrane surface. This approach is workable as GO generally 

exhibits good compatibility with the coating solution. On the other hand, the 

presence of GO on the membrane surface is expected to show enhanced performance 

as the membrane gas pair selectivity is mainly governed by the skin layer rather than 

the entire membrane structure. 

1.3 Research Objectives 

The aim of this research is to develop a new multilayer coating technique that 

is practical for the surface modification of hollow fiber membrane for enhanced gas 

separation of CO2/CH4 and O2/N2. More specifically, the objectives of this work are: 

1. To investigate the effects of dry-jet wet spinning conditions and polysulfone 

(PSF) concentration in the dope solution on the properties of hollow fiber 

membranes that are suitable to be used as support for surface coating process.  

2. To determine the impacts of different coating solutions and coating 

approaches on the surface properties of hollow fiber membranes for CO2/CH4 

and O2/N2 separation. 

3. To evaluate the impacts of graphene oxide (GO) loading in the coating layer 

of hollow fiber membrane for gas separation and its prolonged stability 

performance. 
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1.4 Scope of Study 

The following scopes of study are identified in order to achieve the three 

main objectives as stated in previous sub-section: 

Objective 1: 

(a) Preparing dope solution composed of 30 wt% polysulfone (PSF), 30 wt% 

dimethylacetamide (DMAc) (as non-volatile solvent), 30 wt% 

tetrahydrofuran (THF) (as volatile solvent) and 10 wt% ethanol.  

(b) Investigating the effects of spinning parameter of dry-wet spinning technique 

using prepared dope solution by varying air gap (1 cm or 4 cm), bore fluid 

rate (0.33 mL/min or 0.67 mL/min) and dope extrusion rate (1 mL/min or 2 

mL/min). 

(c) Preparing two different coating solutions by dissolving 3 wt% PDMS in 97 

wt% n-hexane and 3 wt% Pebax in the 97 wt% ethanol/water mixture (70/30 

in weight ratio).  

(d) Coating PSF support with different polymeric materials (10 min for PDMS 

and 3 s for Pebax) using dip-coating method. 

(e) Investigating the effects of polymer concentration (15, 20, 25 and 35 wt%) on 

the properties of PSF substrates.  

(f) Evaluating the effect of coating materials on fabricated composite membrane 

performance in terms of permeance and selectivity of four gases (CO2, CH4, 

O2 and N2) through gas permeation test at 5 bar and at room temperature. 

(g) Characterizing the produced membrane properties with respect to porosity, 

surface and cross-section structure (using scanning electron microscope 

(SEM)) and elemental composition (using energy dispersive X-ray (EDX) 

spectroscope). 

Objective 2: 

(a) Fabricating the PSF hollow fiber support membrane (via dry-wet spinning 

technique using the best parameters obtained from objective 1. 
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(b) Preparing two different coating solutions, (i) 3 wt% PDMS dissolved in 97 

wt% n-hexane and (ii) 3 wt% Pebax dissolved in 70/30 (v/v) ethanol/water.  

(c) Forming multilayer coating layer on the outer surface of PSF membrane 

using PDMS solution as the gutter layer followed by Pebax solution as the 

selective layer. 

(d) Optimizing the properties of Pebax selective layer by varying its 

concentration in the range of 1–9 wt%. 

(e) Evaluating the effect of coating materials on fabricated composite membrane 

performance in terms of permeance and selectivity of four gases (CO2, CH4, 

O2 and N2) at 5 bar and at room temperature. 

(f) Characterizing the produced membranes using field emission scanning 

electron microscope (FESEM) and EDX and infrared spectroscopy 

(FTIR/ATR). 

Objective 3: 

(a) Synthesizing GO using the modified Hummers‘ method. 

(b) Characterizing GO using transmission electron microscope (TEM) and X-ray 

diffraction (XRD).  

(c) Preparing hybrid Pebax coating solution by adding different amount of GO 

nanoparticles (0.1–1.0 wt%) into the optimized Pebax solution (3 wt% 

obtained from Objective 2). 

(d) Applying multilayer coating method on the best performing PSF substrate 

using PDMS as the gutter layer and hybrid GO/Pebax as the selective layer. 

(e) Evaluating the effect of coating materials on fabricated composite membrane 

performance for gas separation at 5 bar. 

(f) Investigating the plasticization behaviour of optimized multilayer coated 

membrane at different feed pressure (1 to 9 bar) at constant temperature (T: 

25ºC).  

(g) Investigating prolonged performance stability of optimized multilayer coated 

membrane for up to 3000 min at 5 bar. 

(h) Characterizing the multilayer coated membranes using FESEM, FTIR, X-ray 

photoelectron spectroscope (XPS) and atomic force microscope (AFM). 
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1.5 Significance of Study 

Anisotropic polymeric membrane which consists of a thin skin layer (formed 

over a porous structure) has always been identified as a promising candidate to tackle 

the trade-off effect between selectivity and permeability in the pressure-driven 

membrane process. The significance of this study is the development of anisotropic 

polymeric membrane with thinner and highly selective skin layer using a simple and 

yet practical coating technique to enhance the existing performance of PSF hollow 

fiber membranes for possible adoption in industry. This research that employed two 

different polymeric coating solutions on the surface of fine-tuned hollow fiber 

support membrane is able to minimize not only the defects on the membrane surface 

(through gutter layer coating) but also to improve gas pair selectivity (through 

selective layer coating). Furthermore, incorporation of 2D nanofillers in the 

membrane selective layer could further enhance the membrane performance against 

CO2/CH4 and O2/N2 separation. The 2D GO nanosheet as reported in the literature 

has shown excellent properties in the membrane gas separation application when it 

was used for mixed matrix membrane fabrication. However, this work offers 

additional benefits as it could significantly reduce the quantity of GO used for 

membrane modification. The coating approach used in this work only disperses small 

GO amount into coating solution to develop hybrid selective layer on the hollow 

fiber membrane. Such multilayer coating approach is practical and feasible as the 

resultant multilayer coated hollow fiber composite membrane was reported to exhibit 

very stable enhanced gas separation performance during prolonged testing period. 

However, this study only focused on membrane performance towards gas permeation 

test without taking into account the possible impacts of operating temperature 

(especially high temperature) on the membrane surface chemistry and mechanical 

properties. Such parameter is worthy of further investigation in the future. 
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