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ABSTRACT 

Ceramic membrane offers high thermal, mechanical and chemical resistance. 

It also has been regarded as an alternative membrane for water separation application. 

In this study, a composite aluminium oxide/yttria-stabilized zirconia (Al2O3/YSZ) 

hollow fiber membrane was fabricated via the combined dry-wet phase inversion 

spinning method and sintering process. The findings had observed an asymmetrical 

membrane structure consisting of the finger-like voids and sponge-like voids. The 

addition of YSZ had improved the mechanical strength of the membrane produced 

despite the porous structure and thin wall thickness. The findings had concluded that 

the Al2O3/YSZ hollow fiber membrane prepared using the composite of 0.3 µm YSZ 

particle and sintered at 1350 oC (HF0.3-1350 membrane) was selected as the substrate 

for iron oxide (Fe2O3) deposition. This is due to the HF0.3-1350 measured to be having 

the highest water flux. Next, the deposition of Fe2O3 on the Al2O3/YSZ hollow fiber 

membrane was carried out using the hydrothermal process. The hydrothermal process 

is a facile process and the Fe2O3 particles can be simultaneously synthesized and 

deposited. For the application of an adsorptive membrane for lead (Pb) removal, the 

Fe2O3 particles were deposited onto the porous structure of the membrane. The 

performance showed high Pb (II) removal at pH 7, with fast removal within the first 

10 min of the filtration process and had reached the equilibrium at 60 min. Moreover, 

the kinetic isotherm of pristine, F005-24 and F02-24 membrane followed the pseudo-

second-order kinetics model. This study proved that the Fe2O3 deposition played an 

indispensable role in improving the adsorption capability of the pristine membrane 

towards Pb (II) ions. For the application of oil emulsion separation, the Fe2O3 particles 

were deposited on the outer surface of the Al2O3/YSZ hollow fiber membrane. Then, 

depositing at the hydrothermal concentration above 0.2 M, Fe2O3 layer was formed. 

The findings have shown that the Fe2O3 layer gave increment to the water flux and oil 

rejection of the membrane.  Then, the property of Fe2O3 itself as a photocatalyst gave 

other functionalities of the membrane for the photocatalytic process. Therein, the 

stimulated photo-induced separation system was operated for the Fe2O3 supported 

Al2O3/YSZ hollow fiber membrane to highlight the self-cleaning mechanism of the 

membrane. The finding recorded was that the flux and oil rejection increases with the 

light assisted throughout the separation process. Lastly, the polymer coating of UV 

curable resin (UVR) on the outer membrane surface had preserved the Fe2O3 layer 

from the delamination. The UVR layer formed had changed the surface properties of 

the membrane from hydrophilic to hydrophobic. The existence of the UVR layer had 

highlighted the potential of the hydrophobic UVR-coated ceramic hollow fiber 

membrane for water separation using the sweeping liquid filtration system. The F02-

UVR membrane was able to remove 94% of humic acid with a flux of 46.53 kg/m2.h. 

The outcome of this study was the multifunctional Fe2O3 supported Al2O3/YSZ hollow 

fiber adsorptive membrane can be used for the treatment of different water pollutant. 
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ABSTRAK 

Membran seramik telah menawarkan rintangan terma, mekanik dan kimia yang 

tinggi. Membran ini juga telah dianggap sebagai membran alternatif untuk aplikasi 

pemisahan air. Kajian ini membran gentian berongga alumina/yttria-stabil zirkonia 

(Al2O3/YSZ) komposit dibuat melalui gabungan teknik pemejaman kering-basah dan 

proses pensinteran. Pemerhatian terhadap hasil kajian mendapati membran yang 

terhasil mempunyai struktur yang terdiri dari lompang seperti jari dan lompang seperti 

span. Kajian juga mendapati campuran partikel YSZ telah berjaya meningkatkan 

kekuatan mekanikal membran walaupun struktur membran yang terhasil mempunyai 

ketebalan dinding yang nipis dan berongga. Hasil kajian merumuskan bahawa 

membran gentian berongga Al2O3/YSZ yang dihasilkan menggunakan campuran 

partikel YSZ bersaiz 0.3 µm dan disinter pada suhu 1350 oC (HF0.3-1350) telah dipilih 

untuk digunakan sebagai substrat untuk pemendapan ferik oksida (Fe2O3). Hal ini 

kerana membran HF0.3-1350 merekodkan fluks air yang paling tinggi. Seterusnya, 

pemendapan ferik oksida (Fe2O3) di atas membran gentian berongga Al2O3/YSZ 

dilakukan dengan menggunakan proses hidroterma. Proses ini mudah dan 

membolehkan penghasilan dan pemendapan partikel Fe2O3 dijalankan secara serentak. 

Untuk penggunaan membran sebagai membran penjerap untuk penyingkiran plumbum 

(Pb), partikel Fe2O3 dimendapkan di dalam membran gentian berongga Al2O3/YSZ. 

Prestasi membran mencatatkan penyingkiran Pb (II) yang tinggi dan cepat pada pH 7 

dalam masa 10 minit pertama proses pemisahan dan mencapai keseimbangan pada 

minit ke-60. Tambahan lagi, kinetik isoterma bagi membran kosong, membran F005-

24 dan membran F02-24 telah mengikuti model kinetik pseudo-tertib kedua. Kajian 

ini juga membuktikan bahawa pemendapan Fe2O3 memainkan peranan dalam 

meningkatkan kebolehupayaan membran kosong untuk proses penjerapan ion Pb (II). 

Untuk aplikasi membran bagi tujuan pemisahan emulsi minyak, partikel Fe2O3 telah 

dimendapkan di atas permukaan luar membran gentian berongga Al2O3/YSZ. Proses 

pemendapan menggunakan cecair hidroterma dengan kelikatan di atas 0.2 M telah 

menghasilkan lapisan Fe2O3. Hasil kajian mendapati kehadiran lapisan Fe2O3 telah 

meningkatkan fluks air dan penyingkiran minyak oleh membran. Kemudian, sifat 

partikel Fe2O3 sebagai fotomangkin telah memberikan fungsi baharu kepada membran 

untuk proses foto pemangkinan. Justeru, sistem pemisahan dengan rangsangan cahaya 

telah dikendalikan untuk membran gentian berongga Al2O3/YSZ yang menyokong 

Fe2O3 untuk menonjolkan fungsi kebolehan pembersihan-sendiri oleh membran. Hasil 

kajian menunjukkan peningkatan terhadap fluks dan penyingkiran minyak dengan 

kehadiran cahaya di sepanjang proses pemisahan berlaku. Akhir sekali, salutan 

polimer resin UV yang boleh diubah (UVR) di atas permukaan luar membran telah 

memelihara lapisan Fe2O3 daripada tanggal. Selain itu, lapisan UVR juga telah 

mengubah sifat membran daripada hidrofilik kepada hidrofobik. Kehadiran lapisan 

UVR telah menonjolkan keupayaan membran gentian berongga seramik hidrofobik 

untuk proses pemisahan air menggunakan sistem pemisahan sapuan cecair. Membran 

F02-UVR berjaya menyingkirkan 94% asid humik dengan jumlah fluks 46.53 kg/m2.h. 

Kajian mendapati penjerapan membran multifungsi Fe2O3 yang disokong di atas 

gentian berongga Al2O3/YSZ boleh digunakan untuk merawat pencemar air yang 

berbeza. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The global issue on the water scarcity is driven by the growth of the human 

population. The necessity and the increasing demand for high-quality water supply rise 

from the fact of the contaminated water caused by the human activities that are 

responsible for such a drastic decrease in water quality. Human activities such as in 

the industrial process, in the agricultural sector and daily activities with the improper 

disposal of waste material has been the major anthropogenic sources of the water 

contaminants. The contaminants such as heavy metal ions, organic compounds and 

natural organic compounds which having the excess into the food chains can cause to 

the waterborne illness. Hence, treating the contaminated water before safely channeled 

for consumption is primely important to protect environmental safety, aquatic life and 

human’s health from intoxication.  

Numbers of research study had introduced methods to treat the contaminated 

water that meets with the strict water quality standard. Such methods are the 

adsorption, separation and photocatalytic process. The adsorption process is an 

attractive method and widely used to remove water contaminants such as heavy metal 

ions due to its low cost, the availability of different adsorbents and simple operation. 

The photocatalytic process having the ability to decompose the organic water 

pollutants and enhanced the water quality. Then, the rising membrane technology had 

gathered a wide interest as an alternative method for water separation. The interesting 

part of membrane technology is that the advanced membranes can be fabricated with 

stimuli-responsive either by depositing the responsive materials into the 

membrane. These responsive materials, such as adsorbent and photocatalyst, to 

respond to the adsorption and photocatalytic process, respectively. The material 

deposition also response to the physical changes of the membrane properties, such as 
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pore size of the membranes, hydrophilicity and surface roughness. Therefore, the 

advanced membranes are capable of bringing a mammoth change and opportunities as 

a multifunctional membrane for water treatment.  

In membrane technology, the development of the ceramic membrane has been 

extensively studied over the past few years due to the properties of the ceramic 

membrane that can overcome the limitation in the polymeric membrane [1]. The 

ceramic membrane is having a high resistance to high-temperature operation, high 

pressure and harsh chemical conditions. These properties are benefited to the ceramic 

membrane recovery to allow for the physical and chemical cleaning process [2,3]. 

Besides, the ceramic membrane is also having a lower fouling effect as compared to 

the polymeric membrane due to the hydrophilic properties of ceramic material [4]. In 

this study, a multifunctional ceramic hollow fiber membrane is highlighted. The 

membrane offers water separation for a different type of contaminants removal. As an 

adsorptive ceramic hollow fiber membrane, the membrane is beneficial for the removal 

of even low-concentration of heavy metal ions from aqueous water. Thus, the 

membrane can be a wise choice to replace the adsorbents in powder form for the 

adsorption process. Then, the photocatalytic process of the membrane is beneficial to 

reduce the membrane fouling effect by the degradation of organic pollutants. Thus, 

self-cleaning of the membrane surface membrane for oil emulsion separation can be 

done. Overall, the multifunctional properties of the membrane can assure plant 

simplicity. 

1.2 Problem Background 

Phase inversion technique is reported mostly in fabricating the ceramic hollow 

fiber membrane with a porous asymmetrical structure. The porous asymmetrical 

structure consisting of the sponge-like, and finger-like pores is favorable for a high 

flux membrane. The development of the combined alumina and YSZ particles for the 

ceramic hollow fiber membrane is not extensively studied yet. The phase inversion 

condition to achieve the desired membrane morphology is interesting to be studied. 

However, the concern related to the fabrication of ceramic hollow fiber membrane is 
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the membrane pore sizes produced. It was reported that the ceramic membranes 

produced via the phase inversion technique are having large membrane pore sizes. 

Normally in microfiltration (MF) and ultrafiltration (UF) range. The pore size of the 

ceramic membrane can be reduced to a nanofiltration (NF) or reverse osmosis (RO) 

range through the sintering process by increasing the sintering temperature. However, 

the densification of the sponge-like voids as prone to the sintering process leading to 

a formation of dense membrane structure and the formation of the non-interconnecting 

pores. Thus, reducing the membrane permeability by preventing or reducing the water 

pathways across the membrane. Besides, sintering at a high temperature can cause the 

elimination of the hydroxyl group from the membrane surface and reduced the 

hydrophilic property of the ceramic membrane. 

The separation mechanism of a membrane is based on the size exclusion. The 

capability in retaining the small ionic size of water contaminants such as heavy metal 

ions (Pb2+) using MF and UF type membrane is not possible.  The Pb2+ ions dissociate 

in water is having a radius of 0.119 nm. Then, the relative difference between the 

membrane pore size and Pb2+ ions size it can pass through the membrane pore to the 

permeate side. Hence, advancing the adsorptive properties to the ceramic membrane 

can give a solution to this issue when using MF or UF type membrane for heavy metal 

ions removal.   Using inorganic particles as an adsorbent for wastewater treatment had 

prone to the agglomeration of the inorganic particles due to the Van der Waals forces 

when dispersed in a solution for the adsorption process. Depositing or embedded the 

inorganic particles on a substrate can overcome the issue of particles agglomeration. 

For this purpose, the MF and UF membrane range can be used as the substrate for the 

development of an advance ceramic membrane. This can be done by undergoing 

modification to the ceramic substrate with an inorganic material. Hence, the deposition 

of inorganic material with the adsorptive properties allow the membrane to act as an 

adsorptive membrane. Thus, the small sizes of the monovalent ions which cannot be 

retained by the MF or UF membrane range through size exclusion mechanism can be 

adsorbed by the membrane during the filtration process. Therein, provide a single 

solution to overcome the issues of porous ceramic membrane range to separate small 

sizes of particulates by separative and inorganic particles agglomeration for adsorption 

process. 
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Another issue that arises from the membrane separation process is the 

membrane fouling phenomenon. There is no exception for the ceramic membrane even 

though the fouling rate is lower than the polymeric membrane. The ceramic membrane 

will loss of its nature of the hydrophilic properties efficacy over time to resist the 

membrane fouling. The fouling phenomenon occurs due to the accumulation of 

foulants on the membrane surface and pores. Thus, increasing the mass transfer and 

reducing the membrane flux. The previous study had reports oily type wastewater had 

caused to the great membrane fouling. This type of wastewater also can be separated 

using MF or UF type membrane as the oil droplets associate in water is within the 

membrane range.As a solution to the ceramic hollow fiber membrane fouling issue for 

the oil type wastewater separation, the membrane surface modification with the 

hydrophilic coating was introduced. The hydrophilic coating by depositing an 

inorganic material helps in increasing the membrane flux. Owing to the properties of 

the inorganic material which also response as a photocatalyst can mitigate oil 

degradation. Thus, creating a self-cleaned membrane process to prevent the formation 

of foulants layer on the membrane surface. Considering the opaque ceramic hollow 

fiber membrane, depositing the inorganic material on the outer surface of the ceramic 

hollow fiber membrane is favored to activate the inorganic material with light 

irradiation.   

From the above problems stated and the solutions proposed, the iron oxide 

(Fe2O3) was chosen as the depositing inorganic material as it can response both as an 

adsorbent and as a photocatalyst. The deposition can realize the aim of the study to 

develop a multifunctional ceramic hollow fiber membrane for a different type of water 

separation. Thus, embedding and depositing the Fe2O3 particles within the porous 

ceramic membrane can provide the adsorptive and photocatalytic properties to the 

membrane. However, a possibility prone to the detachment of the depositing Fe2O3 is 

concerned to resolve. The polymer coating approached as a protective film or layer 

can give a solution to secure the deposited Fe2O3. Thus, it is interesting to study the 

feasibility of the composite polymer-ceramic hollow fiber membrane for the water 

separation process.  
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1.3 Objectives 

This study aims to develop a multifunctional ceramic hollow fiber membrane 

for water separation. To highlight the multi-function of the membrane and to solve the 

problem issued at sub-chapter 1.2, the specific objectives of the study were listed as 

below:  

1. To study the effect of fabrication condition on the Al2O3/YSZ hollow fiber 

morphology as substrate via dry-wet phase inversion and sintering process 

2. To evaluate the effect of iron oxide dispersed across the Al2O3/YSZ hollow 

fiber substrate on the structural properties, physical properties and the 

adsorptive membrane performance 

3. To evaluate the effect of iron oxide deposited on the surface of Al2O3/YSZ 

hollow fiber on the structural properties, physical properties and the 

performance for oil emulsion separation and self-cleaning membrane 

properties  

4. To study the feasibility of polymer coating on the iron oxide supported 

Al2O3/YSZ hollow fiber membrane  

 

1.4 Scope of the Study 

To achieve the objectives in this study, the following scope of the study was 

performed: 

Scope objective 1: fabricating the asymmetric Al2O3/YSZ hollow fiber substrate via 

dry-wet phase inversion spinning process and followed by the sintering process. 

1. The composition of the ceramic suspension was varied by using two different 

particle size of the YSZ particles at 0.3 and 0.01 µm.  

2. The sintering temperature was also varied at 1350 and 1400 oC.  
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3. The structural properties of the hollow fibers produced were observed using 

scanning electron microscopy (SEM), and the distribution between alumina 

and YSZ particles was observed with the assistance of the energy-dispersive x-

ray spectroscopy (EDX).  

4. The physical properties of the hollow fiber produced were characterized using 

mercury intrusion porosimetry (MIP) to measure the pore size distribution of 

the hollow fibers. The mechanical strength was also measured using the 3P 

bending strength test. Then, flux properties of the hollow fibers were measured 

using pure water by using crossflow pressure-driven filtration system.  

 

Scope objective 2: depositing Fe2O3 particles within the Al2O3/YSZ hollow 

fiber substrate via an in-situ hydrothermal process 

1. The hydrothermal solution was varied by varying the concentration of iron 

precursor at 0.05 and 0.2 M to determine the Fe2O3 deposition within the 

Al2O3/YSZ hollow fiber substrate. During the hydrothermal-deposition 

process, both ends of the hollow fiber substrate were not closed or capped. 

2. The hydrothermal duration was also varied at 24 h and 48 h to evaluate the 

effect on the deposited Fe2O3 particles within the Al2O3/YSZ hollow fiber 

substrate.  

3. The structural properties of the Fe2O3 deposited within the Al2O3/YSZ hollow 

fiber substrate were examined using field emission scanning electron 

microscopy (FESEM) and energy-dispersive x-ray spectroscopy (EDX).   

4. The physical properties of the Fe2O3 deposited were characterized using 

Fourier-transform infrared spectroscopy (FTIR), using x-ray diffraction (XRD) 

and N2 adsorption-desorption. The flux properties of the hollow fibers were 

measured using pure water by using crossflow pressure-driven filtration 

system. 

5. The Fe2O3 supported Al2O3/YSZ hollow fiber membrane performance as an 

adsorptive membrane were evaluated for lead (Pb) removal. The effect of the 

pH value of Pb (II) solution, time contact, and initial concentration of Pb (II) 

solution was studied. The concentration of the Pb (II) ions was measured using 

atomic absorption spectroscopy (AAS).  
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Scope objective 3: depositing Fe2O3 on the surface of the Al2O3/YSZ hollow 

fiber via an in-situ hydrothermal process. 

1.  The hydrothermal solution was varied by varying the concentration of iron 

precursor at 0.05, 0.2 and 0.5 M. For this deposition process, both ends of the 

hollow fiber were capped with polytetrafluoroethylene (PTFE) tape to avoid 

the penetration of the hydrothermal solution into the hollow fiber substrate 

through the lumen.  

2. The structural properties of the Fe2O3 deposited on top of the hollow fiber were 

examined using field emission scanning electron microscopy (FESEM). The 

surface properties of the membrane were examined using atomic force 

microscopy (AFM). 

3.  The physical properties of the Fe2O3 supported on Al2O3/YSZ hollow fiber 

membrane were characterized by the contact angle. The flux properties of the 

membranes were measured using pure water by using crossflow pressure-

driven filtration system.  

4. The performance of the Fe2O3 supported on Al2O3/YSZ hollow fiber membrane 

was evaluated for oil emulsion separation. The crossflow pressure-driven 

filtration system was used to carry out the separation of 1000 mg/L oil 

emulsion solution. The concentration of the oil emulsion was measured using 

Uv-vis spectroscopy. The particle size distribution of oil droplets was measure 

using zeta sizer (DLS Malvern).  

5. The self-cleaning properties of the Fe2O3 supported on Al2O3/YSZ hollow fiber 

membrane were evaluated by a photo-induced filtration process, where the 

light was illuminated during the filtration process. The oil fluxes and rejections 

were measured.  
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Scope objective 4: coating polymer layer on Fe2O3 supported Al2O3/YSZ 

hollow fiber membrane  

1. Coating the Fe2O3 supported on Al2O3/YSZ hollow fiber membrane with UV 

curable resin via dip coating and UV curing process. 

2. The structural properties of the UV curable resin coating were observed using 

field emission scanning electron microscopy (FESEM). The surface properties 

of the membrane were examined using atomic force microscopy (AFM) and 

contact angle. 

3. The interaction between UV curable resin towards the membrane was analyzed 

using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy 

(FTIR) analysis.  

4. The feasibility of the coated membrane with the UV curable resin was 

evaluated for 1000 mg/L of humic acid removal using sweeping liquid 

crossflow filtration system. The concentration of the humic acid solution was 

determined using Uv-vis.  

 

1.5 Significant of Study 

This study contributed to the knowledge of the development of multifunctional 

ceramic hollow fiber membrane for water separation. The different water pollutants in 

aqueous water can be treated using the same Fe2O3 supported Al2O3/YSZ hollow fiber 

membrane. The simultaneous synthesis and deposition of inorganic material via in-

situ hydrothermal process within the ceramic hollow fiber substrate are exposed in this 

study. With the different setup and hydrothermal conditions during the hydrothermal 

process, the inorganic material can be deposited on top or within across the porous 

hollow fiber substrate in one-pot. Also, the knowledge on the polymeric coating on the 

ceramic membrane via UV curing process is defined in this study as the topic regarding 

this process is not well reported in previously. Then, the feasibility of the membrane 

for a different type of wastewater treatment is enclosed in this study. First, for the 

treatment of heavy metal solution, the deposition of inorganic material (adsorbent) 

within the porous structure of the ceramic membrane had improved the adsorptive 
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properties of the membrane. Second, as for the oily wastewater treatment, the 

deposition of inorganic material (photocatalyst) on top of the membrane enables for 

improving the membrane’s flux by improving the hydrophilicity properties of the 

membrane surface and also enable for the self-cleaning membrane process with the 

assisted of light irradiation. Third and last, the polymer coating had made the porous 

ceramic membrane feasible for forward osmosis (FO) application.   
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The morphology of the ceramic membrane can be categorized into a symmetric 

and asymmetric structure. The symmetric structure is having the homogeneous pore 

size distribution across the membrane cross-sectional. Meanwhile, an asymmetrical 

structure possesses a change in pore size distribution across the membrane cross-

sectional. As illustrates in Figure 2.2, the asymmetric membrane consists of a thin as 

an active layer on the top, an intermediate porous layer and more porous layer as the 

support at the bottom part. The outer active layer plays a key role in the separation 

process and the substrate provides the mechanical support to the membrane. Moreover, 

all layers can be made of the same material or different materials (called a composite 

ceramic membrane). Where, in a composite ceramic membrane, the properties of the 

membrane can be tailored depending on the material used in each layer with multi-

step of fabrication process [5]. Furthermore, the membrane process can be further 

classified into microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and 

reverse osmosis (RO) according to the pore sizes of the membrane in the pressure-

driven membrane processes.  

 

Figure 2.2 The illustration of an asymmetric ceramic membrane. 

 

2.2 Fabrication of an Asymmetric Ceramic Hollow Fiber Membrane  

Fabrication of ceramic membrane involves with three main steps: (1) 

preparation of a homogeneous ceramic suspension containing ceramic powder, 

solvent, polymer binder and additive; (2) packing and shaping the ceramic suspension 

into a specific geometry; and (3) consolidation of the ceramic particles by the sintering 

Active (top) 

layer

Intermediate 

layer

Support layer 
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