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ABSTRACT 

The accumulation of eschar, dead tissue, microbes on the surface of wound 

lead to delay the wound healing particularly in diabetic wounds and foot ulcers. The 

process of removing these dead tissues to enhance the healing process is called 

debridement. A variety of approaches can be used for debridement including 

surgical, mechanical, enzymatic and maggot therapy. Recently enzymatic 

debridement is gaining more attention especially in situations where surgical 

debridement may not be suitable. The current available enzymatic debridement 

agents are limited, and they can also cause side effects to patients. Hence, there is a 

need to search for a new debridement agent that have high efficiency and specificity 

that can cause lesser side effects, one of the alternative methods is via protease 

enzymatic debridement. This research focused on verification of a cloned 

metalloprotease gene via PCR and sequencing as well as characterisation of the 

metalloprotease gene product via bioinformatic tools. The plasmid containing the 

cloned metalloprotease gene from Acinetobacter baumannii was successfully 

extracted from E.coli HSTO8 and amplified via PCR. The metalloprotease gene 

amplicon showed the correct size of approximately 717 bp on agarose gel. The 

concentration of the amplified gene was measured by nanodrop spectrophotometer 

showing that it has a concentration of 96.8 ng/μl, as well as 260/280 and 260/230 

ratios of 1.93 and 2.18 respectively. The sequencing analysis result illustrated that 

the cloned gene is 100% identical to metalloprotease from Acinetobacter baumannii 

(accession number WP_000722324.1). The result of the in silico study showed that, 

the metalloprotease from Acinetobacter baumannii is a membrane protein, consisting 

of 238 amino acids with estimated molecular weight of 27.2 kDa. The nonpolar 

amino acids content is higher than the polar amino acids which illustrated that our 

metalloprotease is hydrophobic in nature, and it is stable with instability index of 

39.58. The metalloprotease from Acinetobacter baumannii has Zinc-dependent 

metalloprotease domain Phe162 to Asn235 which characterized by the presence of zinc 

binding motive (H180, E181, H184, G187, H190). The generated model consists of five 

beta sheets and four alpha helixes, alpha helix number three (α 3), alpha helix 

number four (α 4) and beta sheet number five (β 5) are located in the Zinc-dependent 

metalloprotease domain. The active site of metalloproteinases group of protein 

contains a catalytic divalent metal ion which is usually zinc atom, the zinc atom in 

the generated model attached to the three histidine residues of the active site 

(H180,H184 and H190) with distance 2Å, 2.3Å and 2Å respectively. This 

metalloprotease belonged in the same M12 family as well as having the same 

catalytic motif as a fibrinolytic enzyme isolated from snake venom which may 

indicate that this metalloprotease has the potential ability to have fibrinolytic activity. 
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ABSTRAK 

Pengumpulan eskar, tisu mati dan mikrob di atas permukaan luka boleh 

melambatkan proses penyembuhan luka, terutamanya luka diabetik dan ulser kaki. 

Proses untuk membuang tisu-tisu mati bagi mempercepatkan penyembuhan luka 

dikenali sebagai debridemen. Pelbagai kaedah boleh digunakan untuk debridemen 

termasuklah kaedah pembedahan, kaedah mekanikal, kaedah enzim dan terapi 

berenga. Sejak kebelakangan ini, debridemen menggunakan enzim telah mendapat 

perhatian terutamanya di dalam situasi di mana kaedah debridemen melalui 

pembedahan didapati tidak sesuai. Agen debridemen enzim yang digunapakai 

sekarang adalah terhad dan boleh mengakibatkan kesan sampingan kepada pesakit.  

Oleh itu, pencarian agen debridemen baru yang mempunyai kecekapan dan 

kekhususan yang tinggi, dan yang mampu mengurangkan kesan sampingan menjadi 

satu keperluan pada masa kini. Salah satu alternatif adalah melalui kaedah 

debridemen menggunakan enzim protease. Kajian ini tertumpu kepada pengesahan 

gen metaloprotease yang telah diklon menggunakan kaedah PCR dan penjujukan, 

dan juga pencirian produk gen metaloprotease tersebut menggunakan alat 

bioinformatik. Plasmid yang mengandungi gen metaloprotease daripada 

Acinetobacter baumanii yang diklon telah diekstrak daripada E. coli HST08 dan gen 

tersebut telah diamplifikasi menggunakan PCR. Amplikon gen metaloprotease 

tersebut menunjukkan saiz yang tepat di atas gel agaros, iaitu kira-kira 717 bp. 

Kepekatan gen yang telah diamplifikasi itu ditentukan menggunakan 

spektrofotometer nanodrop. Kepekatannya adalah 96.8 ng/μl dan nisbah 260/280 dan 

260/230 yang dicatatkan adalah pada 1.93 dan 2.18. Hasil analisis penjujukan pula 

menunjukkan gen yang diklon itu adalah 100 % sama dengan metaloprotease 

daripada Acinetobacter baumanii (Nombor aksesi WP_000722324.1). Dapatan 

daripada kajian “insilico” pula menunjukkan metaloprotease daripada Acinetobacter 

baumanii ini adalah protein membran yang mengandungi 238 asid amino dengan 

anggaran berat molekul 27.2 kDa. Kandungan asid amino tidak berkutub adalah lebih 

tinggi berbanding asid amino berkutub. Ini menunjukkan metaloprotease ini bersifat 

hidrofobik dan stabil, dengan indeks ketidakstabilan pada 39.58. Metaloprotease 

daripada Acinetobacter baumanii ini mempunyai domain metaloprotease Phe162 

sehingga Asn235 yang dicirikan oleh kehadiran motif pengikatan zink (H180, E181, 

H184, G187, H190). Model yang terhasil mengandungi lima helaian beta dan empat 

heliks alfa. Heliks alfa nombor tiga (α 3), heliks alfa nombor empat (α 4) dan helaian 

beta nombor lima (β 5) terletak di domain metaloproteinase yang bergantung kepada 

zink. Laman aktif kumpulan protein metaloproteinase mengandungi ion logam 

divalent yang selalunya adalah atom zink. Atom zink di dalam model yang terhasil 

tercantum dengan tiga residu histidin di dalam laman aktif (H180,H184 dan H190), 

dengan jarak masing-masing adalah 2 Å, 2.3 Å dan 2 Å. Metaloprotease ini 

dikelaskan dalam keluarga M12 yang sama dan enzim ini mempunyai motif 

pemangkin yang sama dengan enzim fibrinolitik yang diasingkan daripada bisa ular. 

Ini menunjukkan metaloprotease ini berpotensi mempunyai aktiviti fibrinolitik. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Skin is the largest organ in the body that acts as a physical barrier between 

the external environment and the human body. Skin is protecting the human body 

from harmful microbes, thermal, mechanical, and chemical damages. Skin damages 

may occur for several reasons such as burn, and chronic wounds (Nasalapure et al., 

2017). Centres for Medicare and Medicaid Services defined chronic wounds as 

wounds that have not healed within 30 days. In the US, almost 6.5 million patients 

had a chronic wound and evidently, 25 billion dollars were spent annually on the 

treatment of the chronic wound (Fauzi et al., 2015). It has been estimated that nearly 

2.5 million Americans are inclined to venous ulcers, 1.3 to 3 million are suffering 

from pressure ulcers, and one million diabetics are at a risk for developing 

neuropathic ulcers over a 3years period. The cost of chronic wound management is 

expensive and, in the US the wound management market is estimated to reach up to 

4.4 billion dollars in 2019 (Dabiri et al., 2016). Worldwide, around USD 2.8 billion 

were spent on wound management in 2014 and it is estimated to increase to reach up 

to USD 3.5 billion by 2021. Globally, the wound management market is expected to 

further increase to USD 22 billion by 2024 (Sen, 2019). 

Wounds can heal naturally, however, failure of these wounds to heal properly 

can lead to complications like sepsis and osteomyelitis that can be dangerous to 

patients and challenging to manage as well as the cure for health care providers. 

(Nusbaum et al., 2012). Dead and necrotic tissue are terms used to describe the tissue 

without blood supply. Infection, ischaemia, hypoxia, and dehydration of the wound 

may lead to the accumulation of such tissues (Atkin, 2014). Wound debridement is 

the procedure of removing the necrotic tissue (devitalized tissue), foreign body and 

microbes from the chronic wound. Wound debridement is essential first step in the 
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proper chronic wound treatment (healing), it aims to expose the underlying viable 

tissue (Doerler et al., 2012; David and Chiu, 2018). Wound debridement minimizes 

the bacterial burden within the wound, controls the on-going inflammation and 

malodour, and enhances the formation of granulation tissue. (Madhok et al., 2013). 

Metalloproteases are one of the most important hydrolytic enzymes.  

Metalloproteases are used in different industrial applications such as detergents, 

leathers, food processing, bioremediation, and cosmetics. Moreover, they play a role 

in the degradation of proteins and involved in the modulation of cell growth, 

inflammation, immunity, and hormone processing. Also, several metalloproteases are 

targets for drug development (Vélez-Gómez et al., 2019). Metalloprotease are found 

widely in nature including plants, animals, fungi, and microbial sources that are the 

most significant source of metalloproteases. Collagenases are microbial protease that 

originated from Clostridium histolyticum. Collagenases have been studied widely as 

a wound debridement enzyme. It is used effectively in the treatment of third‐degree 

burns, diabetic ulcers, pressure ulcers, and ischemic arterial ulcers (Shi et al., 2010). 

1.2 Problem Statement 

Debridement is the first step in the process of wound healing by promoting 

new tissue growth in the wound and preventing infection. Different methods are 

currently available for removing dead and necrotic tissues such as surgical, 

mechanical, autolytic, maggot debridement therapy, and enzymatic debridement 

(Munir et al., 2016; David and Chiu, 2018). Autolytic debridement aims to maintain 

wound moisture and support the gradual softening of eschar using the natural 

enzyme present in wound fluid nevertheless, autolytic debridement is slow in action 

and requires close monitoring as the risk of infection may increase, while surgical 

debridement can cause serious unwanted effects like bleeding, scarring, and healthy 

tissue damage. Mechanical debridement is another approach for debridement, it is 

carried out by applying wet to dry dressings or pressure irrigation (Singh and Singh, 

2012; Langer et al., 2013; Schulz et al., 2017). Labor intensive, painful, time-

consuming, and moisture might overstrain the tissues that surround the wound are 
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considered as the main limitations of mechanical debridement (David and Chiu, 

2018). Another option is maggot therapy which has been used widely and has been 

reported to be gentler and more efficient for wound debridement, however, it has 

some limitation as it can be painful, not widely available, and patients can feel 

uncomfortable from the sensation of crawling maggot on their wound during 

treatment (Paul et al., 2009). The utilization of enzymes in wound debridement is a 

successful alternative method. However, there is a limited option in the market, many 

side effects like allergy and pain, and selectivity toward one component of the wound 

(collagenase enzyme is selective against collagen only and not to keratin, fibrin, or 

fat debris found in necrotic tissue) (Falabella, 2006; Huett et al., 2017). 

1.3 Objectives of Study 

(i) Verification of cloned metalloprotease gene via PCR and sequencing.  

(ii) Protein bioinformatics analysis of cloned metalloprotease gene products. 

1.4 Scope of Project 

The laboratory work of this study started with culturing E. Coli HSTO8 

bacteria containing the recombinant plasmid. The plasmid was extracted by using 

Wizard® plasmid purification kit (Promega, USA), after that the primers were 

designed to amplify metalloprotease gene by using polymerase chain reaction (PCR), 

then the purified plasmid was sent for sequencing to confirm the correct sequence 

and orientation. 

Following laboratory work, bioinformatic analysis was done to study the 

properties and characteristics of metalloprotease protein. Several tools (software and 

database) were employed such us Expasy translate tool to obtain the correct reading 

frame. Protein blast (BLASTP) of NCBI was used to compare and identify the 

sequence similarity against NCBI protein databases. SignalP 5.0 server to determine 



 

4 

the presence of signal peptides and its cleavage sites and Cello2Go for protein 

locolization prediction. A phylogenetic tree was generated by using MEGA X, 

Expasy ProtParam tool to analyse amino acids composition, Phyre2 online tool and 

Gor4 were used to predict the secondary structure. NCBI conserved domain for 

domain prediction, Clustal Omega tool was used to carry out multiple sequence 

alignment in order to determine the regions of similarity between different amino 

acid sequences. I-TASSER server was employed to determine or predict the 3D 

structure of metalloprotease to postulate function of the protein and guide future 

experimental work. ERRAT and PROCHECK were employed to evaluate the 

stereochemical quality of the 3D structure. 

1.5 Significance of Study 

Debridement is generally considered as the essential procedure in the wound 

healing process (Hsu et al., 2015). Several methods of debridement such as autolytic, 

mechanical, surgical, enzymatic, and maggot’s debridement therapy had been 

introduced (Shi and Carson, 2009; Munir et al., 2016; David and Chiu, 2018). Those 

current conventional methods that are available for wound debridement still have 

many limitations and disadvantages. Therefore, there is a great need to search for a 

gentler and more effective debridement method to overcome all of the previous 

setbacks that can occur with the known conventional methods. An alternative method 

that has the potential to be developed for wound debridement is debridement using 

enzymatic proteases. Hence, in this study, the previously cloned gene of a 

metalloprotease from Acinetobacter baumannii TUO4 isolated from Tapai Ubi 

(Malaysian traditional cassava-fermented food) was verified via PCR and sequencing 

while the properties of the protein gene product were studied by using bioinformatic 

tools to characterise whether the protein has the potential to be a wound debridement 

agent. 
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