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ABSTRACT

Membrane technology using alumina hollow fiber (AHF) deposited with 
zirconium-based metal-organic framework (MOF) known as UiO-66 serves as a great 
option for humic acid (HA) removal present in water systems. The main limitation for 
growing UiO-66 on AHF is the difficulty to develop a well-continuous and defect-free 
UiO-66 layer onto AHF due to its abundant micropores and tubular configuration, 
resulting in low stability and poor HA rejection. There are three objectives of this study 
which are i) to study the single deposition and second deposition of UiO-66 membrane 
onto AHF using in-situ solvothermal synthesis, ii) to examine the surface modification 
of AHF with coat seeding sol-gel zirconium nanoparticles prepared using sol-gel 
Pechini method prior to the growth of UiO-66 membrane and iii) to investigate the 
effectiveness of membrane samples prepared using single deposition UiO-66, second 
deposition of UiO-66 and UiO-66 deposited onto AHF modified by zirconium 
nanoparticles for the removal of HA. Four main phases involved in this study which 
are i) preparation of AHF using spinning based phase inversion and sintering 
technique, ii) deposition of UiO-66 membrane onto AHF using single and second 
deposition techniques under controlled parameters, iii) deposition of UiO-66 
membrane onto AHF modified with zirconium nanoparticles prepared using sol-gel 
Pechini method and iv) HA removal studies using cross-flow filtration. The AHF, 
UiO-66 particles, and the developed UiO-66 membrane on AHF were characterized 
based on their physicochemical properties. All prepared samples were further tested 
for pure water flux test and HA removal test. For the single deposition technique, no 
UiO-66 membrane layer was observed where the UiO-66 solution was diffused within 
AHF’s micropores. The UiO-66 membrane was successfully formed after the second 
deposition of UiO-66 and after coat-seeding with zirconium nanoparticles in the range 
of 1.5 ^m to 11 ^m thickness. The UiO-66 and zirconium particles acted as an anchor 
site for UiO-66 deposition by enhancing the adhesion and provided full coverage of 
the UiO-66 membrane onto AHF. It was found that the pure water fluxes for all 
prepared samples reduced ranging from 13.00 to 163.88 L m-1 h-1 as compared to 
pristine AHF’s pure water flux of 259.67 L m-1 h-1. These reductions of water flux 
were due to the presence of UiO-66 particles and zirconium nanoparticles on the entire 
surface of the AHF that increased the mass transfer resistance of water permeation 
across the membranes. Study on HA removal using UiO-66 membrane revealed that 
the prepared samples showed excellent performance of HA removal with 99 % 
rejection and satisfied solute fluxes ranging from 3.16 to 68.37 L m-1 h-1. The high 
removal of HA can be explained by similar negative charge between UiO-66 particles 
and HA molecules which created charge repulsion between the surface of the 
membrane and the HA. This study concluded that UiO-66 membrane had been 
successfully deposited onto modified AHF with zirconium nanoparticles. Results from 
this study provided solutions on the difficulty of synthesizing well-developed, defect- 
free and well-continuous of UiO-66 membrane onto AHF with excellent HA rejection, 
moderate solute flux of UiO-66 membrane onto AHF.
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ABSTRAK

Teknologi membran dengan menggunakan gentian gerongga alumina (AHF) 
yang dimendapkan dengan rangka logam organik (MOF) berasaskan zirkonium 
dikenali sebagai UiO-66 menawarkan pilihan terbaik untuk membuang asik humik 
(HA) yang wujud dalam sistem air. Kekangan utama perkembangan UiO-66 di atas 
AHF adalah kesukaran untuk membangunkan lapisan UiO-66 di atas AHF yang 
selanjar dan bebas kecacatan disebabkan mikroliang berlebihan dan bentuk tiubnya, 
menghasilkan kestabilan yang rendah dan penyingkiran HA yang lemah. Terdapat tiga 
objektif kajian ini iaitu i) mengkaji enapan tunggal serta enapan kedua membran UiO- 
66 di atas AHF menggunakan sintesis larutan haba in-situ, ii) memeriksa 
pengubahsuaian permukaan AHF dengan pembenihan salutan gel-larutan zarah nano 
zirkonium menggunakan kaedah gel-larutan Pechini sebelum pertumbuhan membran 
UiO-66 dan iii) menyelidik keberkesanan sampel membran yang disediakan oleh 
enapan tunggal UiO-66, enapan kedua UiO-66 dan enapan UiO-66 di atas AHF yang 
diubah suai dengan zarah nano zirkonium untuk penyingkiran AH. Empat fasa utama 
terlibat dalam kajian ini iaitu i) penyediaan AHF menggunakan pemintalan berasas 
fasa penyongsangan dan pensinteran, ii) pengenapan membran UiO-66 di atas AHF 
menggunakan teknik enapan tunggal dan kedua di bawah parameter kawalan, iii) 
enapan membran UiO-66 di atas AHF yang diubah suai dengan zarah nano zirkonium 
disediakan dengan kaedah gel-larutan Pechini dan iv) penyingkiran HA menggunakan 
penapisan aliran silang. AHF, zarah UiO-66 dan pembentukan membran UiO-66 di 
atas AHF telah dicirikan dalam pencirian terma fisikokimia. Kesemua sampel yang 
telah disediakan telah diuji dengan lanjut untuk ujian fluks air bersih dan ujian 
penyingkiran HA. Untuk teknik enapan tunggal, tiada lapisan membran UiO-66 
diperhatikan di mana larutan UiO-66 telah meresap di antara mikroliang AHF. 
Membran UiO-66 telah berjaya dibentuk selepas enapan kedua membran UiO-66 dan 
selepas pembenihan salutan zarah nano zirkornium dengan julat ketebalan di antara
1.5 |im hingga 11 |im. Zarah UiO-66 dan zirkonium telah bertindak sebagai tapak 
penambat bagi enapan UiO-66 dengan meningkatkan keterlekatan dan memberi 
liputan penuh membran UiO-66 di atas AHF. Kajian ini mendapati bahawa fluks air 
bersih bagi semua sampel telah berkurang dalam julat 13.00 hingga 163.88 L m-1 h-1 
berbanding fluks air bersih bagi AHF iaitu 259.67 L m-1 h-1. Pengurangan fluks air 
bersih disebabkan oleh kehadiran zarah UiO-66 dan zarah nano zirkonium di atas 
keseluruhan permukaan AHF di mana meningkatkan rintangan pemindahan jisim 
penelapan air merentasi membran. Kajian terhadap penyingkiran HA mendedahkan 
bahawa sampel yang disediakan menunjukkan prestasi cemerlang penyingkiran HA 
dengan 99 % penyisihan dan fluks zat terlarut yang memuaskan dalam julat 3.16 
hingga 68.37 L m-1 h-1. Penyingkiran HA yang tinggi boleh dijelaskan dengan cas 
negatif yang sama di antara zarah UiO-66 dan molekul HA di mana berlakunya 
penolakan cas di antara permukaan membran dan HA. Kajian ini telah menyimpulkan 
bahawa membran UiO-66 telah berjaya dienapkan di atas AHF yang telah diubahsuai 
dengan zarah nano zirkonium. Hasil kajian ini menyediakan penyelesaian terhadap 
kesukaran pensintesisan membran UiO-66 di atas AHF terbaik yang bebas dari 
kecacatan dan selanjar dengan penyingkirann HA terbaik, fluks zat terlarut yang 
sederhana, dan bebas kecacatan.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Humic acid (HA) is a natural organic matter (NOM) that naturally presents in 

raw water sources (i.e. lakes, rivers, and streams) as a result of the decomposition of 

dead animals and plants. HA has a complex structure with three functional groups, 

namely, carboxylic acids, phenolic alcohols and methoxyl carbonyls as shown in 

Figure 1.1. Typically, HA can be detected through its brownish appearance at 

concentrations above 5 mg L"1 [1]. According to the World Health Organization 

(WHO), the allowance content of HA in drinking water should not exceed 100 |ig L"1 

[2]. However, conventional treatment of wastewater through chlorination causes HA 

to react with chlorine, generating trihalomethane (THM) and haloacetic acids (HAA), 

which are known as human carcinogens [1-3]. Thus, it is crucial to remove any HA 

prior to conventional chlorination of drinking water. One way to achieve this is through 

membrane technology.

HOOC

HO

COOH

/ H

Figure 1.1 Molecular structure of humic acid [4]



Typically, polymer materials are preferable for membrane preparation as 

ascribed by their easy availability, simple preparation process, and excellent 

performance. However, ceramic membranes have recently received significant 

attention in water treatment, specifically in water purification. The emerging use of 

ceramic membranes are ascribed by their higher chemical stability, excellent 

mechanical strength, and good thermal stability. Besides that, ceramic membranes can 

be tailored to have unique morphologies, consisting of finger-like and sponge-like 

structures [5,6]. Unlike gas separation application that requires thin and dense 

structures for excellent selectivity and permeability [7,8], liquid separation using 

ceramic membranes can occur over the entire porous ceramic membrane [9]. This 

unique structure can be fabricated easily during the membranes' initial preparation 

stage. The preparation of ceramic membranes can be done by using phase inversion 

and sintering techniques [10-13]. Three main steps are involved in this process, 

namely a) preparation of a ceramic suspension, b) phase inversion process of ceramic 

suspension, and c) sintering process of the membrane precursor [14,15]. In the 

preparation of the ceramic suspension, ceramic particles with different particle sizes 

are mixed with a polymer binder, an organic solvent, and an additive using a planetary 

ball mill to obtain a homogenous ceramic suspension.

To obtain ceramic membranes with hollow fiber configuration, the ceramic 

suspension is extruded through a spinneret with water as an internal coagulant to create 

the lumen. The suspension is then further extruded into a water coagulation bath to 

solidify the polymer and freeze the ceramic particles. However, this process is 

generally affected by various parameters, i.e. extrusion rate, bore fluid rate, air gap, 

type of internal coagulant/external coagulant, and temperature of internal 

coagulant/external coagulant. Thus, to obtain pure ceramic membranes, the membrane 

precursor has to be sintered at a temperature ranging from 1300 -  1700 °C. In this 

process, grain boundaries are growing, providing dense structures and contributing to 

high mechanical strength. Although ceramic membranes can be used directly in water 

separation processes, it is limited only to the ultrafiltration range, as reported in 

previous studies [11,12]
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To overcome this limitation, ceramic membranes need to be incorporated with 

microporous/mesoporous materials for HA removal from wastewater. In this context, 

ceramic membranes act as porous support in which novel micro/mesoporous materials 

are deposited using various conventional coating techniques (i.e. paintbrush, spray and 

dip coating) [16,17], electroless plating [18,19], and hydrothermal/solvothermal 

growth [20-22]. Many porous materials have been incorporated on ceramic 

membranes to improve the separation performance of ceramic membranes, i.e. zeolite, 

graphene oxide, metal-organic framework (MOF), and metal oxides. Among these 

materials, MOF has received much attention to be incorporated on ceramic 

membranes. There are approximately 20, 000 MOFs that have been discovered by 

various researchers such as Material Institute Loisivier (MIL), UiO-66, UiO-67, UiO- 

68 (which UiO is referring to University of Oslo), Hong Kong University of Science 

and Technology (HKUST), isoreticular MOF (IR-MOF), and zeolitic imidazolate 

framework (ZIF). Each of the MOF materials is distinguished by different ligands and 

metals. These highly porous materials with crystalline structures bonded by organic 

ligands connected to metal ions and carboxylate ions [23]. MOFs have a unique 

chemical versatility with a tailored framework relative to zeolite, thus they can act as 

promising materials that can accommodate guest molecules [24].

To use MOF for water purification/separation applications, remarkable water 

stability is crucial criteria, apart from their crystallinity and porosity. Most MOFs are 

unstable in water, and their structure would be destructed as water molecules can attack 

and eventually cause ligand displacement and structural decomposition of the 

synthesized MOFs [25]. Among all the MOFs material, zirconium (Zr) based MOF 

known as a UiO-66 (referring to University of Oslo) possesses all of the characteristics 

required for water purification application such as superior water stability, high 

hydrothermal stability under acidic and basic conditions, and the ability to separate 

small particles in the range of ~6 A [20,22]. UiO-66 is constructed by high valence 

metal of Zr4+ that has high charge density that can create stronger coordination with 

organic ligand attributed to Coulombic interaction of the highly oxophilic Zr4+ metal 

sites with the negatively charged termini of the carboxylate linkers [25,26].
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Besides, UiO-66 has carboxyl groups that enhance the surface hydrophilicity 

and increase the performance of water purification treatment, particularly HA removal. 

Figure 1.2 shows the zirconium metal cluster connected by carboxylate linkers to 

develop the unique molecular structure of UiO-66. Recent interest in these materials 

is mostly focused on synthesis routes, i.e to extend the pore size, increase the surface 

area, and enhance the structural stability of the respective materials. In order to predict 

the capability of MOFs, it is vital to study the construction of the MOF building units. 

MOFs should display strong bonding providing robustness, linking units that are 

available or modification by organic synthesis and a geometrically well-defined 

structure [27,28]. In general, MOFs can be synthesized by different processes, such as 

conventional synthesis, electrochemistry, microwave-assisted heating, 

mechanochemistry, and sonochemistry process [23,29]. The conventional synthesis 

includes solvothermal and non-solvothermal synthesis or known as hydrothermal 

synthesis. The solvothermal synthesis is the most commonly for synthesizing MOFs 

ascribed by its simplicity, large-scale growth of crystals with high levels of 

crystallinity, phase purity, and surface areas [30].

Figure 1.2 Zirconium metal cluster to form a UiO-66 framework [27]

MOFs also have been used as membranes for various separation processes. The 

easiest way to use MOFs as membrane' material is by developing a mixed matrix 

membrane (MMM) that uses MOFs as an inorganic filler [31]. However, MMM has a 

drawback whereby the inorganic filler aggregation and compatibility between the 

inorganic filler and polymers always remain a major issue [32,33]. Therefore, another
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alternative is by growing MOF on a support membrane to solve the issue related to 

aggregation and incompatibility. Various studies have reported the successful growth 

of MOF on an inert support, i.e. HKUST (referring to The Hong Kong University of 

Science and Technology) [34-36], MIL (referring to Materials of Institute Lavoisier) 

[37,38], and ZIF-8 (referring to zeolitic imidazolate framework) [39-42]. However, 

ceramic support especially alumina hollow fiber (AHF), offered the best option for in- 

situ growth of MOF rather than polymer support membrane. The main reason is the 

presence of abundant hydroxyl group (OH-) on the surface of AHF act as an anchor 

point for any surface assemblies and well continuity and development of a free-defect 

layer of MOF [19,43]. For the case of Zr-based MOFs, several research works have 

successfully prepared UiO-66 deposited onto AHF for various applications, i.e. 

desalination [20,44], arsenic removal [21], organic removal [45], and gas application 

[22,46].

In order to develop a well continuous UiO-66 membrane on the AHF 

particularly in tubular configuration, the UiO-66 synthesis conditions i.e metal loading 

(zirconium chloride concentration), synthesis period, and numbers of UiO-66 

deposition on AHF play such vital role. The advancement of the development of UiO- 

66 membrane on AHF resulted in its potential in a wide range of applications as 

aforementioned and useful to remove HA that naturally present in water sources. 

Membrane technology can be regarded as a promising alternative to remove HA due 

to its simple removal mechanism which is adsorption and filtration. Besides, the 

deposition UiO-66 on AHF resulted to abundant negative charged of carboxyl groups 

(COOH-1) that can create charge repulsion effect with negatively charged carboxyl 

groups belong to HA molecules. Thus, it also aids to minimize the fouling formation 

due to the adsorption of HA molecules on the active surface of the design membrane 

in this study after contact time.
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1.2 Problem Statement

Naturally, HA has strong adhesion on the surface of the hydrophobic 

membrane causing the poor performance of flux and selectivity. Thus, this study is 

focusing on the deposition of UiO-66 membrane onto alumina hollow fiber (AHF). To 

the best of our knowledge, there are no reported studies on HA removal using AHF 

deposited with UiO-66 membrane. Therefore, this study provides in-sight knowledge 

and understanding regarding HA removal using these materials. There are some 

limitations of using AHF as the porous support. AHF can hinder the well-developed, 

defect-free, and continuous intergrown of UiO-66 membrane on AHF due to its 

abundant micropores and tubular configuration. Apart from that, low nucleation of 

UiO-66 membrane and weak adhesion between UiO-66 and AHF’s surface, hence, can 

cause UiO-66 membrane to delaminate [22]. This unfavorable deposition of the UiO- 

66 membrane can yield a low HA rejection in the membrane-based separation process.

In this study, the solvothermal synthesis conditions were studied through single 

deposition of UiO-66 onto AHF. Two different parameters were investigated which 

were synthesis periods and metal loading, which play vital role in developed UiO-66 

membrane onto AHF. To develop a well and defect-free continuous UiO-66 membrane 

and enhance the adhesion between AHF and UiO-66 onto AHF, the surface 

modification of AHF by introducing a second deposition of UiO-66 membrane was 

studied. The second deposition of the UiO-66 membrane was introduced on the first 

deposition of UiO-66 that acts as a coat-seeded layer. This method has been 

demonstrated to be a viable technique to obtain a high UiO-66 membrane coverage on 

AHF. The abundant carboxyl groups (COOH-1) of UiO-66 as a seeding crystal can 

functionalize the AHF's surface and promote UiO-66 crystallization. It also acts as the 

active and anchoring site by enhancing adhesion between the UiO-66 membrane and 

AHF.

In addition, this study was conducted by modifying AHF's surface with 

zirconium nanoparticles which were useful to improve the micro-defect at the surface 

of AHF. Zirconium nanoparticles were prepared using sol-gel Pechini method which 

is a common synthesizing route of synthesized metal oxide nanoparticles. Zirconium
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nanoparticles were used as the coat-seeded particles considering the similarity of Zr- 

Zr species between UiO-66 and zirconium nanoparticles on AHF's surface, and thus 

can enhance the adhesion between UiO-66 membrane and AHF. Therefore, a stronger 

binding can be provided via the chemical bond between the surface AHF, coat-seeded 

particles of zirconium, and UiO-66 linker which are carboxylate groups, respectively. 

There are abundant hydroxyl groups (OH-1) promoted by zirconium nanoparticles 

creating a hydrogen bond between the zirconium and UiO-66 via carboxylate linkers, 

hence, increase the adhesion between AHF and UiO-66 membrane.

1.3 Objectives of Study

This study aimed to prepare and characterize the UiO-66 membrane deposited 

on modified alumina hollow fiber (AHF) for HA removal. The objectives of the study 

are:

1. To study the single deposition and second deposition of UiO-66 membrane 

onto AHF using in-situ solvothermal synthesis at a constant 120 °C under 

different zirconium chloride concentrations and synthesis periods.

2. To examine surface modification of AHF with coat seeding sol-gel 

zirconium nanoparticles prepared using sol-gel Pechini method prior to the 

growth of UiO-66 membrane.

3. To investigate the effectiveness of HA removal for all prepared samples

using single deposition UiO-66, second deposition of UiO-66 and UiO-66 

deposited onto AHF modified by zirconium nanoparticles.
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1.4 Scopes of Study

In order to achieve the aforementioned objectives, the scopes of study have

been identified:

Scopes of Objective 1:

a) Fabricating AHF using spinning-based phase inversion and sintering technique 

for different conditions controlled i.e ceramic composition formula, extrusion 

rate, bore fluid rate, air gap, sintering temperature, and heating rate.

b) Characterizing AHF using scanning electron microscopy (SEM), atomic field 

microscopy (AFM), mercury intrusion porosimetry (MIP), mechanical 

strength, and pure water permeation test.

c) Preparing the UiO-66 mother solution for different zirconium chloride 

concentrations of 0.021 M, 0.034 M, 0.049 M and 0.051 M at constant 

zirconium chloride : BDC mass ratio is 1.4 [20].

d) Synthesizing UiO-66 membrane onto AHF using in-situ solvothermal 

synthesis for the constant solvothermal temperature at 120 °C under various 

synthesis period (24 hours and 120 hours)

e) Characterizing all design samples using field emission scanning electron 

microscopy (FESEM), energy dispersive X-Ray (EDX), X-ray diffraction 

(XRD), Brunauer-Emmet-Teller (BET), MIP, water stability test, and zeta 

potential analysis.

f) Preparing the UiO-66 mother solution for different zirconium chloride 

concentrations of 0.034 M and 0.1 M which selection was made according to 

Scopes (d) and (e).

g) Synthesizing in-situ solvothermal UiO-66 onto AHF with zirconium chloride 

concentrations of 0.034 M and 0.1 M at 120 °C of 24 hours.

h) Synthesizing the UiO-66 secondary deposition with zirconium chloride 

concentrations of 0.1 M at 120 °C for different synthesis periods of 24 hours, 

48 hours, and 60 hours.

8



i) Conducting a series of characterization to examine physicochemical properties

of design samples include FESEM, EDX, contact angle measurement, XRD, 

FTIR, and BET.

Scopes of Objective 2:

a) Preparing the sol-gel Pechini solution by mixing metal salt of zirconyl nitrate 

hydrate (ZrO(NO3)2 .xH2O), chelating agent (citric acid), cross-linking agent 

(ethylene glycol), and water.

b) Conducting polymerization proses of the sol-gel Pechini method at a 

calcination temperature of 400 °C for an hour.

c) Characterizing zirconium nanoparticle properties by using SEM, XRD, and 

BET analyses.

d) Preparing the UiO-66 mother solution for different zirconium chloride 

concentrations of 0.034 M and 0.1 M which selection was made according to 

Objective 1.

e) Synthesizing the in-situ solvothermal of UiO-66 onto AHF at the constant 

solvothermal temperature of 120 °C for 24 hours.

f) Examining the design samples properties using FESEM, AFM, and contact 

angle measurement.

Scopes of Objective 3:

a) Conducting a zeta potential test to examine the surface charge of UiO-66 

particles.

b) Preparing an aqueous solution of HA with an initial concentration of

1000 mg L-1. This concentration was selected as a maximum concentration of 

HA presence in the water system that can change due to topography, season, 

flood, drought, and human activities [47,48].

c) Conducting a compaction/stability for 30 minutes prior to pure water flux/

HA removal study.
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d) Performing pure water flux test and HA removal for initial concentration of

1000 mg L-1 for the constant transmembrane pressure (AP) of 2 bar using cross

flow filtration for all prepared samples, respectively.

1.5 Research Contributions

This study is beneficial to the researchers in which provide more in-depth

insights in the term of the preparation and characterization of metal-organic framework 

(MOF) of UiO-66 membrane deposited onto AHF using in-situ solvothermal 

synthesis. In addition to that, fundamental information of unique UiO-66 as an 

advanced class of porous materials can be further discussed that contribute knowledge 

on the development of other versatile nanomaterials. The design samples prepared in 

this study can solve the main challenge of unfavorable continuous MOF materials 

development on the hollow shape of substrate membrane, filling the gap of knowledge 

and beneficial to the scientific community to expand knowledge on versatile UiO-66 

features for the water purification process. Finally, this area of study can be further 

commercialized based on UiO-66 membrane for water purification will convincingly 

depict the advantages of this MOF's material as an alternative solution for fouling 

issues in membrane technology.

1.6 Thesis Organization

This thesis starts with Chapter 1 that contains the research background of the 

HA, membrane materials, and metal-organic framework of UiO-66. This chapter also 

elaborates in detail of problem statement, objectives, and scope of studies. Next is 

Chapter 2 that has insight knowledge of the studies from the introduction of HA, 

ceramic membrane fabrication and surface modification, the background of metal- 

organic framework and UiO-66 itself, related studies on the UiO-66 developed on 

AHF for different applications.
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In Chapter 3, there were four activities involved, which were 1) deposition 

UiO-66 onto AHF using in-situ solvothermal synthesis, 2) surface of AHF was 

modified with coat-seeded of UiO-66 particles prior to UiO-66 development known as 

a second deposition technique, 3) AHF was modified by coat-seeded of zirconium 

crystal nanoparticles prepared using sol-gel Pechini method prior to UiO-66 growth 

and 4) the performance tests of the design samples were tested based cross-flow 

filtration for HA removal.

Chapter 4 explains in detail the results gained from the experimental studies 

with insight discussion. In general, the UiO-66 layer was successfully developed on 

AHF after been modified by zirconium nanoparticles coat-seeded on the AHF's 

surface. The excellent rejection and permeation that was influenced by the charge 

repulsion effect between negatively charged carboxyl groups of UiO-66 and HA, 

respectively. Chapter 5 concluded the summary of this study. Some recommendations 

are suggested to improve this study for future works.
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