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ABSTRACT

Electron Paramagnetic Resonance (EPR) is a phenomenon based on Zeeman 
interaction. To study this phenomenon, a spectrometer is needed. Conventional 
spectrometers are using benchtop Arbitrary Wave Generator (AWG) or microwave 
synthesizer as microwave source for continuous wave mode and pulsed mode. However, 
there are few disadvantages with these instruments. Field Programmable Gate Array 
(FPGA) is another alternative to AWG due to it advantages such as high flexibility, 
low profile size and low cost. In this work, a X band FPGA based EPR spectrometer 
and a loop gap resonator were designed, simulated and built to detect EPR signals. 
The resonator was measured and found to have an unloaded resonance frequency 
of 8.852 GHz and Q-factor of 646.0 whereas the loaded resonance frequency was 
8.668 GHz with a Q-factor of 615.8. This spectrometer was successfully used to detect 
EPR signal in an external magnetic field from 311.2 to 311.8 mT with a signal-to-noise 
ratio (SNR) of 18 ± 8. Based on the experimental parameters, the 2,2-diphenyl-1- 
picrylhydrazyl (DPPH) g-factor from the developed spectrometer was measured to be 
1.9945 ± 0.0012. This value is very close to the DPPH standard value 2.003. Using 
the designed resonator and DPPH sample, the spectrometer performance such as signal 
purity, SNR and sensitivity was determined. This spectrometer has the potential to be 
modified to pulsed mode by installing certain components such as pulse amplifier and 
power attenuator.
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ABSTRAK

Resonans Paramagnet Elektron (EPR) ialah satu fenomena berdasarkan 
saling tindakan Zeeman. Untuk mengkaji fenomena ini, spektrometer diperlukan. 
Spektrometer konvensional diperbuat daripada penjana gelombang arbitrari (AWG) 
atau pensintesis gelombang mikro untuk mod gelombang selanjar dan mod denyut. 
Namun begitu, terdapat beberapa kelemahan dengan alat-alat terebut. Tatasusunan get 
logik boleh atur cara medan (FPGA) merupakan satu lagi alternatif kepada AWG kerana 
kelebihannya seperti fleksibiliti tinggi, saiz profil rendah dan kos rendah. Dalam kajian 
ini, sebuah spektrometer EPR berasaskan FPGA jalur X dan resonator jurang gelung 
telah direka bentuk, disimulasi dan dibentuk untuk mengesan isyarat EPR. Resonator 
tersebut telah diukur dan didapati mempunyai frekuensi resonans tanpa muatan adalah 
8.852 GHz dan faktor Q sebanyak 646.0 manakala frekuensi resonans dengan muatan 
sebanyak 8.668 GHz dengan faktor Q sebanyak 615.8. Spektrometer ini telah berjaya 
digunakan untuk mengesan isyarat EPR di dalam medan magnet luaran dari 311.2 
ke 311.8 mT dengan nisbah isyarat-hingar (SNR) 18 ± 8. Berdasarkan parameter 
eksperimen, faktor g 2,2-diphenyl-1-picrylhydrazyl (DPPH) daripada spektrometer 
yang dihasilkan diukur sebanyak 1.9945 ± 0.0012. Nilai tersebut adalah sangat hanpir 
dengan nilai piawai DPPH iaitu 2.003. Menggunakan resonator yang dihasilkan dan 
sampel DPPH, prestasi spektrometer seperti ketulenan isyarat, SNR dan sensitiviti telah 
ditentukan. Spektrometer ini mempunyai potensi untuk diubah suai mod denyut dengan 
memasang beberapa komponen yang bersesuaian seperti amplifier denyut dan pengecil 
kuasa.
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CHAPTER 1

INTRODUCTION

As a small introduction to the structure of this study, chapter 1 discusses the 
background, problems of current studies in EPR, objectives and aims, research range 
and importances of this study. Chapter 2 discusses the basic of EPR, hardware in EPR 
spectrometer and phenomenon associated with the hardware. Chapter 3 discusses the 
steps and precaution used in designing spectrometer, procedure to test the spectrometer. 
Chapter 4 discusses the simulation and experimental results for resonator, analysis of 
EPR spectrometer parameters and analysis of EPR signal from sample. Chapter 5 
concludes the work that was done.

1.1 Background of Study

Electron Paramagnetic Resonance (EPR) is a phenomenon of spin excitation 
of free electron. The theory behind this phenomenon is due to Zeeman interaction in 
free radical. In other words, any molecules or atoms with at least one free electron 
have EPR phenomenon. Today, the theory and concept are well known and utilized in 
various field such as food chemistry [2, 3], protein study [4] and matter structural study 
[5].

Electron spin is an example two level system (TLS), which is considered as a 
potential qubit in quantum computing. Quantum information in quantum computer are 
encoded in the electron spin states. By using EPR, the readouts and quantum operation 
toward electron spin states becomes possible [6]. The discovery of encoding qubits in 
quantum dot or spin states of electron in semiconductor is an advancement from the 
the idea of using spin state of an unpaired electron for quantum computing. However, 
quantum dot has low coherence time compared to spin qubits in atom that in spin-free 
environment [7] and the coherence control is a challenging task.
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To detect EPR signal, a microwave EPR spectrometer is needed. EPR 
spectrometer can be used to analyze sample molecular structure, energy levels and 
other properties related or correlated to electron spin. The EPR spectrometer are 
commercially available but are designed for general spectroscopy purposes and may 
not function well for specific purposes such as for quantum computation. For 
special purpose EPR spectrometer like quantum computing, some parameters must 
be adjustable or fit a specific sample.

Generally, there are two ways to study EPR: the continuous wave and pulsed. 
Based on the two method, various methods are derived by varying the experimental 
parameter or the da data analysis method. EPR spectrometers are designed based on 
the proposed methods [8, 9, 10, 11].

1.2 Problem Statement

For conventional continuous wave (CW) EPR, microwave synthesizer [10, 12, 
13, 14] or Vector Network Analyzer (VNA) [15] can be used as a microwave sources. 
High stability and accuracy CW EPR spectrometer typically use a lock-in amplifier 
as this component able to greatly improve the sensitivity of spectrometer [10, 14]. 
However, the application of CW EPR is limited while pulsed EPR is able to analyze 
other spin properties such as spin-spin relaxation times, spin-lattice relaxation time 
and Rabi oscillation [11, 16]. For a more advanced pulsed EPR, expensive arbitrary 
waveform generator (AWG) is typically used [9, 11, 17, 18]. There are also cheaper 
alternative methods such as using CW generator with a microwave switch [19]. This 
alternative method greatly limits the spin manipulation and pulse fidelity as only square 
pulses are generated [17]. The designs proposed by past researchers required additional 
microwave receiver such as analog to digital converter (ADC), which increases the 
complexity for interfacing.

Currently, commercial CW and pulsed EPR spectrometer such as Bruker and 
Jeol are available [20, 21, 22]. For user friendliness, commercial product reduces the 
preparation and experimental steps for analyze EPR signals. At the same time, the
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user loses the flexibility to modify spectrometer parameter such as pulse shape as only 
square pulses are allowed [22].

A new generation of EPR spectrometer has been proposed and is based on AWG. 
Thus, AWG is the current main solution for pulsed EPR. However, this arbitrary wave 
generation is very costly and space consuming especially at X band frequencies and 
above. Besides this, additional signal receiver might needed for data analysis increasing 
the profile size of spectrometer [17] and complexity of interfacing program. Due to the 
high cost for owning an AWG, Field Programmable Gate Array (FPGA) is considered 
as a cheaper alternative to generate arbitrary wave whilehaving higher flexibility [23].

Besides this, some FPGA is able to incorporate a microwave receiver to become 
a transceiver to analyse EPR signal which has higher cost effectiveness than AWG based 
system that need additional microwave receiver to detect the EPR signal. However, 
suitability of FPGA for signal generation and detection for EPR is still being investigated 
[24]. Besides, the minimum specification of a homemade FPGA-based spectrometer 
that can support EPR experiments is still unknown. To that and this study focuses on 
designing and analyzing the suitability of a homemade FPGA based EPR spectrometer 
for CW experiment.

1.3 Objective of Study

There are several objectives for this study, that includes:

1. To design and fabricate resonator for X band EPR experiment.
2. To design a working FPGA based CW EPR spectrometer to detect EPR signal.
3. To determine the performance of designed EPR spectrometer such as EPR

signal strength, power output and signal purity.
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1.4 Research Scope

First, the resonator will be designed, fabricated and analysed. The fabricated 
resonator must able to generate sufficiently high and homogenous microwave magnetic 
field, B\. The FPGA, Xilinx Kintex-7 KC705 is programmed to generate CW with 
various frequency from 50 MHz to 100 MHz, directed into the resonator containing 
DPPH sample after passing through signal conditioning component and heterodyning 
to convert into X band frequency (frequency range from 8 GHz to 9 GHz). The 
spectrometer circuit will be designed, developed, tested and analyzed. The FPGA 
based EPR spectrometer must be able to excite electron spin and detect the EPR signal. 
DPPH sample is used because of DPPH is the standard material in EPR studies and it 
contains a single EPR peak [25]. Thus, the difficulty to analyze the signal is reduced. 
The return signals from the resonator is then measured by FPGA and recorded. The 
data will be analyzed by using a personal computer to determine the EPR signal and 
other parameters of the spectrometer. The performance of the spectrometer such as 
EPR signal strength, power output and signal purity will be analysed to ensure the 
FPGA based spectrometer designed is suitable to obtain EPR signal. Oscilloscope is 
another choice for measuring the returning signal, but is more costly. This is because 
the FPGA readings is directly transfer to personal computer without the need of another 
instrument.

1.5 Research Significant

EPR is widely applied in many fields such as detection of radical, detection and 
measuring of radioactivity, food industry, oil and gas industry, quantum computing and 
etc. Moreover, the trend of developing a quantum computer is inevitable. The use of 
EPR in detection of electron spin state in spin based quantum computer will most likely 
increase by time [26]. Typically, most of the EPR spectrometer are commercial systems, 
which are made for general use, user-friendliness but may not be suitable for specific 
experiment such as quantum computation [27]. Conversely, FPGA based arbitrary 
wave generation does not has those disadvantages. Firstly, the FPGA is designed by 
the user where the designed circuit can generate signals for specific purposes to excite 
the electron spins. FPGA can be designed as a microwave transceiver decreasing
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the complexity of spectrometer design. Next, the cost of FPGA is much lower than 
commercial arbitrary wave generator (AWG) especially in high frequency range such as 
in GHz range. Furthermore, FPGA has low profile size compared to commercial AWG 
which is important for several purposes such as to cool down the FPGA to improve 
Signal to Noise ratio (SNR) [28].
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