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ABSTRACT

Thermo-responsive polymers have a great potential to be used in various 

types of microdevices. Besides being low cost, lightweight, and easy to process, the 

material properties can be easily tuned by altering the polymer chemistry and 

structure. These preferences have resulted in their application in many fields, 

including those in biomedical. Nevertheless, their advantages have not been fully 

exploited. For instance, most of the actuation mechanisms typically by increasing 

materials temperature using Joule heating which requires wired interfaces, thus 

restricting their applications where access and space are crucial. This thesis reports a 

novel technique for the wireless control of thermo-responsive polymers 

microactuators and microvalve. The wireless control of thermo-responsive polymers 

utilizes a radiofrequency magnetic field wireless heating of planar inductor-capacitor 

circuit to directly heat the actuator/valve, without the use of additional circuits is 

demonstrated. To function as a cantilever type microactuator, a shape-memory 

polymer bonded directly with a heater is fabricated. The actuation range of 140 |im 

as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 

W radio frequency (RF) power. An application of a drug delivery device integrated 

with the proposed actuator is demonstrated. The actuator is successfully operated in 

water through wireless activation diffusing acidic solution with an average release 

rate of 0.172 |iL/min. Wireless actuated microvalve using paraffin wax for the 

centrifugal microfluidic compact disc is also presented and evaluated. Experimental 

characterization shows a valve operated within ~ 100 s of activation using RF power 

of 1 W that provides a temperature increase up to 42 °C at a disc rotation speed of 

200 rpm. The presented RF wireless control scheme of thermo-responsive polymer 

would provide an opportunity to extend further their potential of application beyond 

this report.
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ABSTRAK

Polimer tindakbalas haba mempunyai potensi yang banyak untuk digunakan 

didalam pelbagai jenis alatan mikro. Selain murah, ringan, dan mudah diproses, sifat 

bahan juga dapat disesuaikan dengan mengubah struktur atau komposisi kimia 

polimer. Kelebihan ini membolehkan ianya diaplikasikan didalam pelbagai bidang 

asuk bidang bioperubatan. Walaupun begitu, ia masih belum dimanfaatkan 

sepenuhnya. Sebagai contoh, mekanisme pengaktifan biasanya dilakukan dengan 

meningkatkan suhu bahan menerusi pemanasan Joule yang mana ia memerlukan 

antaramuka berwayar. Teknik ini membataskan potensi aplikasi didalam situasi 

dimana akses dan ruang menjadi keutamaan. Tesis ini melaporkan teknik baru bagi 

kawalan tanpa wayar penggerak-mikro polimer dan injap-mikro, menggunakan 

polimer tindakbalas haba. Kawalan tanpa wayar polimer ini diaplikasi menggunakan 

medan magnet frekuensi radio menerusi pemanasan tanpa wayar litar leper induktor- 

kapasitor, bagi memanaskan penggerak / injap secara langsung, tanpa penggunaan 

litar tambahan. Polimer bentuk memori yang diintegrasikan dengan pemanas juga 

telah dibangunkan yang berfungsi sebagai penggerak-mikro jenis kantilever. Jarak 

pembukaan 140 p,m dicapai pada suhu peranti 44 °C dalam masa 30 s menggunakan 

kuasa radio frekuensi (RF) 0.05 W. Aplikasi alatan penyampaian ubat yang 

diintegrasikan dengan penggerak juga dibentangkan. Penggerak berjaya dikendalikan 

di dalam air melalui pengaktifan tanpa wayar di dalam larutan berasid, dengan purata 

kadar pelepasan cecair 0.172 ^L/min. Selain daripada itu, injap mikro yang 

digerakkan tanpa wayar menggunakan lilin parafin bagi applikasi cakera padat 

emparan mikrocecair, juga dibentangkan dan dinilai. Pencirian melalui eksperimen 

menunjukkan injap dapat dikendalikan dalam masa ~ 100 s selepas pengaktifan 

dengan menggunakan kuasa RF 1 W, dimana ianya berjaya menaikkan suhu 

sehingga 42 °C pada kelajuan putaran cakera 200 rpm. Skim kawalan tanpa wayar 

RF polimer tindakbalas haba yang dibentangkan ini berpotensi untuk diperluaskan 

lagi aplikasinya di luar laporan ini.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Microelectromechanical Systems (MEMS) are developed using a technology 

that combines the properties of electrical, mechanical, or other elements (i.e., 

magnetic, thermal, etc.), into a micro-scaled system. These systems are typically 

fabricated using conventional semiconductor batch processing techniques. They are 

miniature in size, ranging from millimeters down to nanometers. This technology has 

enabled various approaches in the biomedical field, such as pain management [1], 

cardiac pacemakers [2], minimally invasive robotic-assisted surgery [3], lab-on-a- 

chip (LOC) [4], and drug delivery [5].

Among these applications, LOC and drug delivery have received much 

attention from the scientific community due to their significant impact in medicine. 

The LOC platform is based on microfluidics, which is the study of micro-scaled fluid 

dynamics. LOC technology affects drug delivery advancements in various aspects, 

including drug carrier manufacturing, screening and their delivery.

With the accelerated development of new medicinal compounds, new drug 

delivery systems are needed to overcome the challenges associated with traditional 

drug delivery systems. One of the solutions is by introducing an implantable drug 

delivery system. MEMS are promising candidates for the development of novel 

implantable drug delivery systems that address existing problems. The system allows 

the delivery of various drugs with high therapeutic effectiveness by offering 

electromechanical control, multiple function integration, and miniaturization.
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In recent decades, studies and application of MEMS in implantable drug 

delivery systems, especially on microactuators, have focused on their drug release 

mechanism. Microactuators are designed and developed using different methods that 

accommodate targeted applications. These devices are often operated using 

electrostatic, piezoelectric, electromagnetic and electrothermal principles, and may 

be made of shape-memory materials (SMMs).

In addition to drug delivery, the MEMS technology was used in microfluidic 

devices. This specific type of device comprises of microfluidic unit operations that 

allow for assay miniaturization, integration, automation, and parallelization of 

biochemical processes. The devices are typically classified by their type of liquid 

propulsion systems [6], such as capillary, acoustic, electrokinetic, pressure-driven, 

and centrifugal. A centrifugal-based microfluidic system is preferable as it does not 

require an external pumping mechanism to move the fluid inside the microfluidic 

channels. This would facilitate the integration of several microfluidic unit operations 

on a single platform.

The ability to operate MEMS devices wirelessly is also important to support 

the implantable nature and their portability. One approach to this wireless scheme is 

to utilize an active actuation mechanism, which is commonly defined by a battery- 

powered device. However, this approach tends to develop a bigger device with 

limited power longevity.The passive actuation mechanism, often known as 

batteryless actuation, is a better option for addressing these issues. Passive actuation 

uses acoustic waves, magnetic fields, ultrasonic, or inductive coupling mechanisms.

An inductive coupling mechanism is preferable to selectively control multiple 

devices. In this technique, a radio frequency (RF) magnetic field is used to transfer 

power from the transmitter to the receiver coil on the device. This transferred power 

is dissipated as heat, which is then used to control thermal-based actuators such as 

shape memory alloy (SMA), shape memory polymer (SMP), or paraffin wax.
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Thermal-based SMA is advantageous due to its ability to provide high 

actuation stress. However, SMA is relatively expensive and requires a complex 

fabrication process to fabricate a device. A thermal-based polymer such as SMP or 

paraffin wax is preferable. Apart from being relatively cheaper and easier to process 

than SMA, the polymer has excellent mechanical properties, is flexible, and is 

biocompatible.

This thesis reports a novel wireless control of a thermo-responsive polymer- 

based microactuator and microvalve. The thermo-responsive polymers utilize RF 

magnetic field wireless heating of the planar inductor-capacitor circuit to directly 

heat the actuator or valve. Both devices are demonstrated in implantable drug 

delivery and microfluidic disc applications, respectively.

1.2 Problem Statement

Although there are numerous development of microactuators and 

microvalves, the ability to miniaturize and deploy these devices in implantable and 

portable applications is still limited. There are many obstacles and issues related to 

their powering, actuation, and integration. Thus far, such devices are commonly 

bound to the use of onboard batteries to activate the device. This method is not 

convenient for long-term implants and portable devices. Moreover, battery-powered 

devices require extra circuitry that increase their size. In contrast to the active type of 

actuators, passively operated actuators offer the ability to be scaled down in size. 

Scaling down reduces the cost of the system, while ensuring greater robustness and 

longevity. In addition, passively controlled systems are more appealing for 

implantable devices as they are safer for a longer period of use before replacement.
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The passively controlled wireless actuation mechanism have been studied 

previously. However, their application in the wirelessly driven microactuator and 

microvalve have not been well explored, and their actuation mechanism requires 

further improvement, especially for the thermal-based type. There are reports on 

wireless activated thermal-based microactuators that used SMA [7], [8]. However, 

SMA is known to be expensive and requires complex processes and machines to 

process. The thermal-based wireless actuation mechanism still requires further 

research.

1.3 Research Objective

The main objectives of this research are to investigate 1) an implantable drug 

delivery device and 2) a centrifugal microfluidic device, activated by a thermo- 

responsive material that is powered and controlled wirelessly using an external 

magnetic field. The specific objectives are:

i. To develop a

ii. of the developed devices, including their temporal and thermal responses.

1.4 Scope of Research

The scope of this research focuses on the development of two wirelessly 

controlled devices for specific applications, namely, a microactuator for drug 

delivery applications and a microvalve system for centrifugal microfluidic disc 

application. The wireless actuation schemes are based on a thermal-responsive 

polymer. Furthermore, this scheme was employed in inductor-capacitor (LC) circuits 

designed for wireless activation of the devices.
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For the fabrication process of the devices, the standard MEMS fabrication 

technique, including photolithography, etching, electroplating, and micromachining 

were used. The Cu-clad Polyimide (PI) was used to realize the LC circuit, while bulk 

polymethyl methacrylate (PMMA) was utilized to fabricate the drug reservoir and 

microfluidic centrifugal disc. The thermal-based SMP and paraffin wax was used to 

realize the microactuator and microvalve, respectively.

The Solidworks® software was used for the physical design. The thermal 

responses of the LC heaters and the thermomechanical behavior of the 

microactuators were simulated using (finite element analysis) FEA simulations by 

mean of COMSOL Multiphysics®. For characterization, thermal analysis was 

measured using an infrared (IR) thermal camera, displacement sensing was measured 

using a laser displacement sensor, S11 parameters were evaluated using a network 

analyzer and imagery data were obtained using microscopic imaging and digital 

single-lens reflex (DSLR) camera.

1.5 Research Contribution

This research proposes three significant contributions, with the utilization of 

the two different wirelessly controlled devices consisting of a thermo-responsive 

material as a medium of activation. These contributions are highlighted as follows:

i. Development of a novel wireless LC planar microheater with minimal 

fabrication process, employing double-sided Cu-clad Polyimide (PI). This 

process eliminates the material deposition step and significantly reduces the 

time required to fabricate the heater.

ii. Development of a novel implantable drug delivery device actuated by an 

SMP/PI laminate that exhibits two-way actuation. The device is operated 

using a passive frequency-sensitive wireless planar LC heater integrated with 

the SMP and enabled by an external magnetic field.
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iii. Development of novel selective wireless RF-controlled active valves for a

microfluidic disc platform using field frequency modulation. The LC

resonant circuit served as a frequency-sensitive wireless heater that provides

localized heating with minimal power transmission.

1.6 Potential Impact of Research

Several factors are associated with the rather low application of MEMS-based 

actuators in biomedicine. One of these factors is the use of a conventional wired 

powering method, which limits mobility. To date, onboard batteries and biofuel cells 

are potential solutions to this issue. However, these approaches increase the size of 

the systems, subsequently limiting their operation and range of application. A passive 

RF wireless control system to drive the actuators, would allow further coping 

improvements and widen their number of possible applications.

One of the potential applications of the actuators is in implantable drug 

delivery devices. With this approach, the size and method of powering are important 

to provide minimum invasiveness and long-term operations. Furthermore, the ability 

to wirelessly control multiple actuators that are integrated into a single device in a 

selective manner will be advantageous in implantable and microfluidic devices. 

Integration of the actuator's component and the LC circuit can greatly reduce 

fabrication complexity, size, and cost of the device. Furthermore, the LC circuit 

fabricated using double-sided Cu-clad PI, was proven to require only a few steps, 

thus reducing the number of steps required [7], [8]. In addition, the use of polymers 

that are flexible and easier to process may initiate a rapid development of MEMS- 

based microactuators and microvalves. The positive outcomes from this research are 

expected to promote advances in the technology of devices used in biomedicine and 

beyond.
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1.7 Thesis Outline

This thesis is divided into six chapters. Chapter 1 is a general overview 

ofMEMS technology, implantable drug delivery, and microfluidic systems. This is 

followed by the problem statement, objectives, and scope of the research. Chapter 2 

presents the literature review, which covers an overview of thermo-responsive 

materials, implantable drug delivery device systems, and microfluidic devices in 

greater depth. MEMS actuation mechanisms, material properties, and actuation 

methods are also covered in their respective applications. Chapter 3 presents the 

methodology, followed by Chapter 4, which covers the development of a frequency 

controlled SMP microactuator for implantable drug delivery devices. Chapter 5 

presents a novel wireless valving for a centrifugal microfluidic disc and demonstrates 

its ability to selectively activate multiple actuators, as well as valve performance. 

Finally, the thesis concludes with Chapter 6, where the key results and directions for 

future work are discussed, followed by a list of publications resulting from this work.
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