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ABSTRACT

The current w ireless cellular system  m ay suffer from  congestion and 

spectrum  shortage issue. Thus, higher frequency spectrum  is introduced for 

w ireless cellular system. H ow ever, at high frequencies, a h igher propagation loss 

is expected. W ith sm aller antenna elem ent at m illim eterw ave band, m ore 

elem ents can be packed creating arrays m aking beam form ing possible by 

controlling the signal phase. The B utler m atrix beam form ing netw ork is adopted 

in this thesis due to its sim plicity w ith capability to  form  the beam  in desired 

direction by having different phases at the outputs. H ow ever, at m illim eterw ave 

the m assive netw ork can introduce significant losses on the com ponents as well 

as the interconnections. Therefore, this thesis proposes a low  loss w aveguide- 

based structure w here the signal is governed w ithin the walls. Com ponents o f 

B utler m atrix  beam form ing circuit are designed using w aveguide structure prior 

to  the integration w ith the antenna. The com ponents are the 3-dB coupler, 0-dB 

crossover, and 45° phase shifter. The com ponents are im plem ented using 

rectangular cavity resonators w ith iris coupling k-value control m ethod. This iris 

coupling k-value controls the coupling and the phase shift o f  the B utler m atrix 

com ponents. B y using the analytic technique o f  tuning k-value, the required 

coupling and phase difference at outputs can be obtained. The antenna is basically 

a very directive w aveguide slots antenna. The slots are sym m etrically distributed 

on both sides o f  the broad wall o f  the w aveguide structure. This enables a dual­

beam  property. The structures are sim ulated using CST m icrow ave software 

before fabricated using direct m etal laser m elting (D M LM ) and selective laser 

m elting (SLM ) 3-dim ensional (3D) printing techniques and m easured using 

standard vector netw ork analyser (VNA). The printed 4 x 4  B utler m atrix has 

been m easured and analysed. The m easured reflection and isolation coefficients 

are observed to  be less than -10 dB, w ith transm ission coefficients ranging 

betw een -7 to -9 dB. The phase differences o f  - 42.02°, 42.02°, -130.95°, and 

133.3° are observed at the outputs. The m atrix  has been integrated w ith four 

w aveguide slots antennas. The m easured results show the h ighest gain o f  15.21 

dB w ith scanning angles betw een 20° to  30°. Overall, the w aveguide B utler 

m atrix beam form ing netw ork shows good perform ance and has great potential 

for m illim eterw ave w ireless system s applications.

v



ABSTRAK

Sistem  selular tanpa w ayar sem asa m ungkin m engalam i kesesakan dan m asalah 

kekurangan spektrum. O leh itu, spektrum  frekuensi tinggi diperkenalkan untuk sistem 

selular tanpa wayar. W alau bagaim anapun, pada frekuensi tinggi, jangkaan  bagi kehilangan 

adalah lebih tinggi. D engan elem en antena yang lebih kecil pada ja lu r gelom bang m ilim eter, 

lebih banyak elem en boleh diletakkan dalam  ruangan yang terhad bagi m em bolehkan 

pem bentukan alur dengan m engaw al fasa isyarat. Rangkaian m atrik  B utler diadaptasi dalam  

tesis ini kerana kesederhanaannya dan keupayaan untuk m em bentuk alur isyarat pancaran 

pada arah yang dikehendaki dengan anjakan fasa pada keluaran. W alau bagaim anapun, pada 

gelom bang m ilim eter rangkaian besar boleh m em baw a kepada kehilangan isyarat yang 

ketara pada kom ponen dan ju g a  pada penyam bungan. O leh itu, tesis ini m encadangkan 

struktur berasaskan pandu gelom bang berkehilangan rendah yang baru di m ana isyarat 

terkaw al di antara dinding. K om ponen litar m atrik  B utler direka bentuk  m enggunakan 

struktur pandu gelom bang sebelum  diintegrasikan dengan antena. K om ponennya adalah 

pengganding 3-dB, litar lintas 0-dB, dan penganjak fasa 45°. K om ponen tersebut 

diim plem entasi m enggunakan penyalun rongga segiem pat tepat dengan nilai k  gandingan 

iris sebagai elem en kawalan. N ilai k  gandingan iris akan m engaw al gandingan dan anjakan 

fasa kom ponen m atrik  Butler. D engan m enggunakan teknik  analitik penalaan nilai k, 

gandingan dan anjak fasa yang diperlukan pada keluaran boleh diperolehi. A ntena pada 

dasarnya adalah antena gelom bang slot pandu yang sangat terarahan. Slot ini diagihkan 

secara sim etrik pada kedua-dua belah dinding luas struktur pandu gelom bang. Ini 

m em bolehkan sifat dwi alur. Struktur tersebut disim ulasikan m enggunakan perisian 

gelom bang m ikro CST sebelum  difabrikasi m enggunakan teknik  percetakan tiga-dim ensi 

(3D) secara peleburan logam  dengan laser secara terus (DM LM ) dan peleburan laser secara 

p ilihan (SLM ) serta d iukur m enggunakan analisa rangkaian vektor (VNA). M atrik  B utler 4 

x 4 yang dicetak telah diukur dan dianalisis. Pekali balikan dan pengasingan yang diukur 

adalah kurang daripada -10 dB, dengan pekali penghantaran antara -7 hingga -9 dB. 

Perbezaan fasa sebanyak - 42.02°, 42.02°, -130.95°, dan 133.3° didapati pada keluaran. 

M atrik  telah diintegrasikan dengan em pat antena slot pandu gelom bang. H asil pengukuran 

m enunjukkan gandaan m aksim a 15.21 dB dengan sudut pengim basan antara 20° hingga 30°. 

Secara keseluruhan, rangkaian m atrik  B utler m enunjukkan prestasi yang baik  dan 

m em punyai potensi besar untuk aplikasi sistem  tanpa w ayar gelom bang m ilim eter.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The increasing demands for higher traffic capacity, higher data rates, and 

higher gain in the wireless communication systems have been addressed in this past 

few decades [1]. Wireless communication systems use electromagnetic field that 

transverses in certain frequency bands to broadcast data over air. The higher the 

frequency, the wider the bandwidth. Hence, the International Telecommunication 

Union (ITU) stated that by the year o f 2020 the wireless communication traffic 

would increases from 25 to 100-fold growth ratio compared to the year 2010 [1]. 

M illimeter wave (mm-wave) spectrum is proposed to accommodate these demands. 

A mm-wave spectrum has the capability of achieving tens to hundreds bandwidth 

compared to the lower bands. For example, let us consider the latest cellular 

standards, the fourth-generation cellular network (4G). The 4G operates in 2.6 GHz 

spectrum and suffers from congestion o f frequency bandwidth at the lower band. 

However, some research efforts are presented in [2-5] to increase the data rates and 

improving the spectrum efficiency such as multiple inputs multiple output (MIMO), 

Carrier aggregation (CA), coordinated multipoint (COMP), and Hetnets methods. 

Yet, it is not a valuable solution to support the need o f more traffic capacity for 2020 

and beyond. Therefore, fifth generation cellular network (5G) is proposed to be 

implemented using mm-wave spectrum [6 ].

The 5G and mm-wave technology are expected to provide huge transmission 

rate up to Gbps, and more than 100 times peak data rate than 4G. Moreover, 5G and
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mm-Wave technology are also expected to enable point to point (P2P) and machine 

to machine (M2M) communication systems that will affect both consumers, and 

industry [7, 8 ]. However, to achieve a reliable P2P and M2M communication 

systems at mm-wave and 5G technology, a high data rates, high gain, high directivity 

beams are needed. In such systems smart antenna systems (SAS), is vastly 

recommended for high gain, high directivity beams, and high data rates wireless in 

mm-wave technology [9, 10]. In SAS, a tracing system is needed to continuously 

follow the targets and then adjust the radiation pattern beams o f the antenna to 

deliver several narrow beams of the switched beam smart antenna systems (SBSA) to 

the desired targets and eliminates the interference causes.

At mm-wave frequency, the problem of free space loss is addressed and smart 

antenna systems (SAS) is proposed to overcome this problem. SAS uses antenna 

array, radio frequency (RF), and beamforming networks (BFNs) to increase the 

sensitivity in the desired direction with strong signal strength received as the user 

mobiles throughout the track-point [9]. It offers various benefits of less complexity 

and expensive [10]. Additionally, adaptive array uses digital signal processing (DSP) 

and direction of arrival (DOA) to enhance the sensitivity and steer the beam toward 

desired direction, still more cost and complexity is considered in these systems. The 

SBSA performance relies on the accurate design o f the beamformer circuit which 

delivers fixed beam directions. Various BFNs topologies are introduced such as 

Rotmans Lens [11], Blass Matrix [12], and Butler matrix [13]. Butler matrix (BM) is 

received significant attention [14, 15] due to its easy to design, simplicity, and can 

support one dimensional (1-D) beam switching at ±45° and ±135° [16]. It is chosen 

for this research work and will focus on realising a 1-D beam switching based on BM 

BFNs. However, this BM BFN may suffer from high loss transmission lines and 

fabrication tolerance at mm-wave technology. Different transmission lines such as 

microstrip, stripline, coaxial line, and waveguide-based structured are studied for low 

loss transmission line in mm-wave frequency [17-20]. W aveguide-based structures 

are good candidate for implementation o f BM beamformer due to its property o f low 

loss transmission line.
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The traditional manufacturing techniques in mm-wave technology are 

considered high cost with high fabrication tolerance, which degrades the 

performance o f the fabricated devices at mm-wave frequencies [21]. Additive 

manufacturing (AM) namely three-dimensional (3D) printing technology [22, 23] is 

proposed to overcome these problems due to its advantages o f low-cost fabrication, 

short time process, and exactable fabrication tolerance at mm-wave technology [24, 

25]. A different types of 3D printing techniques are introduced with features and 

drawbacks based on build speed, cost, resolution, geometry limitations, and surface 

finishing [25, 26]. The commonly types of 3D printer are Fused Deposition 

Modelling (FDM) in term of dielectric material and Electronic Beam Melting 

(EBM), Direct Metal Laser Sintering/Melting (DMLS/M), and Selective Laser 

Melting (SLM), in term of metal material. 3D printing applications are found in the 

fabrication of passive devices such as waveguides, horn antennas, and cavity-based 

components. The 3D printing technology uses powder or liquid based materials. 3D 

printing technology has several advantages o f consuming lower energy, efficient 

material utilization, lower labour costs, capability o f realizing complex structure, and 

shorter processing cycle. However, some o f 3D printing techniques are reported 

with surface roughness and dimensional tolerance [26]. In this work, full waveguide 

Butler matrix antenna beamforming network are designed and fabricated using 3D 

print technology. The performance is studied over the ability of the structures to 

work accordingly.

1.2 Problem Statement

Beamforming networks can be realized using fixed network circuits such as 

Blass matrix, and Butler matrix. The Butler matrix is received significant attention 

due to its simplicity with capability to form high gain-narrow beam signal by various 

phase shift characteristic at the output [9, 13]. The BM consists of hybrid coupler, 

crossover, and phase shifter. The hybrid coupler or branch line coupler (BLC) is a 

four-port network device with quarter-wavelength transmission line between two

3



coupled ports which gives 90 degrees phase difference. Therefore, overall dimension 

of the coupler is basically inversely proportional to the frequency in order to 

maintain the quarter-wavelength line. At millimeter wave frequencies the size of a 

planar BLC would be comparably small and distance between adjacent lines would 

be closer. Hence, crosstalk between the BLC sections is expected. A microstrip BLC 

at 28 GHz is presented in [27, 28]. The BLC sections have very small separation (0.1 

mm and 1 mm) which produces crosstalk between the lines, resulting in phase 

difference errors at output ports. More losses and phase errors are expected if  the 

component is to be integrated to form a BM network. In other work, conventional 

BMs are designed at 30 GHz and 60 GHz in [29, 30]. The structure exhibits a high 

insertion loss o f 9 dB and phase difference error o f greater than ±5°. Thus, it is a 

challenge to design low loss network circuit at millimeter wave frequency band such 

as Butler matrix to feed the antenna so that the beam can be formed in the desired 

direction. Therefore, waveguide technology is proposed to overcome the challenges. 

The circuit including the antenna is proposed to be designed using waveguide-based 

structure to overcome components losses and crosstalk where signals are confined 

within the walls of the waveguide structure. However, it is not easy to control the 

phase by having common direct coupling in waveguide design [31, 32], especially 

for BLC, crossover and phase shifter as the basic components in BM network. 

Therefore, a cavity resonator with iris coupling control is proposed in this work.

1.3 Research Aim and Objectives

The aim of this research is to design a low loss butler matrix beamforming 

network at millimetre wave frequency band. The following are the main objectives of 

this research.
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1. To design and develop a low loss Butler matrix network including 

hybrid coupler, 0-dB crossover, and 45° phase shifter using iris 

coupling control method in waveguide-based technology at 28 GHz.

2. To design and develop a high gain directive dual-beam waveguide slot 

antenna at 28 GHz to be integrated to the waveguide-based Butler 

matrix beamforming network.

3. To analyse the performance o f the antenna beamforming network at 28 

GHz that would benefit the antenna beamforming system for 

millimetre wave application.

1.4 Scope of Work

This research focuses on developing a low loss Butler matrix antenna 

beamforming at 28 GHz frequency based on waveguide technology. The Butler 

matrix consists of couplers, crossovers, and phase shifter. The components are 

designed and analysed individually before integrated to form Butler matrix 

beamforming network. The Butler matrix network is to be integrated with a high gain 

waveguide slotted antenna. The structures are designed based on theoretical 

calculations before simulated and optimized using Computer Simulation Technology 

(CST) Microwave Studio (MWS). All the designs are implemented using waveguide- 

based structure technology. The designed components are fabricated using 3D 

printing techniques namely Direct Metal Laser Melting (DMLM) and Selective Laser 

Melting (SLM). The surface roughness and fabrication tolerance o f the fabricated 

waveguide slots antenna is studied in correlation to the performances. Figure 1.1 

shows the research scope o f this work. The coloured boxes are indicated the chapters 

where the designs are discussed, and the arrows present the workflow. The green box 

content is presented in Chapter 2. The pink box component is discussed in Chapter 4. 

The yellow boxes components are introduced in Chapter 5, and blue boxes in 

Chapter 6 .
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Figure 1.1 The research scope flow.

1.5 Research Contributions

In this research, three main contributions are claimed. These are:

1. Waveguide based Butler matrix network components including hybrid 

coupler, 0-dB crossover, and 45° phase shifter are developed using cavity 

resonator based on iris coupling control k-value methods at 28 GHz.

2. A highly directive dual-beam radiation pattern of a waveguide slotted 

antenna at 28 GHz is achieved by having slots on two broad-walls.

3. Fully waveguide Butler matrix network is developed with ± 42°, ± 133° 

phase difference.
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1.6 Thesis layout

This thesis is prepared in seven chapters.

Chapter 1 introduces the overview of research background, followed by the 

problem statement, research objectives, and the scope of work. The research 

contributions to knowledge and the thesis outlines are highlighted at the end of the 

chapter.

Chapter 2 presents a literature on Butler matrix beamforming network in mm- 

wave technology. Planar transmission lines and waveguide-based structures are 

presented in the beginning, followed by Butler matrix beamforming network and its 

components. Then, waveguide slot antenna fundamentals are presented. Related 

works on waveguide slot antenna, branch line coupler, crossover, phase shifter, 

Butler matrix beamforming networks are critically reviewed in this chapter.

Chapter 3 focuses on the methodology used to achieve the proposed designs. 

The methodology steps are simplified in the form of a flowchart. The design 

specifications are justified based on related published work and standards 

requirement as guidance. The design parameters and equations are discussed and the 

fabrications as well as the measurement procedures are presented.

Chapter 4 focuses on the Butler matrix components; from the design to the 

fabrication and measurement. The parametric studies of all the components are 

studied and discussed before the optimized design is finalized. The optimized 

designs are fabricated using 3D printing technology before it is measured, and the 

performances are analysed.

Chapter 5 presents the design of the waveguide slots antenna. Longitude slot 

type is chosen and thus the design; simulation and optimization are presented. The 

antenna is fabricated using 3D printing technology and the performance is discussed, 

as well as the effect of the fabrication tolerance on the performance.
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Chapter 6  discusses the integration of the Butler matrix circuit and the 

designed antenna with the ability o f one-dimensional beam switching. The simulated 

and measured results are analysed.

Chapter 7 concludes the finding o f this research. The recommendation for 

future work on the antenna beamforming networks for millimeterwave technology is 

listed.
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