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ABSTRACT

Water waves phenomenon with a forcing disturbance causing unsteady waves 

is considered as a complicated phenomenon. In this research, forced Korteweg-de 

Vries (fKdV) equation is found to explain the behaviour of unsteady waves over 

underwater obstacles. The forcing terms in fKdV non-linear equation are modelled and 

the approximate analytical solutions are found using Homotopy Analysis Method 

(HAM). Specifically, standard fKdV equation for three different choices of forcing 

term such as quadratic, sinusoidal and exponential are studied in this research. The 

ability of HAM in solving non-integrable soliton-type fKdV models are validated 

using Hirota’s Method with reference to Jun-Xiao and Bo-Ling works in 2009. The 

relationship between forcing term in fKdV equation and bottom topography with 

specific critical flow of an ocean are also investigated. Transcritical flow over a hole 

and a bump are examined using nonlinear shallow water fKdV equation. It is found 

that multi solitary waves exist and maximum elevation of waves occurs at the deepest 

hole of the seabed. The water wave exhibits solitary pattern when it flows over sloping 

region of a hole but no distinctive pattern on flattened based seabed. The transcritical 

flow over a bump consequently generates upstream and downstream flows. 

Meanwhile, flow over a flatten bump shows no activity on the flat part of bottom 

topography but the waves exhibit multi solitary interactions over positive and negative 

sloping region bump. Furthermore, water wave propagation interaction patterns over 

a moving bump is explored and it is found that the flow of water waves become 

subcritical and supercritical based on the critical parameter in the fKdV equation. 

Three different sloping shapes of Gaussian bump are analyzed as underwater 

disturbances. If the forcing slope is steep, then it triggers a high amplitude peaked 

waves. The water wave propagation interaction patterns are also observed when it 

travels over a flat bottom to inclination plane. In particular, at different degree of 

inclinations, water wave interaction patterns show higher amplitude at higher steeper 

planes. In summary, this study shows that steeper sloping underwater topography and 

types of criticality flow determine the nonlinearity of water wave propagation 

interaction pattern when it travels over some certain underwater topography.
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ABSTRAK

Fenomena ombak air dengan gangguan paksaan menyebabkan gelombang 

yang tak mantap dianggap sebagai fenomena yang rumit. Dalam kajian ini, persamaan 

Korteweg-de Vries (fKdV) paksa didapati menerangkan kelakuan gelombang yang tak 

mantap dengan halangan bawah air. Istilah memaksa dalam persamaan tak linear 

fKdV dimodelkan dan anggaran penyelesaian analitikal telah didapati dengan 

menggunakan Kaedah Analisis Homotopy (HAM). Khususnya, persamaan fKdV 

piawai bagi tiga pilihan paksaan seperti kuadratik, sinusoidal dan eksponen telah 

dikaji. Keupayaan HAM dalam menyelesaikan model fKdV bukan terkamir jenis 

soliton disahkan dengan menggunakan Kaedah Hirota serta merujuk kepada kerja Jun- 

Xiao dan Bo-Ling pada tahun 2009. Hubungan antara istilah paksa dalam persamaan 

fKdV dan topografi bawah laut dengan aliran kritikal yang khusus juga diselidiki. 

Aliran transkritikal ke atas lubang dan benjolan telah dikaji menggunakan persamaan 

air cetek tak linear fKdV. Didapati bahawa berbilang gelombang tunggal wujud dan 

ketinggian maksimum gelombang berlaku pada lubang terdalam di dasar laut. 

Gelombang air menyerupai gelombang tunggal wujud sewaktu ia mengalir ke atas 

lubang dasar laut tetapi tiada corak gelombang pada dasar laut yang rata. Aliran 

transkritikal ke atas benjolan menyebabkan berlaku aliran hulu dan hilir sewaktu ia 

mengalir. Manakala, pada dasar topografi yang rata, aliran tidak menunjukkan 

sebarang aktiviti tetapi interaksi berbilang gelombang tunggal wujud pada kawasan 

rantau cerun benjolan yang positif dan negatif. Tambahan lagi, corak interaksi 

penyebaran gelombang air di atas benjolan bergerak diselidik dan didapati aliran 

gelombang air menjadi subkritikal dan superkritikal berdasarkan parameter kritikal di 

dalam persamaan fKdV. Tiga bentuk cerun yang berbeza dari benjolan Gaussian 

dianalisis sebagai gangguan bawah air. Sekiranya cerun adalah curam, maka ia 

mencetuskan gelombang puncak amplitud yang tinggi. Corak interaksi penyebaran 

gelombang air juga diperhatikan sewaktu ia bergerak dari dasar rata ke bahagian cerun. 

Terutamanya, pada darjah cerun yang berbeza, corak interaksi gelombang air 

menunjukkan amplitud tinggi pada cerun yang terlalu curam. Kesimpulannya, kajian 

ini menunjukkan cerun yang curam topografi bawah air dan jenis aliran kritikal air 

menentukan ketidaklinearan corak interaksi penyebaran gelombang air sewaktu ia 

bergerak di atas beberapa topografi bawah air tertentu.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The nonlinear phenomena such as flow of water waves over an obstacle play a 

vital role in the field of fluid dynamics and wave propagation which is a branch of 

applied mathematics and physics. In the past decades, many researchers have worked 

on water waves flow over an obstacle. The initial work on water waves over flat bottom 

was started by John Scott Russell in 1834. The new type of long stationary waves was 

called cnoidal waves by Korteweg and de Vries. Soon on later, it was concluded as the 

soliton by Zabusky and Kruskal in 1965 (Hazewinkel et al, 1995).

Interesting and fascinating characteristics of the theory of the solitons lies in 

the branch of pure and applied mathematics, such as nonlinear partialdifferential 

equations, differential geometry, topology and analysis. In addition to that, soliton had 

multitude of applications in physics, for example, in hydrodynamics, field theory, and 

fluid mechanics. In specifically, Korteweg-de Vries (KdV) equation had paved the 

way for the development of soliton theory which is fully integrable using analytical 

methods.

Recently, the study of solitary waves due to the movement of underwater 

obstacles has received much attention by researchers since the initial experiments of 

Huang et al (1982) and the notable numerical findings of Wu & Wu (1982). The 

development of research on KdV equation and waves over obstacle make a way for 

the new remarkable equation called forced Korteweg-de Vries (fKdV). The 

investigation on fKdV is intensive and fKdV equation is able to be solved by numerical 

methods (Zhang & Chwang, 1996). Up to now, to the best of our knowledge, the 

solutions of fKdV equation can only be obtained by numerical or perturbation 

techniques (Jun-Xiao and Bo-Ling, 2009). Recently, the analytical solution of fKdV
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equation with a certain form of forcing term have been solved by Jun-Xiao and Bo­

Ling in 2009, using Hirota bilinear method.

It is essential to solve fKdV as it had multitude of applications in the real world 

problems such as submarine landslide, earthquake modeling, tsunami waves, and 

nonlinear optics.

1.2 M otivation of Study

This research is motivated by the unpredictable water wave propagation 

interaction patterns when it moves over the uneven bottom topography. It is known 

that waves propagate in the solitary manner from upstream to downstream but 

existence of eternal friction leads to a chaotic wave profile. The simplest form of 

shallow water equations would be forced KdV equation where it could explain the 

water wave behaviour over the uneven bottom topography. Many researches have been 

done through experimental study and extensive work but this research intended to 

explore water wave interaction patterns using fKdV equation. HAM is an analytic 

approximation method to solve highly non-linear problems for a certain range of 

spatial distance. Solving fKdV models through HAM could further understand the 

water wave interaction patterns when it moves over the uneven bottom topography.

1.3 Problem Statem ent

KdV equation is a homogenous equation and it can be solved analytically. It is 

known that the outcome of KdV equation is a solitary wave. However, fKdV is non 

homogenous and highly non-linear, which is difficult to be solve analytically. Up to 

now, it has only been solved by numerical or perturbation method. Therefore, it is 

important to have another method to solve fKdV equation. As the solution of fKdV 

equation is found to exhibit water wave propagation interaction patterns over uneven 

bottom topography hence, unpredictable water wave interaction patterns could reveal

2



the characteristics of water waves. Since no analytical solution of fKdV was available; 

more methods of solving fKdV is an advantage in the nonlinear wave theory.

1.4 Research Objectives

The objectives of the research are:

(a) to obtain analytic approximate solution for third order forced Korteweg-de 

Vries equation (fKdV) with variants of forcing term via HAM,

(b) to identify water wave propagation interaction patterns at different critical flow 

when it travels over certain uneven bottom topography,

(c) to determine the factors that trigger nonlinear interaction patterns of water 

wave propagation when it travels over certain uneven bottom topography.

1.5 Research Scope

In this work, the sub-class of Navier Stokes equation which is the nonlinear 

shallow water equation and in more simplified version, forced KdV were studied. Only 

third order forced KdV equation was investigated. Approximate analytical solutions 

for the third order of fKdV is generated via HAM and the study is constrained by the 

following assumptions.

(a) The fluid is assumed to be inviscid, incompressible and two-dimensional and 

it deals with unidirectional flows.

(b) The system is shallow as the depth is much smaller than the horizontal scale of 

the fluid.

(c) There is only one boundary condition on the uneven bottom topography which 

is the geometric condition.

3



1.6 Significance of Study

In mathematics, this research will be a milestone in obtaining an approximation 

solution for non-homogenous fKdV equations via homotopy analysis method (HAM). 

HAM solution is a summation of an infinite series in which the series converges 

rapidly to the exact solution. The HAM has advantages compared to numerical 

methods as it does not involve discretization of variables and free from rounding off 

errors (Meenatchi and Kaliyappan, 2017). It is found that HAM could obtain 

convergent series solutions that agrees with exact solution whereby Homotopy 

Perturbation Method (HPM) and Variational Iteration Method (VIM) found the 

solution diverges (Liang and Jeffrey, 2009). The strength and advantage of HAM is its 

convergent parameter as it provides a convenient way to ensure the convergent series 

solution. This proved, HAM is the better method compared to an existing perturbation 

method such as HPM, IVM and Adomian Decomposition Method (ADM). Thus, 

HAM able to solve fKdV equations and provide an accurate approximation solution 

or near exact solution as up to now, as no exact solutions found in the fKdV models 

for a certain range of the spatial distance.

In real life, the study enables the geophysicists, geologists, engineers and water 

waves researchers to comprehend the characteristics of the water waves when it flows 

over uneven geometry. It is important as the geometry of wave profile is not symmetric 

as it travels over the underwater obstacles. It is necessary to distinguish the types of 

water flow and the effects of different forms of uneven obstacles to the water wave 

generation and propagation. The interaction patterns of water wave propagation with 

some disturbances could give vital information on amplitudes, types of waves and the 

wavelength of sea water. Water waves propagation interaction patterns over uneven 

obstacle at different types of criticality flow will also be able to elaborate the 

nonlinearity and dispersion of the wave. Obviously, in the real world, it is costly to 

build and perform an experimental study, therefore, mathematical model is a simpler 

way to describe the phenomenon of water waves with some disturbances and 

indirectly, to reduce the impacts and damages to human by natural disaster.
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1.7 Thesis Outline

This study includes seven chapters including of this chapter as introduction. 

Chapter 2 is literature review on fluid flow over an obstacle using forced Korteweg 

de-Vries equation (fKdV). FKdV equation is a simplified version of shallow water 

equations which derived from Navier Stokes equation. The chapter also discusses on 

recent studies on water flow over obstacles.

Research methodology based on basic idea of Homotopy Analysis Method 

(HAM) is elaborated in chapter 3. The ability and flexibility of HAM is discussed 

thoroughly. The effectiveness and convergence interval of solution in HAM is 

explored in order to achieve a valid and suitable analytical solution.

In Chapter 4, standard fKdV equations are solved using Homotopy Analysis 

Method (HAM). Some examples of forcing terms are employed to analyze the 

behaviours of the HAM solutions for the different fKdV equations. The chosen forcing 

terms are quadratic forcing, sinusoidal forcing and exponential forcing. For validation, 

HAM solution is compared with the analytical soliton-type solution of fKdV equation 

as derived by Jun-Xiao and Bo-Ling (2009).

Chapter 5 investigates transcritical flow of water waves over a localized 

obstacle using fKdV equation. The relationship between the forcing term in forced 

KdV and seabed topography is defined over here. An approximate analytical solution 

of fKdV with a certain forcing term representing the seabed topography is solved and 

waves profile over the forcing region is discussed. Four different types of bottom 

topography are chosen as the forcing term which are hole, inverse bowl shape hole, 

Gaussian bump and flatten Gaussian bump. The effect of forcing term on waves 

characteristics are finally explained and compared with available existing result.

Chapter 6 explored critical flow of water waves over a moving obstacle using 

fKdV equation. This chapter deals with two main shapes of bottom topography. One 

is moving uneven bump and the moving sloping plane. Three different shapes of 

Gaussian bump are explored as forcing term in fKdV and the effects of the shapes of

5



bump to waves profile are investigated. In second part, waves profile over from flat to 

sloping region is explored. Three different angles of sloping region are chosen as 

uneven bottom topography. The investigation reveals the effect of steeper slope 

towards wave profile and role of critical parameter in fKdV equation. Nonlinearity and 

dispersion of waves described throughout all the forcing regions.

Finally, Chapter 7 presents the conclusion, contributions of the current research 

and future work of this research.

6
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