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ABSTRACT 

Enzymatic wound debridement is a promising effective approach; however, 

there is a limited number of enzymes that can be used for debridement, and many 

existing enzymes in the market can cause side effects. Cardiovascular diseases are the 

main causes of death and disability. It is usually associated with an increased risk of 

blood clots. The current medications are limited in number and have serious bleeding 

risks. This study is focused on the verification of the previously cloned serine protease 

gene via PCR, sequencing the purified plasmid, and analyzing its amino acid sequence 

through different bioinformatics tools. Eventually, this protease is concluded to have 

the potential to be a new wound debridement and clot-dissolving agent that can be 

more affordable, effective, with a better side effects profile. The serine protease gene 

from Bacillus pumilus was previously cloned into pET-21b expression vector and 

transformed in E. coli HST08. The vector was successfully extracted from the host 

bacteria and quantified by Nanodrop spectrophotometer to record a concentration of 

92.9 ng/μl, with acceptable 260/280 and 260/230 ratios; 1.85, 2.22 respectively. The 

purified plasmid was then used as a DNA template and subjected to amplification via 

PCR. The amplified gene resolved in the agarose gel and was found to constitute 

approximately 1077 bp. The sequencing result was showed 100% identity to serine 

protease from Bacillus pumilus (Accession No: kll00441.1). A bioinformatics study 

was conducted to generate fundamental data that will give some insights into the 

protein nature and structure. Cytoplasmic, transmembrane, and non-cytoplasmic 

regions were predicted by the Phobius online tools.  ProtParam tool computed the 

molecular weight of the protease to be 37.8 kilodaltons, acidic in nature, moderately 

hydrophilic, and have a good stability index. SMART online tool predicted that the 

serine protease contains two highly conserved domains; trypsin-like peptidase, and 

PDZ domains. The 3D model of the serine protease was generated based on the HtrA 

protease Deg1 structure through the Swiss model server. The proposed model passes 

all three quality validation methods (Errat, Verify 3D, and Procheck). The three 

catalytic residues at the active site of the enzyme are found to be His91, Asp121, and 

Ser202. Additionally, the generated model was superimposed to the human tissue 

plasminogen activator (Currently used thrombolytic agent) to propose a structure-

function relationship. The superimposition between the two structures was good, and 

the catalytic triad has a good alignment. To conclude, the serine protease was found to 

be a good candidate as a potential fibrinolytic agent as its sequence was verified 

successfully with the reference gene, and the generated bioinformatic data have shown 

it can be expressed and purified successfully for further characterization. 
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ABSTRAK 

Debridemen luka menggunakan enzim adalah pendekatan merawat luka yang 

berkesan. Tetapi, bilangan enzim yang boleh digunakan untuk tujuan debridemen 

adalah terhad dan banyak enzim yang terdapat dalam pasaran boleh mengakibatkan 

kesan sampingan. Penyakit kardiovaskular adalah punca utama kematian dan 

kecacatan yang selalunya dikaitkan dengan risiko darah beku yang tinggi. Ubat-ubatan 

yang boleh digunakan untuk rawatan darah beku adalah terhad dan mempunyai risiko 

pendarahan yang serius. Kajian ini memfokuskan kepada pengesahan gen protease 

serin yang telah diklon sebelum ini dengan menggunakan kaedah PCR, penjujukan 

plasmid yang telah ditulenkan dan analisis jujukan asid amino menggunakan alat 

bioinformatik. Protease ini didapati mempunyai potensi untuk menjadi agen 

debridemen luka dan pencair darah beku yang baru dan selamat, di mana ianya adalah 

lebih berkesan, kosnya adalah lebih berpatutan dan profil kesan sampingannya adalah 

lebih baik. Gen protease serin daripada Bacillus pumilus telah diklonkan ke dalam 

vektor ekspresi pET-21b dan telah ditransformasikan ke dalam E. coli HST08. Vektor 

tersebut telah diekstrak daripada hos bakteria terbabit dan kepekatan plasmid itu telah 

dicatatkan sebagai 92.9 ng/μl dengan nisbah 260/280 dan 260/230 masing-masing di 

1.85 dan 2.22, dengan menggunakan spektrofotometer Nanodrop. Kemudian, plasmid 

yang telah ditulenkan digunakan sebagai templat DNA di dalam amplifikasi gen 

menggunakan PCR. Gen yang diamplifikasi telah dipisahkan melalui elektroforesis 

gel agaros dan saiznya dianggarkan 1077 bp. Hasil jujukan gen pula menunjukkan 

100 % identiti kepada protease serin daripada Bacillus pumilus (Nombor aksesi: 

kll00441.1). Kajian bioinformatik pula telah dijalankan untuk menghasilkan data asas 

yang dapat memberikan informasi tentang sifat dan struktur protein. Kawasan 

sitoplasma, transmembran dan bukan sitoplasma telah diramalkan menggunakan alat 

atas talian Phobius. Alat ProtParam pula menganggarkan berat molekul protease serin 

adalah 37.8 kilodaltons, bersifat asid dan hidrofilik sederhana, dan mempunyai indeks 

kestabilan yang baik. Alat atas talian SMART pula meramalkan protease serin ini 

mempunyai dua domain pemangkin yang terpelihara iaitu peptidase yang menyerupai 

tripsin dan domain PDZ.  Model 3D protease serin ini telah dihasilkan berdasarkan 

struktur HtrA protease Deg1 menggunakan pelayan model Swiss. Model yang 

dicadangkan lulus ketiga-tiga kaedah pengesahan kualiti (Errat, Verify 3D dan 

Procheck). Tiga residu pemangkin di laman aktif enzim ini adalah His91, Asp121, dan 

Ser202.  Model yang dihasilkan telah ditindankan kepada pengaktif plasminogen tisu 

manusia (agen trombolitik semasa) untuk mencadangkan hubungan antara struktur dan 

fungsi. Penindihan antara dua struktur ini menghasilkan keputusan yang baik dan triad 

pemangkin yang dihasilkan juga menunjukkan penjajaran yang baik. Sebagai 

kesimpulan, protease serin ini didapati berpotensi sebagai agen fibrinolitik kerana 

jujukannya telah disahkan ke atas gen rujukan, dan data bioinformatik yang terhasil 

menunjukkan enzim ini boleh diekspresi dan ditulenkan dengan jayanya untuk 

pencirian selanjutnya. 
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INTRODUCTION 

1.1 Background of the Problem 

Proteases or peptidases are a ubiquitous class of biological enzymes. Protease 

has a wide spectrum of hydrolytic actions, and they are selective and specific in their 

action on their protein substrates. Due to its diversity, proteases have been utilized 

extensively in three main sectors; research, medical therapeutic, and industries. 

Proteases are used in the pharmaceutical field, industrial biotechnology, food, and 

detergent industries. Therapeutically, proteases are used for wound debridement, as a 

fibrinolytic agent to dissolve blood clots, management of hemophilia, lyse of bacterial 

biofilm, and for digestion improvement (Jisha et al., 2013; Li et al., 2013).  

Wounds frequently occur due to different reasons, including diabetic foot, 

pressure ulcer, and burns. Wounds are of two major types; acute and chronic wounds 

and they have different modes of healing. In the UK, there are around 250,000 burn 

victims per year (Hettiaratchy and Dziewulski, 2004). Moreover, wound burn care is 

considered expensive care (Sanchez et al., 2008). In the United States, 6 million people 

have chronic wounds. Diabetic foot wounds are common diabetes mellites 

complications throughout the world, greatly affecting patients and society's economics 

(Boulton, 2005). Chronic wound treatment and management are estimated to cost 

around $9,7 billion in the US in 1 year (Bickers, 2004). Dead tissues that are present 

within the wound such as necrotic tissue, eschar, and slough play a vital role in 

preventing or delaying the natural healing process as they act as a medium for bacteria 

and form a physical barrier inhibiting new tissue formation (Weir et al., 2007; Shi et 

al., 2009). 
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Thrombosis (blood clot) is responsible for three major cardiovascular 

disorders; ischemic heart disease (Acute coronary syndrome), stroke, and venous 

thromboembolism (VTE) (SCfWT, 2014). Venous thromboembolism is one of the 

major global diseases, with about 10 million cases per year. The yearly economic 

burden of venous thromboembolism in the USA has been estimated to be 7–10 billion 

US dollars (Grosse et al., 2016). Stroke is one of the serious diseases that lead to death, 

the most common form of stroke is an ischemic stroke that can lead to irreversible 

brain damage and death due to the formation of fibrin clot within blood vessels. 

Thrombosis is generally treated by two types of medications; anticoagulant and 

thrombolytic agents. Anticoagulants reduce the fibrin clot formation, hence preventing 

stroke reoccurrence, while thrombolytic agents can dissolve the already formed fibrin 

clot within the occluded vessel (Kim et al., 2018). 

1.2 Problem Statement 

Proteases from bacteria have many potential applications in the medical field, 

especially in wound debridement and cardiovascular disease treatment. Therapies that 

currently exist for both medical conditions are limited and have several disadvantages 

hence there is a need to find alternative improved therapies from sustainable sources 

such as bacteria to treat those conditions. 

Wound debridement, especially in the chronic one, is the most important 

parameter to aid healing. Current conventional practices for wound debridement 

include; mechanical debridement, autolytic debridement, biosurgical debridement, 

surgical /sharp debridement, and the enzymatic debridement (Stephen-Haynes and 

Thompson, 2007). These debridement methods are suffering from some limitations, 

such as pain, bleeding, and damage to the healthy tissues associated with surgical 

debridement (Ayello and Cuddigan, 2004). Autolytic debridement is slow and costly 

as it needs multiple dressing applications. No selectivity for both tissue types (dead 

and healthy) in mechanical debridement, and also it is a time-consuming process 

(Gwynne and Newton, 2006). More recently, maggots therapy has been developed as 

a more efficient treatment for unresponsive  leg and foot ulcers (Sherman, 2003). 
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However, it still has many major drawbacks such as increased pain and/or exudate, not 

applicable to wounds with exposed blood vessels, and the use of life maggots can be 

deemed uncomfortable and distasteful to some patients and health care practitioners 

(Brown, 2013). The enzyme debridement method is safer, effective, easy to apply, and 

it is a good alternative when surgery or sharp debridement is not a debridement option. 

Nevertheless, only a limited number of approved debriding enzymes are available 

commercially, such as collagenase and bromalin products, and most of them suffer 

from some drawbacks like being nonselective, pain, have an allergic reaction, or the 

ability to digest only one type of protein substrate like collagen (Wright and Shi, 2003; 

Smith, 2008).  

In the cardiovascular disease front, presently the only FDA approved stroke 

treatment is tissue-type plasminogen activator (t-PA), Alteplase. Tissue-type 

plasminogen activator is a serine protease. It has a vital role in the blood coagulation 

process (Lin and Hu, 2014; Kim et al., 2018). Despite the effectiveness of the t-PA in 

stroke treatment, however, it can cause serious adverse reactions. According to FDA, 

Alteplase (Activase®) can cause; (i) Internal bleeding including; retroperitoneal, 

intracranial, genitourinary, respiratory and gastrointestinal bleeding, or external 

bleeding at the puncture site in the veins and arteries. (ii) Orolingual angioedema has 

been reported in acute myocardial infarction and ischemic stroke cases ("Label for 

ACTIVASE (alteplase) for injection - FDA", 2015). Up to date, there are no successful 

t-PA alternatives for stroke management that overcome t-PA side effects (Wu et al., 

2009; Kotb, 2015).  

Anticoagulants as well can cause serious side effects. The most common and 

serious adverse reaction of anticoagulants is bleeding, as in the case of warfarin (The 

most used drug) (Wysowski et al., 2007). Warfarin has a narrow therapeutic index 

meaning that small changes in systemic concentration can lead to significant changes 

in pharmacodynamic response, i.e., inability to maintain international normalized ratio 

(INR) between 2 and 3 can predispose to either thrombosis (INR<2) or hemorrhage 

(INR>3) (Schachter and Pirmohamed, 2012). The injectable anticoagulant drug, 

heparin suffer as well from side effects due to its broad biological actions such as 

bleeding (major adverse reaction), skin lesions, thrombocytopenia, osteoporosis, 
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allergic and anaphylactic reactions, the elevation of liver enzymes, and alopecia 

(Alban, 2012). 

Despite the efficacy of controlling these life-threatening diseases by current 

medications, however, there are still serious side effects, mainly bleeding, so they have 

to be used carefully, and the dose must be monitored carefully and precisely. 

Therefore, there is a great need to investigate new and safe thrombolytic agents, 

primarily proteases, since there are broad sources for proteases, especially the 

microbial fibrinolytic enzymes have attracted a great deal of therapeutic enthusiasm 

during the last decade (Dhamodharan and Naine, 2019). Many studies showed that a 

different type of proteases could be a good potential fibrinolytic agent (Khan et al., 

2019; Chandramohan et al., 2019; Thu et al., 2020). Accordingly, this study is focused 

on the verification of the previously cloned serine protease gene from Bacillus pumilus 

by PCR amplification and gene sequencing as well as the study of the protein gene 

product using bioinformatic tools. Results from this research will provide information 

through bioinformatic analysis on the potential of this protease as a wound 

debridement agent or fibrinolytic agent for cardiovascular therapies. 

1.3 Objectives of the Study 

a) Verification of the cloned serine protease gene via PCR and sequencing. 

b) Protein bioinformatics analysis of cloned serine protease gene product.  
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1.4 Significance of the Study 

This work is proposed to verify the serine protease gene previously cloned by 

Nur Syafiqah Muhammed, 2019 (unpublished data) through PCR and sequencing. The 

serine protease gene was cloned from Bacillus pumilus that isolated from local 

Malaysian traditional food, Belacan. Additionally, this study will provide some 

fundamental biological data by using different bioinformatic tools and software to find 

out more about gene sequence, different physical and chemical properties, identify 

domains, and most importantly to predict the protein 3D structure by using homology 

modeling to propose the structure-function relationship as a fibrinolytic agent, and to 

the best of our knowledge, this gene has not been cloned and studied before. This 

recombinant serine protease can be then expressed, and purified in large quantities for 

further structural and functional characterization research in the hope of developing a 

new wound debridement and safe clot-dissolving agent that can be more affordable, 

acceptable, effective, and with better side effects profile. Moreover, this study is part 

of a project that eventually aims to increase the therapeutic options for the limited 

number of the current wound debridement enzymes and fibrinolytic drugs, as the 

current medications for clot-dissolving are suffering from many side effects, mainly 

bleeding, while the wound debridement approaches, have many limitations like pain, 

bleeding, slow and costly, no selectivity for both tissue types (dead and healthy), time-

consuming or unacceptability by the patients. 
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Appendix B Media and Buffer Solutions 

 

 

APPENDIX B1 MEDIA 

 

i Luria-Bertani (LB) Broth 

25 gram of LB broth was dissolved in 1000 ml of distilled water, autoclaved 

and store at 4°C. 

 

ii Luria-Bertani (LB) Agar 

37 gram of LB agar was dissolved in 1000 ml of distilled water, autoclaved 

and store at 4°C. 

 

APPENDIX B2 Working Buffer 

 

i 0.5 M EDTA (250 ml, pH 8.0) 

46.5 g EDTA 

200 mL Distilled water  

The mixture was stirred vigorously using magnetic stirring. pH was adjusted 

to 8.0 using NaOH. The volume was brought up to 250 mL with distilled water, 

stored at room temperature. 

 

ii 10X TAE Buffer (1000 mL) 

20 ml 0.5M EDTA (pH 8.0) 

48.4 g Tris base (hydroxymethyl) aminomethane 

11.42 ml Glacial acetic acid  

All components were added together then the volume was made up 1000 ml 

with distilled water. To prepare 1 liter of 1X, 100 ml of 10X TAE buffer stock 

was added to 900 ml of distilled water, and store at room temperature. 
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Appendix C General Procedure 

 

 

APPENDIX C1 Plasmid Purification Protocol using NucleoSpin® Plasmid 

(Macherey-Nagel, Germany) 

 

i Cultivate and Harvest Bacterial Cells  

Use 5–10 mL of a saturated E. coli LB culture. Pellet cells in a standard 

benchtop microcentrifuge for 30 s at 11000 xg. Discard the supernatant and 

remove as much of the liquid as possible. 

 

ii Cell Lysis 

Add 500 µL Buffer A1. Resuspend the cell pellet completely by vortexing or 

pipetting up and down. Make sure no cell clumps remain before addition of 

Buffer A2. Add 500 µL Buffer A2. Mix gently by inverting the tube 6–8 times. 

Do not vortex to avoid shearing of genomic DNA. Incubate at room 

temperature for up to 5 min or until lysate appears clear. Add 600 µL Buffer 

A3. Mix thoroughly by inverting the tube 6–8 times. Do not vortex to avoid 

shearing of genomic DNA. 

 

iii Clarification of Lysate  

Centrifuge for 10 min at 11000 xg at room temperature. 

 

iv Bind DNA  

Place a NucleoSpin® Plasmid / Plasmid (NoLid) Column in a collection tube 

(2 mL) and decant the supernatant from step 3 or pipette a maximum of 750 

µL of the supernatant onto the column. Centrifuge for 1 min at 11000 xg. 

Discard flow-through and place the NucleoSpin® Plasmid Column back into 

the collection tube. Repeat this step to load the remaining lysate. 
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v Wash Silica Membrane  

Add 500 µL Buffer AW preheated to 50°C and centrifuge for 1 min at 11000 

xg. Discard flowthrough and place the NucleoSpin® Plasmid / Plasmid 

(NoLid) Column back into the collection tube. Add 600 µL Buffer A4. 

Centrifuge for 1 min at 11000 xg. Discard flow-through and place the 

NucleoSpin® Plasmid / Plasmid (NoLid) Column back into the empty 

collection tube.  

 

vi Dry Silica Membrane  

Centrifuge for 2 min at 11000 xg and discard the collection tube. Note; residual 

ethanolic wash buffer might inhibit enzymatic reactions. 

 

vii Elute DNA  

Place the NucleoSpin® Plasmid / Plasmid (NoLid) Column in a 1.5 mL 

microcentrifuge tube and add 50 µL Buffer AE preheated to 70°C. Incubate for 

2 min at 70°C. Centrifuge for 1 min at 11000 xg. 

 

APPENDIX C2 Analytical Agarose Gel Electrophoresis 

 

i Weigh 5 gm of the agarose powder and dissolve it in 50 ml of TAE buffer. 

Wait till cool down and then add 2 μl of Midori Green Advance (Nippon 

Genetics Europe). Insert the comb in the sealed casting tray and pour the 

mixture. 

ii Once the gel solidified, remove the comb. Put the solid gel in the 

electrophoresis tank containing 1x TAE buffer.  

iii Mix 1-2 μl of the sample and 1 μl of loading dye, then load the sample into the 

respective wells, and finally add 3 μl DNA ladder.  

iv Run the agarose gel at 80 Volte for approximately 50 minutes.  

v Visualize the DNA bands under a UV lamp. 
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