
 

MOLECULAR DYNAMICS SIMULATIONS ON STRUCTURAL DIFFERENCES 

OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY VARIANTS 

AMONG THE ASIAN POPULATION  

 

 

 

 

 

 

 

NAVEEN EUGENE LOUIS A/L RICHARD LOUIS 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Philosophy 

 

 

       

 Faculty of Science 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

JUNE 2022 



iv 

DEDICATION 

 I would like to dedicate the completion of this thesis to my family, Mr Richard 

Louis, Mrs Vimala Devi Shanmugam, Ms Yanitha Meena Louis and Mr Ramanan TK. 

It was my family who encouraged and persuaded me to pursue my Masters. They 

believed in me even when I did not. I would like to thank my uncle Mr Rajah 

Jeganathen for being a guarantor for my M.Phil.  

I would also like to thank everyone who played a role in my scientific career. 

I believe everything happened for a reason, which paved my path to Universiti 

Teknologi Malaysia.   I would like to dedicate this thesis to my late aunt Mrs Sheila 

Devi Shanmugam and my late grandmother Mrs Thanaletchumi Selvarajah for their 

support and confidence in me. 

I would also like to dedicate this thesis to my supervisor Dr Syazwani who 

interviewed me on the 18th of September 2019 for the role of Master’s student. I would 

like to thank her for giving me the opportunity to be a part of her research team at 

Universiti Teknologi Malaysia. 

  



v 

ACKNOWLEDGEMENT 

 I would like to thank Dr Syazwani for her immense support which allowed me 

to complete my project on time. Due to the Covid-19 pandemic, my fellow 

postgraduate students and I found it difficult to cope with the MCO, and not being able 

to enter campus. Dr Syazwani allowed me to use her PC remotely to conduct my 

research and enabled me to work on my project with ease. 

I would like to thank Dr Syazwani, Dr Nurriza and Dr Muaawia for their 

immense administrative support and research guidance throughout my time at 

Universiti Teknologi Malaysia. 

I would also like to thank my fellow postgraduate students for their support 

and friendship throughout my UTM journey. 

  



vi 

ABSTRACT 

Glucose-6-phosphate dehydrogenase (G6PD) is responsible for red blood cell 
protection against free radicals. There are over 186 G6PD deficient variants which 
adversely affected the enzyme activity. In its active state, G6PD exists in dynamic 
equilibrium as dimer and tetramer, influenced by its ligands. A human G6PD monomer 
has three ligands, the glucose-6-phosphate (G6P) substrate, a catalytic nicotinamide 
adenine dinucleotide phosphate (NADP) cofactor, and structural NADP. Ligands like 
G6P disrupt dimer formation, whereas NADP favour tetramer formation. G6PD 
enzyme activity is dependent on the structural integrity of the dimer interface. The 
mechanism of mutation-induced structural instability and the physiological 
significance of ligands on G6PD structure and function remains unclear till date. More 
than 400 G6PD variants exists, only 10 per cent of mutations were analysed in depth, 
none of which includes variants common to Asian population. In this study, ten 
common Asian variants (G410D, K275N, R387C, V291M, L128P, R459L, V431M, 
H32R, G163S, and  G131V) were chosen for analysis using molecular dynamics 
simulation (MDS). Since G6PD dimerization is crucial for basic activity, a G6PD 
dimer with ligands was constructed using molecular docking and simulated using 
GROMACS for 100 ns. The simulated trajectories of the variants against the wild type 
(WT) were used to evaluate changes at the mutation site, and the dimer and tetramer 
interfaces. Alterations in protein-ligand affinities were evaluated by analysing the 
molecular binding profile coupled with free binding energy calculations. The wild type 
and variants with high enzyme activity such as G131V and G163S, showed high 
structural integrity at the dimer interface characterized by intermolecular hydrogen 
bonds between Asp 421-Asp 421 and Glu 419-Thr 423 at βN, and salt bridges between 
Glu 206-Lys 407. The bonds spanned over both monomeric subunits, resulting in 
compact dimer indicated by low radius of gyration (Rg) values. The G6PD structures 
with low Rg exhibited increased distance between the βI–βJ loop, thus exposing the 
tetramer interface and tetramer salt bridge residues. The high solvent accessible 
surface area (SASA) characteristic indicates a high dimer-dimer affinity in tetrameric 
state. The βE–αe loop responsible for positioning G6P and the catalytic NADP for 
G6PD catalysis was retained in variants with stable dimer structures. Ligand interplay 
between the G6P and the structural NADP was evident; G6P trajectory frames showing 
high affinity toward G6PD, led to a low or total loss affinity of NADP. High NADP 
binding pocket occupancy contributed to a low Rg of the structures. This was the first 
G6PD MDS study to relate in-silico findings with existing biochemical and kinetic 
data. In short, findings from this study would be beneficial for variant assessment, 
prognostic marker identification and drug development. This MDS study was 
successful in validating empirical observations from previous biochemical and 
structural studies such as the loss of αn-αe interhelical interactions for R459L, 
impaired tetramerization for K275N and R459L, and protein-ligand affinities for the 
G410D, R387C, V291M, R459L, and G163S variants towards G6P and NADP. 
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ABSTRAK 

Glucose-6-phosphate dehydrogenase (G6PD) bertanggungjawab untuk 
melindungi sel darah merah daripada radikal bebas. Terdapat 186 bilangan varian 
kerkurangan G6PD yang menjejaskan aktiviti enzim. Dalam keadaan aktif, G6PD 
wujud dalam keseimbangan dinamik sebagai dimer dan tetramer dipengaruhi oleh 
berberapa ligan. Monomer G6PD manusia mempunyai tiga ligan, substrat G6P, 
kofaktor nikotinamida adenine dinukleotida fosfat (NADP) pemangkin dan NADP 
struktur. Ligan seperti G6P mengganggu pembentukan dimer, manakala NADP 
menyokong pembentukan tetramer. Aktiviti enzim G6PD bergantung kepada integriti 
struktur antara muka dimer. Mekanisme mutasi menyebabkan ketidakstabilan struktur 
dan kepentingan fisiologi ligan pada struktur dan fungsi G6PD masih samar sehingga 
kini. Terdapat lebih 400 varian G6PD yang telah dikaji dan hanya 10% sahaja yang 
dianalisa secara mendalam, tetapi tiada satu pun varian yang lazim dalam populasi 
Asia. Dalam kajian ini, sepuluh varian G6PD lazim di Asia (G410D, K275N, R387C, 
V291M, L128P, R459L, V431M, H32R, G163S dan G163V) telah dipilih untuk kajian 
simulasi molekul dinamik (MDS). Memandangkan pendimeran G6PD adalah penting 
untuk aktiviti asas enzim, dimer G6PD dengan ligan telah dibina secara mengedok 
molekul dan disimulasi menggunakan GROMACS selama 100 ns. Trajektori simulasi 
varian terhadap jenis asal (WT) digunakan untuk menilai perubahan di tapak mutasi 
serta antara muka dimer dan tetramer. Perubahan dalam pertalian protein-ligan dinilai 
dengan menganalisis profil pengikatan molekul beserta pengiraan tenaga pengikat 
bebas. Jenis liar (WT) dan varian dengan aktiviti enzim tinggi seperti G131V dan 
G163S menunjukkan integriti struktur yang tinggi pada antara muka dimer yang 
dicirikan oleh ikatan hidrogen antara molekul antara Asp 421-Asp 421, Glu 419-Thr 
423 pada βN dan jambatan garam antara Glu 206-Lys 407. Ikatan merentangi kedua-
dua subunit monomer menjadikan dimer yang padat ditunjukkan oleh nilai jejari 
legaran (Rg) yang rendah. Struktur G6PD dengan Rg rendah menunjukkan 
peningkatan jarak antara gelung βI-βJ lantas mendedahkan antara muka tetramer dan 
residu jambatan garam tetramer. Kawasan permukaan boleh diakses pelarut yang 
tinggi (SASA) menunjukkan keafinan dimer-dimer yang tinggi dalam keadaan 
tetramerik. Gelung βE–αe yang bertanggungjawab untuk menetududukkan G6P dan 
NADP pemangkin bagi pemangkinan G6PD dikekalkan dalam varian dengan struktur 
dimer yang stabil. Interaksi ligan antara G6P dan NADP struktur adalah jelas, di mana 
bingkai trajektori G6P menunjukkan keafinan ikatan yang tinggi terhadap G6PD, 
manakala ikatan terhadap NADP adalah rendah atau terus tiada. Pengikatan NADP 
yang tinggi pada poket pula menyumbang kepada nilai Rg yang rendah. Kajian MDS 
G6PD ini adalah yang pertama mengaitkan penemuan siliko dengan data biokimia dan 
kinetik sedia ada. Penemuan kajian ini akan bermanfaat untuk penilaian varian, 
pengenalpastian penanda prognostik dan pembangunan ubatan. Kajian MDS ini 
berjaya mengesahkan pemerhatian empirikal daripada kajian biokimia dan struktur 
terdahulu seperti kehilangan interaksi antara helik αn-αe untuk R459L, pentetrameran 
terjejas untuk K275N dan R459L, serta pertalian ligan protein untuk varian G410D, 
R387C, V291M, R459L dan varian G163S dengan G6P dan NADP.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Research 

Glucose-6-phosphate dehydrogenase (G6PD) is the key enzyme responsible 

for red blood cell (RBC) protection against free radicals (Jinyoung Lee et al., 2018). 

G6PD produces the anti-oxidative component namely, the reduced nicotinamide 

adenine dinucleotide phosphate (NADPH) by catalysing a redox reaction involving the 

oxidation of its substrate glucose-6-phosphate (G6P) and the reduction of its cofactor 

NADP. These reactions generate an NADPH supply required to combat oxidative 

stressors (Horikoshi et al., 2021). Impaired G6PD catalysis hinders NADPH 

production, and may lead to redox dyshomeostasis, which is implicated with poor 

counter mechanisms to oxidative stressors. This leads to a number of issues which 

include free radical-induced cell lysis, impaired cell signalling, detoxification and 

apoptosis mechanisms, and the inability to detect and eradicate xenobiotics from the 

body efficiently (Ayer et al., 2014). 

The human G6PD monomer has a G6P substrate, a catalytic NADP (c.NADP) 

cofactor, and a structural NADP (s.NADP) responsible for structural stability (Kotaka 

et al., 2005). G6PD exists in dynamic equilibrium of monomer ⇌ dimer ⇌ tetramer, 

depending on its environment which is influenced by ligands. G6PD tetramers tend to 

be formed in the presence of NADP ligands, whereas dimers tend to be disrupted by 

ligands like G6P (Au et al., 2000). Protein multimerization, namely dimerization and 

tetramerization play an important role in G6PD catalysis, where dimerization is crucial 

for basic enzyme activity, and tetramerization allows for a more structurally stable 

version of the protein (Cunningham et al., 2017; Kotaka et al., 2005). However, the 

mechanism and physiological significance of ligand dependent G6PD multimerization 

associated with mutations remain ambiguous. 
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Previous studies have by Horikoshi et al (2021) have attempted to understand 

the physiological significance of ligands coupled with the effects of class I mutations 

by using structure based mutagenesis and kinetic analysis. Results from the study 

report that class I mutations lose affinity towards s.NADP which result in 

disorientation of the C-terminal tail and αf helix, impairing G6P binding and overall 

enzyme activity (Horikoshi et al., 2021). However, insights on the mechanism of 

protein-ligand alterations due to mutations for other classes of variants remain elusive. 

G6PD deficiency (G6PDD) is an X-linked recessive disorder that leads to low 

levels of the G6PD enzyme. Mutations on the gene encoding for G6PD alters its 

protein structure and multimerization capabilities, by altering amino acid side chains 

which consequently changes their polarity, charges, surface area, and intermolecular 

interactions (Doss et al., 2016; Hwang et al., 2018). G6PDD is the most common 

enzymopathy affecting over 400 million individuals worldwide. More than 186 G6PD 

variants are shown to be associated with G6PDD, with decreased activity or stability 

of the enzyme (Jinyoung Lee et al., 2018).  

Depending on the enzyme activity and clinical phenotype for different G6PD 

mutations, they have been grouped into five classes (I, II, III, IV and V) by the World 

Health Organization (WHO). Class I (< 1% enzyme activity), class II (<10% enzyme 

activity) and class III (10 – 60 % enzyme activity) are the most severe mutations 

because they express low enzyme levels which leads to anemia. Classes IV (60-90% 

normal activity) and V (>110% increased activity) variants tend to have less damaging 

effects and are asymptomatic (Gautam, 2016). G6PD variants manifesting different 

clinical phenotypes complicate comprehending the mechanism of the disease. 

Moreover, since many mutations are distributed throughout the protein structure, 

understanding the structural-functional relationship for G6PD variants can be 

challenging (Cunningham et al., 2017). Despite numerous structural and biochemical 

studies performed on G6PD mutations, less than 10% of known variants have been 

studied in detail which relate their clinical manifestation to their unique mutations 

(Gómez-Manzo et al., 2017). 



 

3 

The deleterious effects of variants decrease in the order of I > II > III (Gautam, 

2016). Class I variants tend to clustered at the dimer interface and s.NADP binding 

site, whereas class II and III tend to be clustered at the tetramer interface and catalytic 

domain respectively (Cunningham et al., 2017). Therefore, in a structural and 

functional context, high structural integrity at the dimer interface is crucial for basic 

G6PD enzyme activity. Recently discovered G6PD agonists were able to elevate low 

enzyme activity in variants by promoting dimer formation. By employing the use of 

gel electrophoresis, Hwang et al (2018) identified increased molecular weight of the 

G6PD protein due to an equilibrium shift of monomer to dimer in the presence of AG1 

(G6PD agonist). The agonist was successful in increasing enzyme activity for selected 

variants by promoting dimeric states of G6PD. Hence, it is evident that G6PD enzyme 

activity is influenced by the structural integrity of the dimer interface and dependent 

on the ability to dimerize. Unravelling the deleterious effects of harmful G6PD 

variants on protein structure to establish a structural - functional link and understand 

how they affect enzyme activity would be useful for variant assessment and prognostic 

marker identification. 

Molecular dynamics simulation (MDS) is known for its effectiveness in 

establishing structural and functional relationships for macromolecules and predicting 

the nature of protein-protein and protein-ligand interactions (Hospital et al., 2015). 

Therefore, simulating the G6PD protein would provide invaluable insights. There have 

been previous G6PD MDS studies, which evaluated the structural aberrations of G6PD 

variants common to the Arab, USA and German population. The study by H.Nguyen 

et al (2016) was successful in evaluating alterations in protein-ligand affinity for G6PD 

variants using free binding energy calculations using the molecular mechanic Poisson-

Boltzmann surface area (MM-PBSA) approach and by computing the number 

hydrogen bonds between protein and ligand. Results from the MM-PBSA showed that 

the wild-type had a greater affinity towards the ligands than the variants. The study by 

Doss et al (2016) was successful in determining the effects of mutations by the 

analysing changes in chemical characteristics of the mutated residues coupled with an 

array of analyses such as root-mean-square deviation (RMSD), root-mean square 

fluctuation (RMSF), Intermolecular hydrogen bond analyses, solvent accessible 

surface area (SASA). These analyses allowed a structural comparison of the simulated 

variants against the wild-type. 
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Since GROMACS allows computing the presence and distance of 

intermolecular interactions, it would have been possible to evaluate the integrity of the 

dimer and tetramer interfaces by checking for the presence of salt bridges and 

hydrogen bonds which are crucial for the stability of both multimeric interfaces. 

However, both studies involved simulating G6PD monomers and dimers without 

ligands (Doss et al., 2016; H. Nguyen et al., 2016), therefore did not provide insights 

on the enzyme in its active state which is highly influenced by ligands. Since ligands 

influences G6PD multimerization and enzyme activity, simulating a G6PD dimer in 

complex with ligands would be useful in understanding the physiological effects of 

G6P, c.NADP and s.NADP in an active state of the enzyme, and allow evaluating how 

different mutations affect G6PD function. 

1.2 Problem Statement 

G6PDD has been associated with a variety of metabolic and neurological 

disorders, making G6PD drug development the need of the hour. However, drug 

development demands a biophysical and biochemical knowledge of G6PD variants 

and the mechanism of how they affect the protein structural integrity and enzyme 

activity. Although more than 400 G6PD variants have been reported, less than 10 % 

have been analyzed in depth. Moreover, G6PD-related MDS studies have only focused 

on mutations common to the USA, German and Middle Eastern population. Despite 5 

– 20 % of the global incidence of G6PDD is reported in Asia, there is still a lack of 

knowledge for G6PD variants originating from Asia and SEA in a structural context. 

Therefore, by employing the use of MDS, this study aims to simulate G6PD variants 

originating from Asia to understand their mutational effects. 

The human G6PD enzyme, in its active state exists as dimers or tetramers 

depending on its environment, greatly influenced by ligands. However, in terms of 

protein multimerization, dimerization is crucial for basic G6PD enzymatic activity. 

There are several crystal structures of G6PD deposited in the Protein Data Bank 

(PDB), however, there are no structures of the human G6PD dimer in complex with 

ligands available till date, hence making it difficult to understand the structural and 

functional changes associated with ligand dependent dimerization.  



 

5 

This presses the need to construct a G6PD dimer with ligands using molecular 

docking approaches. Moreover, mutations on the G6PD-ligand complex would create 

further structural changes affecting the G6PD variants compared to the native dimeric 

variant, which remains unknown, especially in G6PDD of the SEA & Asian variants. 

Understanding such intermolecular & structural changes on the G6PD-ligand complex 

could yield valuable structural and functional relationships related to changes at the 

dimer interface, tetramer interface and ligand binding sites.  

Previous G6PD-related MDS studies were not corroborated with existing 

structural and biochemical reports, therefore did not bridge their in-silico findings with 

existing in-vitro knowledge of G6PD variants. Moreover, previous studies only 

simulated monomers and dimers without ligands. This was the first MDS study of the 

G6PD dimer bound to all its ligands, therefore mimicking G6PD in its active state. The 

rationale to simulate a G6PD dimer was based on the fact that the most harmful 

mutations are clustered at the dimer interface, and G6PD enzyme activity is dependent 

on the structural integrity of the dimer. To overcome the forementioned gaps, this 

study sought to validate the in-silico analyses derived from MDS with existing 

literature that report enzyme activities (kcat) and protein-ligand affinities (Km) for 

G6PD Asian variants, thereby establishing a structural and functional relationship for 

the variants being analyzed. 

Previous studies did not analyze alterations at the dimer and tetramer interfaces 

due to a particular mutation nor due to the affinity towards a ligand. This study 

hypothesizes that variants with high enzyme activity (high kcat) have stable dimer 

interfaces (characterized by the presence of salt bridges and hydrogen bonds between 

each monomeric subunit of the dimer) and exhibit the ability to tetramerize 

(characterized by increased surface area at the tetramer interface). Variants with stable 

dimer interfaces should develop greater affinities towards NADP rather than G6P 

ligands, as the latter disassociates dimers into inactive monomers. Computing the 

protein -ligand affinity using hydrogen bond analyses should match the affinity based 

on Km values from previous kinetic characterization studies of G6PD. This was the 

first study to provide insights on ligand interplay and their physiological significance 

on the dimer ⇌ tetramer interconversion.  
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1.3 Research Objectives 

The objectives of the research are: 

(a) To prepare a complete G6PD dimer structure with substrates and cofactors 

using molecular docking approaches.  

(b) To compare the structural stability of G6PD Asian variants against the native 

dimeric protein using MDS.  

(c) To identify and validate changes in protein - ligand affinity based on the 

molecular binding profile and molecular mechanic Poisson-Boltzmann surface 

area (MMPBSA) approach. 

1.4 Research Significance 

Establishing a structural and functional relationship for G6PD variants was 

possible by corelating the structural integrity at the dimer interface with their reported 

enzyme activities from biochemical reports. Furthermore, this study will act as a 

platform to provide genotype-phenotype information that might be useful for G6PD 

drug development and enable a better understanding of G6PD pathogenicity. Despite 

categorization of different variants into five classes by the WHO, discrepancies exist 

whereby class I variants exhibit more than 10 % (Martínez-Rosas et al., 2020) and 

class III variants exhibit less than 4% of enzyme activity (Chao et al., 1991). This study 

was successful in reasoning for such discrepancies by analyzing alterations at critical 

domains such as the dimer and tetramer interfaces and ligand binding sites. 

This study was successful in unravelling the required structural dynamics for 

G6PD to achieve optimum enzyme activity. In the process, the structural defects due 

to ten different variants originating from Asia were carefully assessed and allowed 

identifying the required dynamics of the mutated protein structures to ameliorate 

impaired enzyme activity. This information would be invaluable for G6PD drug 

development.  
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Recently discovered G6PD agonists such as AG1 has been effective in 

increasing the enzyme activity for selected variants. Saddala et al (2020) have 

identified compounds with similar mode of action as AG1. Since the docking model 

and trajectory analyses from this study was successful in reproducing the structural 

characteristics of existing G6PD literature, subsequent docking of identified G6PD 

agonists by Saddala et al (2020) onto the G6PD model should evaluate its effects on 

whether it would increase the structural integrity of the dimer and tetramer interface, 

hence indicating amelioration of low enzyme activity. Therefore, it would be useful to 

evaluate efficacies for a broader range of variants to overcome AG1’s selective nature 

(Saddala et al., 2020).  

1.5 Scopes of the study  

A complete G6PD dimer bound to all its ligands (two G6P, c.NADP and 

s.NADP) was constructed by employing molecular docking approaches using 

AutoDock 4.2 and AutoDock Vina. The protein - ligand docked complexes were 

validated by a conformation, and intermolecular hydrogen bond check against 

reference crystal structures 2BHL and 2BH9, which are bound to G6P and c.NADP-

s.NADP respectively. Matching the docking pose, hydrogen bond network and 

distance of the docked ligand towards their crystal structure counterpart is crucial to 

ensure that the simulation mimics protein dynamics of G6PD in a cellular setting. 

After docking, the native dimer and ten variants originating from SEA and Asia 

were simulated using GROMACS 2018.1 for 100 ns. The structural changes of 

variants with respect to the WT were compared using different parameters such as 

root-mean-square deviation (RMSD), root-mean square fluctuation (RMSF), radius of 

gyration (Rg), Intermolecular hydrogen bond analyses, solvent accessible surface area 

(SASA), and principal component analysis (PCA). Detailed structural analyses were 

performed by comparing the structural integrity of the dimer and tetramer interface for 

the variants against the WT.  
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Finally, a molecular binding profile evaluation was performed to inspect the 

protein-ligand affinity, coupled with electrostatic, van der Waals, polar solvation, 

SASA, and free binding energy calculations using the MMPBSA method. The number 

of hydrogen bonds between protein and ligand was verified with existing Km values to 

validate the protein-ligand affinity for variants selected for this study. Ligand 

dependent multimerization was observed from this study, where high NADP binding 

pocket occupancy increased the structural stability of the dimer shifting it towards a 

tetrameric state, whereas high G6P affinity disassociated the dimer characterized by 

high distance and loss of hydrogen bonds between each monomeric subunit of the 

dimer. Overall, this study served to act as a link to understand how and why different 

classes of G6PD mutations exhibit structural disparities and present with different 

levels of enzyme activity.  
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