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ABSTRACT 

The evolution of research and development of the electrolyte membrane for 

direct methanol fuel cell (DMFC) has increased since the past few years, particularly 

on the fabrication of different membrane configurations. This happens due to the 

promising characteristics of DMFC, especially for portable applications in delivering 

a high-power supply and easy to handle system. However, the limitation of these types 

of membranes is their dense structure which may limit the transportation of protons. 

Nevertheless, the open porous structure is yet to be studied as a new electrolyte 

membrane due to its well-known drawback of the pores on methanol barrier properties. 

The main aim of this study was to investigate the potential application of a novel 

modified porous polyether sulfone (PES) incorporated with zeolitic imidazolate 

framework-8 (ZIF-8) in direct methanol fuel cell (DMFC). The porous PES 

membranes prepared by dissolving in different types of solvents (DMAc and NMP) 

were obtained via non-solvent induced phase separation (NIPS) technique at different 

solvent evaporation time (SET) from 0 to 5 minutes. The prepared membranes were 

characterized based on the effect of morphological studies on their physicochemical 

properties. Later, PES dope solutions containing different loading of cSMMs (0 to 5 

wt. %) were cast on a glass plate at optimum SET and solvent type in order to prepare 

the modified porous PES (PES-cSMMs) membranes. ZIF-8 crystals with the 2-

methylimidazole (HmIm)/Zn2+ ratio of 6 were grown inside the PES-cSMMs pores by 

in-situ growth technique via different methods, which are immersion, dead-end 

filtration and contra-diffusion in order to get fine growth of ZIF-8 crystals inside the 

pores of the PES-cSMMs flat sheet membranes. The prepared porous PES-

cSMMs/ZIF-8 composite membranes were evaluated with respect to their proton 

conductivity, methanol permeability, morphology, mechanical and thermal properties, 

and DMFC performance in a single DMFC stack. From the scanning electron 

microscopy, the morphologies of porous PES membrane for both surface and cross-

sectional images showed changes with respect to the SET. Besides, the pore size of 

PES membranes increased dramatically as the SET increased. The porous PES-

cSMMs membranes were fabricated at SET of 3 minutes as a result of the optimum 

selectivity of PES-DMAc3MIN membranes. The PES-3 wt. % cSMMs exhibited higher 

selectivity as compared to Nafion® 117 owing to proton conductivity and methanol 

permeability values of 14.14 × 10-3 Scm-1 and 0.54 × 10-7 cm2s-1, respectively. 

However, higher loading of cSMMs deteriorated the proton transportations. The 

incorporation of ZIF-8 via in-situ growth inside the pores of porous PES-cSMMs with 

a complete rhombic dodecahedron was successfully obtained via immersion technique 

and was found to significantly improve the proton conductivity (19.5 × 10-3 Scm-1) 

and methanol barrier properties (0.04 × 10-7 cm2s-1) as well as the exhibited power 

density of 25.2 mWcm-2. Hence, the promising results obtained in this study have 

demonstrated the potential of the porous electrolyte membrane, like the porous PES-

cSMMs/ZIF-8 membrane, which gives a warrant for further investigation in fuel cell 

applications, specifically DMFC. 

  



vii 

ABSTRAK 

Evolusi penyelidikan dan pembangunan membran elektrolit untuk sel bahan 

api metanol langsung (DMFC) telah meningkat sejak beberapa tahun kebelakangan ini 

terutama pada penghasilan konfigurasi membran yang berbeza jenis. Ini berlaku 

kerana ciri-ciri DMFC yang menjanjikan suatu sistem mudah alih yang dapat 

menyediakan bekalan kuasa tinggi dan mudah dikendalikan. Walau bagaimanapun, 

had membran jenis ini adalah struktur padatnya yang mungkin membatasi 

pengangkutan proton. Walaupun begitu, struktur berliang terbuka masih belum dapat 

dikaji sebagai membran elektrolit baharu kerana kelemahannya yang mempunyai liang 

pada penghalang metanolnya. Tujuan utama kajian ini adalah untuk menyiasat potensi 

aplikasi baharu polietersulfona (PES) berpori yang diubahsuai yang digabungkan 

dengan kerangka imidazolat zeolitik-8 (ZIF-8) dalam sel bahan api metanol langsung 

(DMFC). Membran PES berliang yang disediakan dengan melarutkan dalam pelbagai 

jenis pelarut (DMAc dan NMP) diperoleh melalui teknik pemisahan fasa bukan pelarut 

pada masa penyejatan pelarut (SET) yang berbeza dari 0 hingga 5 minit. Membran 

yang disediakan dicirikan berdasarkan pengaruh kajian morfologi terhadap sifat 

fizikokimia. Kemudian, larutan dop PES yang mengandungi pemuatan cSMMs yang 

berbeza (0 hingga 5 wt.%) dituangkan pada piring kaca pada SET dan pelarut optimum 

untuk menyiapkan membran PES berliang yang diubah suai (PES-cSMMs). Kristal 

ZIF-8 dengan nisbah 2-metilimidazol (HmIm)/Zn2+ dari 6 ditumbuhkan di dalam liang 

PES-cSMMs dengan teknik pertumbuhan in-situ melalui kaedah yang berbeza iaitu 

rendaman, penurasan hujung mati dan resapan kontra untuk mendapatkan 

pertumbuhan halus kristal ZIF-8 di dalam liang membran lembaran rata PES-cSMMs. 

Membran komposit PES-cSMMs/ZIF-8 yang berliang telah dinilai melalui 

kekonduksian proton, kebolehtelapan metanol, morfologi, sifat mekanik dan haba, dan 

prestasi DMFC dalam satu susunan DMFC. Dari mikroskop elektron imbasan, 

morfologi membran PES berliang untuk kedua-dua imej permukaan dan keratan rentas 

menunjukkan perubahan berkenaan dengan SET. Selain itu, saiz pori membran PES 

meningkat secara mendadak ketika SET meningkat. Membran PES-cSMMs berliang 

yang dibuat pada SET 3 minit terhasil daripada kememilihan optimum membran PES-

DMAc3MIN. PES-3 wt.% cSMMs menunjukkan kememilihan yang lebih tinggi 

berbanding Nafion® 117 kerana kekonduksian proton dan nilai kebolehtelapan 

metanol masing-masing pada 14.14×10-3 Scm-1 dan 0.54×10-7 cm2s-1. Walau 

bagaimanapun, pemuatan cSMMs yang lebih tinggi mengurangkan pengangkutan 

proton. Penggabungan ZIF-8 melalui pertumbuhan in-situ di dalam liang PES-cSMMs 

berliang dengan dodekahedron rombus yang lengkap berjaya diperoleh melalui teknik 

rendaman dan didapati dapat meningkatkan kekonduksian proton (19.5×10-3 Scm-1) 

dan sifat penghalang metanol (0.04×10-7 cm2s-1) dengan ketara serta menunjukkan 

ketumpatan daya 25.2 mWcm-2. Oleh itu, hasil yang menjanjikan yang diperoleh 

dalam kajian ini telah menunjukkan potensi membran elektrolit berpori, seperti 

membran PES-cSMMs/ZIF-8 berpori yang menjamin penyelidikan lebih lanjut dalam 

aplikasi sel bahan api, khususnya DMFC. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

In the past decades, fossil fuel was the primary source of generating power, 

either for remote or inaccessible areas. However, the rapid depletion of fossil fuel has 

contributed to fuel price increment (Höök and Tang, 2013). This issue is non-stop and 

may take a long time to recover. The worsening scenario is the burning of fossil fuels, 

which has caused environmental problems that led to several effects such as climate 

change, human health, global warming, water and air pollution, and many more. These 

problems developed the motivation for researchers worldwide to find a sustainable yet 

environmentally friendlier solution for a healthier life. After a long-term run of 

numbers research and development (R&D), renewable energy was then introduced 

since it had shown the potential to replace the current dependency on fossil fuel.  

Besides, this renewable energy has offered several advantages which make it 

feasible than fossil fuel, such as not directly competing the fossil fuel in the 

mainstream of the world with a stand-alone wholesale price (Khan et al., 2017). 

"Renewable energy" refers to self-renewing energy derived from various resources 

such as sunlight, wind, flowing water, biomass, geothermal heat and etcetera (Bull, 

2001). Apart from higher investment and weather depending, fuel cell-based energy 

sources have captivated an enormous potential in the research field since they possess 

a lightweight and compact design for easy handling (Das et al., 2017). Direct methanol 

fuel cell (DMFC) is one of the distinguished fuel cells that has been studied for the 

past few years due to its ability to provide energy for portable applications (Lee et al., 

2017).  
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The performance of DMFC was mainly governed by the membrane electrode 

assembly (MEA), which consists of electrodes (anode and cathode), catalysts and 

electrolyte membrane. The electrolyte membrane is a vital part of the DMFC system 

since it can affect the proton and methanol transport processes. Since the electrolyte 

was generally prepared from the polymeric-based membrane as a proton conductor, 

either proton exchange membrane or polymer electrolyte membrane (PEM) 

terminology can be used (Jaafar et al., 2011; Wang et al., 2011). As concerned, 

commercial perfluorinated membrane such as Nafion® membrane had been dictated 

as a competitive PEM for other non-fluorinated membranes due to higher proton 

conductivity.  

For instance, Li et al. (2003) had found that at different operating temperature 

conditions, Nafion® 115 membrane could provide high proton conductivity such as 10 

Scm-1 at 80℃ (100% relative humidity (RH)) and 5-20 Scm-1 at 150℃ (0% relative 

humidity (RH)), respectively compared to sulfonated poly (ether ether ketone) 

(SPEEK) membrane. Despite the high value of proton conductivity, Nafion suffered 

from high fuel permeability, mainly when operating in the DMFC system. Thus, 

several approaches have been introduced to refine the fuel cell performance, such as 

(1) modifying perfluorinated ionomer membrane/ acid-base blends, (2) modifying 

ionomer membrane, and (3) preparing new electrolyte composite membrane based on 

proton conducting materials. The latter approach has marked up the R&Ds for newly 

designed electrolytes in the past few decades. 

Generally, the membrane morphology can be divided into two groups: dense 

and porous. Regardless of the composition within PEMs, several types of fabricated 

membranes for DMFC applications mostly in dense structure morphology which can 

be defined by their configurations-whether layered, sandwiched, or pore-filled 

membranes. Compared to the corresponding pure polymer membranes and 

commercial Nafion® membranes, many new electrolyte membranes based on proton 

conducting materials with different configurations show much lower fuel permeability 

and similar or improved proton conductivity.  
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The combination of the advantages from the base materials and membranes 

morphology contribute to the aforementioned properties. Adding the proton 

conducting materials may affect the membrane cell in two ways: 1) a good distribution 

could provide a winding diffusion pathway for methanol to crossover, and 2) complete 

morphological structure could allow more proton to diffuse (Wang and Dong, 2007). 

Being said, porous PEM with nanoscales pores can increase the cell 

performance and physicochemical properties of the membrane compared to the dense 

electrolyte membrane. For instance, Jiang et al. (2017) have found that the porous 

SPEEK does help in collecting more water and induced proton transportation (58 × 

10-3 Scm-1) in conjunction with a more straightforward pathway given by the pores. 

Moreover, the inclusion of inorganic fillers via in-situ growth techniques within the 

pores of the base membrane is favourable in developing crystals with smaller diameter 

sizes which could provide a barrier for methanol yet allowing protons to pass through. 

Thus, the combination of higher porosity, narrower pores size, and denser distribution 

of ionic clusters in the polymer electrolyte membrane brings the focus to the study on 

composite polymer electrolyte membrane within the laboratory and industrial aspect. 
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1.2 Problem Statement 

Nafion®, a notable membrane that has dominantly been used as a proton 

exchange membrane in a fuel cell application system (Gagliardi et al., 2020), has 

significantly shown some drawbacks when operating at high operating temperatures. 

Nafion® membrane suffered from a swelling problem that may affect the membrane's 

barrier properties, especially in DMFC application. Thus, a new route was discovered 

by introducing non-fluorinated polymers. Among all, despite high hydrophobicity, 

polyether sulfone (PES) possessed high chemical and thermal stability (Tg=220℃), 

good mechanical strength, and excellent hydrolytic stability, makes it interesting to be 

studied as an electrolyte in the DMFC system (Unnikrishnan et al., 2010). The 

substitution of electrophilic and nucleophilic on PES structure seemly feasible due to 

aromatic rings. This character makes the PES polymer easy to modify to fulfil the 

electrolyte membrane requirement for fuel cell application. Moreover, the properties 

possessed by PES make it easy to be altered during the fabrication process either as 

dense or porous membrane. Previously, a dense PES electrolyte membrane has been 

fabricated and studied by Elakkiya et al. (2018). However, unfortunately, the proton 

conductivity value of dense PES is relatively low (0.22×10-4 Scm-1). In order to solve 

the low proton conductivity of the dense PES membrane, the introduction of 

nanoscale's pores was believed can enhance the proton conductivity of the pristine 

PES.  

This nanoscale’s pores on porous PES can lead to more water collection due to 

the more straightforward pathway given by those pores, which eventually increase the 

cell performance of DMFC (Jiang et al., 2017). Previously, many porous PES 

membranes had been fabricated using different organic solvents such as N-methyl 

pyrrolidine (NMP), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and 

dimethylacetamide (DMAc). Despite the high prices, these organic solvents offer good 

management toward the environment. As these organic solvents were released into the 

water, air, and soil, they would eventually be adapted to the environment by chemically 

converting into another compound that eventually became less toxic (Comyn, 1997). 
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Madaeni and Rahimpour (2005) had studied the effect of solvents such as 

DMAc, NMP, and DMF toward the porosity of PES membrane. From their study, they 

concluded that DMAc and NMP could provide a porous PES membrane with higher 

porosity (>80%) as compared to DMF (=80%). The findings are worth noting that 

the solvents’ types play an important role in determining the membrane’s morphology. 

Apart from that, the solubility of the solvent and polymer is also crucial while 

preparing adequate thermodynamic stability of the dope solution (Nasir et al., 2014) 

for electrolyte membrane fabrication. Nonetheless, for porous membrane fabrication, 

the morphology can be formed either; (1) structure that consists of thin dense skin 

layer, finger-like and macrovoids layer or (2) consist of macrovoids and sponge-like 

structure or (3) sponge-like structure.  

In the formation of those morphologies, solvent evaporation time (SET) plays 

a significant role in delivering a good morphology for intended applications. A study 

by Salim et al. (2019) reported that after 5 min SET, the thermodynamic process of 

solvent exchange was not stable for porous membrane formation and was not suitable 

for any applications. This unstable thermodynamic process will lead to the formation 

of holes on the membrane’s surface. Nonetheless, in the SET procedure, higher volatile 

solvents such as DMF and DMSO will lead to the formation of grainy and irregular 

structure of PES membranes due to rapid evaporation of solvents (Thuyavan et al., 

2016).  

Thus, upon different raw materials, the distinction in electrolyte microstructure 

can be relayed on different preparation techniques, leading to a different range of 

proton conductivity (Zheng and Shen, 2018). This phenomenon occurred due to the 

tortuosity pathways formed by the microstructure of the electrolyte. However, it was 

believed that the amendment on dense PES membrane by porous structure only does 

not impact proton conductivity value due to its hydrophobic backbone, which restricts 

proton's attachment via the Grotthuss mechanism. To further improve the proton 

conductivity, both mechanisms of Grotthuss and vehicle should work simultaneously. 

Thus, in order to improve the hydrophilicity of porous PES membrane, the post-

treatment, such as surface modification, by governing a charged surface modifying 

macromolecules (cSMMs). 
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Countless pioneering work has been done previously, which showed that the 

addition of cSMMs within the limit (0 – 5 wt. %) could decrease the dense membrane's 

contact angle and simultaneously increase the proton conductivity (Norddin et al., 

2008). Moreover, the contribution of higher porosity, narrower pores size, and denser 

distribution of ionic clusters to the addition of cSMMs in the polymer matrix makes it 

excellent for proton conductivity (Rana et al., 2005) yet could suppress the methanol 

crossover (Norddin et al., 2008). Despite all the improvement in proton conductivity 

of the pristine membrane, when dealing with an open porous structure, it cannot be 

neglected the probability for methanol to crossover due to the kinetic separation that 

occurred when the pore size is slightly larger than the kinetic diameter of methanol 

molecules. 

The small aperture size of zeolitic imidazolate framework 8 (ZIF-8), which is 

~3.4Å, can give a tortuous pathway for methanol (kinetic diameter ~ 3.8Å) yet 

increasing the proton conduction (kinetic diameter of water 2.6~3.2Å) (Hsu et al., 

2018; Yang et al. 2015). Also, ZIF-8 is easier to compatible with the polymer matrix 

due to its imidazolate linkers containing nitrogen-donors. Nevertheless, the 

hydrophobic properties of ZIF-8 were believed can enhance the stability of electrolyte 

membranes at higher operating temperatures. Despite the speciality possessed by ZIF-

8 crystals, the appropriated inclusion techniques need to be determined since they will 

influence the degree of ZIF-8 crystal formation within the pores of the porous PES-

cSMMs membranes.  

A good formation of ZIF-8 crystal is required to produce excellent methanol 

barrier properties and proton conductivity. To the best of our knowledge, this is the 

first reported research that employs a fully open porous structure membrane as an 

electrolyte for DMFC applications. This research postulated that both combination 

properties of porous PES-cSMMs and ZIF-8 were believed could induce high proton 

conductivity and methanol barrier properties for the DMFC system. Therefore, in this 

study, a composite membrane consisting of modified porous PES-cSMMs and ZIF-8 

crystals is studied in determining the performance of DMFC single cells. 
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1.3 Objective of the Study 

The main objective of this study is to develop a composite porous PES-

cSMMs/ZIF-8 membrane with high proton conductivity, high methanol barrier 

properties, and high performance under DMFC operations compared to commercially 

available Nafion® 117 membrane, respectively. The main concern in the fabrication of 

composite porous PES-cSMMs/ZIF-8 membrane is the influence of morphology on 

the membrane’s properties. Hence, the objectives of the study are as follows: 

(a) To evaluate the influences of solvent’s types and solvent evaporation time 

(SET) on the physico-chemical properties of the prepared porous PES 

membrane 

(b) To determine the best cSMMs loading based on the physico-chemical 

properties of the prepared blended porous PES-cSMMs membrane 

(c) To examine the effect of inclusion techniques toward composite porous PES-

cSMMs/ZIF-8 membrane based on the influences of the morphological aspect 

on the physico-chemical properties. 

(d) To evaluate and compare the performance of membrane electrolyte assembly 

(MEA) fabricated from porous composite PES-cSMMs/ZIF-8 and Nafion 117® 

membranes in a DMFC single cell. 
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1.4 Scope and Limitation of Study 

In order to achieve the objective stated above, the following scopes of study 

are being drawn: 

(a) Preparing of porous PES membranes 

i. 18 wt. % of PES dope solutions were synthesized using different types 

of solvents (DMAc and NMP), 

ii. Preparing porous PES electrolyte membranes via dry/wet phase 

inversion techniques 

iii. Varying the solvent evaporation time, SET (0, 1, 2, 3, 4 and 5 minutes) 

to produce a porous structure of PES-DMAc and PES-NMP 

membranes 

iv. Characterization in terms of morphological aspect toward physico-

chemical properties such as morphology, hydrophilicity, proton 

conductivity, methanol permeability and water uptake by using 

scanning electron microscopy (SEM), contact angle (CA), AC 

impedance analyzer and permeation cell, respectively. 

 

(b) Preparing of blended porous PES-cSMMs membranes 

i. Synthesizing 18wt.% of PES-cSMMs dope solutions with different 

loading of cSMMs (0, 1, 2, 3, 4 and 5wt.%) via direct blending 

method, 

ii. Preparing of blended porous PES-cSMMs membranes via dry/wet 

phase inversion techniques by controlling the optimum solvent 

evaporation time (SET) 

iii. Characterizing the blended porous PES-cSMMs membranes in terms 

of physicochemical properties such as morphology, hydrophilicity, 

proton conductivity, methanol permeability, chemical structure, and 

mechanical stability by using scanning electron microscopy (SEM), 

contact angle (CA), AC impedance analyzer, permeation cell, Fourier 

transform infrared spectroscopy (FTIR) and tensile test, respectively 
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(c) Preparing of composite porous PES-cSMMs/ZIF-8 membranes 

i. Fabrication of composite porous PES-cSMMs/ZIF-8 electrolyte 

membrane by manipulating the inclusion techniques (immersion, 

contra-diffusion, and filtration) with a constant ratio of ZIF-8 

precursor (1:6:500) 

ii. Characterizing the composite porous PES-cSMMs/ZIF-8 electrolyte 

membranes in terms of physicochemical properties such as 

morphology, water uptake, hydrophilicity, proton conductivity and 

methanol permeability, thermal properties, chemical structure, 

crystallinity and mechanical stability by using field emission scanning 

electron microscopy (FESEM), contact angle (CA), AC impedance 

analyzer, permeation cell, thermogravimetric analysis (TGA), Fourier 

transform infrared spectroscopy (FTIR), X-ray diffraction analysis 

(XRD) and tensile test, respectively 

 

(d) Evaluating the performance of developed PEM in DMFC system 

i. The PEM electrode assemblies (MEAs) were prepared by composing 

membrane with Pt/Ru and Pt/C electrodes at 3 tonnes, 115° C and 1 

minute. The PEM electrode assemblies were tested under a single 

DMFC operation system. 

ii. The operating temperature and relative humidity were controlled at 

ambient conditions. 

iii. The power density was calculated via the recorder I-V polarization 

curve and compared to the performance of Nafion® 117 membranes. 
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1.5 Significant of the Study 

The fuel cell is one of the promising renewable energy sources that can provide 

a clean, safe and cost-effective to the community, nation as well as society. The 

polymer electrolyte membrane (PEM) based on inorganic filler has earned many 

research and development (R&D) works from other researchers around the world in 

the past two decades due to its outstanding ability in providing higher performance, 

especially in direct methanol fuel cell (DMFC) application as compared to native 

PEM. Despite that, dense morphology possessed by a common composite membrane 

has limited the transportation of protons within its structure. Thus, a composite 

electrolyte membrane entirely made up of a porous structure was used as a new 

electrolyte in the DMFC system. To select the promising materials for PEM in 

enhancing the methanol barrier properties, this research alternatively fabricated PES 

polymer as the main backbone for PEM. The replacement of the Nafion® with 

hydrocarbon membrane improved the compatibility of membrane properties and 

benefited the working operation of the DMFC and cut its operating cost. Despite that, 

the introduction of hydrophilic additives such as cSMMs and inorganic filler, ZIF-8 

improved the proton conductivity, mechanical and thermal properties of the composite 

membrane. The swelling degree was also enhanced. Furthermore, by studying the 

inclusion techniques for ZIF-8 embedded into the pores of porous PES-cSMMs, the 

optimum ZIF-8 crystal formation has remarkably improved the value of proton 

conductivity and methanol permeability. Moreover, the fabricated composite 

membrane also has the potential to be used in wastewater treatment and gas separation 

process due to its asymmetric structure, which can be selective to the intended 

molecules/species. 

  



151 

REFERENCES 

Akbari, E., Nikoukar, A., Kheirandish, A., Khaledian, M. and Afroozeh, A. (2016) 

ʻSensor application in Direct Methanol Fuel Cells (DMFCs)ʼ, Renewable and 

Sustainable Energy Reviews, 60, pp. 1125-1139. 

Alaei Shahmirzadi, M. A., Hosseini, S. S., Ruan, G. and Tan, N. R. (2015). ʻTailoring 

PES nanofiltration membranes through systematic investigations of prominent 

design, fabrication and operational parametersʼ, RSC Advances, 5, pp. 49080-

49097. 

Alberti, G. and Casciola, M. (2003) ʻComposite membrane for medium-temperature 

PEM fuel cellsʼ, Annual Review of Materials Research, 33, pp. 129-154. 

Alwin, S., Bhat, S. D., Sahu, A. K., Jalajakshi, A., Sridhar, P., Pitchumani, S. and 

Shukla, A. K. (2011) ʻModified-pore-filled-PVDF-membrane electrolytes for 

direct methanol fuel cellsʼ, Journal of The Electrochemical Society, 158. 

Aranda, M. A. G., Leon-reina, L., Rius, J., Demadis, K. D., Moreau, B., Villemin, D., 

Palomino, M., Rey, F. and Cabeza, A. (2012) ʻHigh proton conductivity in a 

flexible, cross-linked, ultramicroporous magnesium tetraphosphonate hybrid 

Frameworkʼ, Inorganic Chemistry, 51, pp. 7689-98. 

Aricò, A. S., Baglio, V. and Antonucci, V. (2009) Direct methanol fuel cells: history, 

status and perspectives, in Liu, H. and Zhang, J. (Eds.) Electrocatalysis of 

direct methanol fuel cells: from fundamentals to applications. John Wiley & 

Sons, pp, 1-78.  

Awang, N., Jaafar, J., Ismail, A. F., Othman, M. H. D., Rahman, M. A., Yusof, N., 

Aziz, F., Salleh, W. N. W., Suradi, S. S., Ilbeygi, H., Wan Mohd Noral Azman, 

W. N. E. and Arthanareeswaran, G. (2017) ʻDevelopment of dense void-free 

electrospun SPEEK-Cloisite15A membrane for direct methanol fuel cell 

application : Optimization using response surface methodologyʼ, International 

Journal of Hydrogen Energy, 42, pp. 26496–26510. 

Azimi, M., Peighambardoust, S. J. and Hosseini, M. G. (2012) Modification of Nafion 

membranes with different clays for direct methanol fuel cell applications, in 

Proceeding of the 6th Iranian Fuel Cell Seminar, Tehran, Iran, March 2012. 

 



 

152 

Bakangura, E., Ge, L., Muhammad, M., Pan, J., Wu, L. and Xu, T. (2015) ʻSandwich 

structure SPPO/BPPO proton exchange membranes for fuel cells : 

Morphology-electrochemical properties relationshipʼ, Journal of Membrane 

Research, 475, pp, 30-38. 

Baker, R. W. (2012) Membrane Technology and Applications. John Wiley & Sons. 

Balsara, N. P. and Beers, K. M. (2011) ʻProton conduction in materials comprising 

conducting domains with widths less than 6 nmʼ, European Polymer Journal, 

47, pp. 647-650. 

Bao, Q., Lou, Y., Xing, T. and Chen, J. (2013) ʻRapid synthesis of zeolitic imidazolate 

framework-8 (ZIF-8) in aqueous solution via microwave irradiationʼ, 

Inorganic Chemistry Communications, 37, pp. 170-173. 

Barbosa, P., Rosero-Navarro, N. C., Shi, F. N. and Figueiredo, F. M. L. (2015) 

ʻProtonic conductivity of nanocrystalline zeolitic imidazolate framework 8ʼ, 

Electrochimica Acta, 153, pp. 19-27. 

Bazzarelli, F., Giorno, L. and Piacentini, E. (2015) Porous membrane, in Drioli, E and 

Giorno, L. (Eds.) Encyclopaedia of membranes. Germany: Springer, pp. 1-3. 

Bruggen, B. Van Der. (2009) ʻChemical modification of polyethersulfone 

nanofiltration membranes : A reviewʼ, Journal of Applied POlymer Science, 

114, pp. 630-642. 

Bull, S. R. (2001) Renewable energy today and tomorrow, in Proceedings of the IEEE, 

89, pp. 1216–1226. 

Bux, H., Liang, F., Li, Y., Cravillon, J., Wiebcke, M. and Caro, J. (2009) ʻZeolitic 

imidazolate framework membrane with molecular sieving properties by 

microwave-assisted solvothermal synthesisʼ, Journal of The American 

Chemical Society, 131, pp. 16000-16001. 

Cai, Y. Y., Yang, Q., Zhu, Z. Y., Sun, Q. H., Zhu, A. M., Zhang, Q. G. and Liu, Q. L. 

(2019) ʻAchieving efficient proton conduction in a MOF-based proton 

exchange membrane through an encapsulation strategyʼ, Journal of Membrane 

Science, 590, p. 117277. 

Cao, X., Qiu, M., Qin, A., He, C. and Wang, H. (2014) ʻEffect of additive on the 

performance of pvdf membrane via non-solvent induced phase separationʼ, 

Materials Science Forum, 789, pp. 240-248. 

 

 



 

153 

Cavaliere, S., Subianto, S., Savych, I., Jones, D. J. and Rozi, J. (2011) 

ʻElectrospinning: designed architectures for energy conversion and storage 

devicesʼ, Energy and Environmental Science, 4, pp. 4761-4785. 

Čejka, J., Corma, A. and Zones, S. (2010) Zeolites and Catalysis: Synthesis, Reactions 

and Applications. Wiley-VCH. 

Chen, B., Yang, Z., Zhu, Y. and Xia, Y. (2014) ʻZeolitic imidazolate framework 

materials : recent progress in synthesis and applicationsʼ, Journal of Material 

Chemistry A, 2, pp. 16811-16831. 

Cheng, T., Feng, M., Huang, Y. and Liu, X. (2017) ̒ SGO/SPEN-based highly selective 

polymer electrolyte membranes for direct methanol fuel cellsʼ, Ionics, 23, pp. 

2143-2152. 

Chu, F., Zheng, Y., Wen, B., Zhou, L., Yan, J. and Chen, Y. (2018) ʻAdsorption of 

toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid 

nanocomposites in a humid atmosphereʼ, RSC Advances, 8, pp. 2426–2432. 

Comyn, J. (1997) ʻHandbook of organic solvent properties: Ian M. Smallwood Arnold 

£65.00. ISBN 0340645784. 306 pages + xxiʼ, International Journal of 

Adhesion and Adhesives, 17, p. 177.  

Das, V., Padmanaban, S., Venkitusamy, K., Selvamuthukumaran, R., Blaabjerg, F. and 

Siano, P. (2017) ʻRecent advances and challenges of fuel cell based power 

system architectures and control-A reviewʼ, Renewable and Sustainable 

Energy Reviews, 73, pp. 10–18. 

Daud, W. R. W., Rosli, R. E., Majlan, E. H., Hamid, S. A. A., Mohamed, R. and 

Husaini, T. (2017) ʻPEM fuel cell system control : A reviewʼ, Renewable 

Energy, 113, pp. 620–638. 

Devi, A. U., Divya, K., Rana, D., Abirami, M. S. and Nagendran, A. (2018) ʻHighly 

selective and methanol resistant polypyrrole laminated SPVdF-co-HFP/PWA 

proton exchange membranes for DMFC applicationsʼ, Materials Chemistry 

and Physics, 212, pp. 533–542. 

Di Palma, L., Bavasso, I., Sarasini, F., Tirillò, J., Puglia, D., Dominici, F. and Torre, 

L. (2018) ʻSynthesis, characterization and performance evaluation of 

Fe3O4/PES nano composite membranes for microbial fuel cellʼ, European 

Polymer Journal, 99, pp. 222-229. 

 

 



 

154 

Díaz, M., Ortiz, A., Vilas, M., Tojo, E. and Ortiz, I. (2014) ʻPerformance of PEMFC 

with new polyvinyl-ionic liquids based membranes as electrolytesʼ, 

International Journal of Hydrogen Energy, 39, pp. 3970-3977. 

Divya, K., Rana, D., Alwarappan, S.,Saraswathi, M. S. S. A. and Nagendran, A. (2019) 

ʻInvestigating the usefulness of chitosan based proton exchange membranes 

tailored with exfoliated molybdenum disul fi de nanosheets for clean energy 

applicationsʼ, Carbohydrate Polymer, 208, pp. 504-512. 

Doǧan, H., Inan, T. Y., Koral, M. and Kaya, M. (2011) ʻOrgano-montmorillonites and 

sulfonated PEEK nanocomposite membranes for fuel cell applicationsʼ, 

Applied Clay Science, 52(3), pp. 285-294. 

Elabd, Y. A., Walker, C. W. and Beyer, F. L. (2004) ʻTriblock copolymer ionomer 

membranes: Part II. Structure characterization and its effects on transport 

properties and direct methanol fuel cell performanceʼ, Journal of Membrane 

Science, 231(1-2), pp. 181-188. 

Elakkiya, S., Arthanareeswaran, G., Venkatesh, K. and Kweon, J. (2018). 

ʻEnhancement of fuel cell properties in polyethersulfone and sulfonated poly 

(ether ether ketone) membranes using metal oxide nanoparticles for proton 

exchange membrane fuel cellʼ, International Journal of Hydrogen Energy, 

43(47), pp. 21750–21759. 

Ercelik, M., Ozden, A., Devrim, Y. and Colpan, C. O. (2017) ʻInvestigation of Nafion 

based composite membranes on the performance of DMFCsʼ, International 

Journal of Hydrogen Energy, 42(4), pp. 2658–2668. 

Erkartal, M., Usta, H., Citir, M. and Sen, U. (2016) ʻProton conducting poly (vinyl 

alcohol) (PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid) 

(PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membraneʼ, 

Journal of Membrane Science, 499, pp. 156–163. 

Fahrina, A., Maimun, T., Humaira, S., Rosnelly, C. M., Lubis, M. R. and Bahrina, I. 

(2018) ʻThe morphology and filtration performances of poly ( ether sulfone ) 

membrane fabricated from different polymer solutionʼ, in MATEC Web of 

Conference, p. 197. 

Fang, X., Li, J., Li, X., Pan, S., Zhang, X., Sun, X., Shen, J., Han, W. and Wang, L. 

(2017) ̒ Internal pore decoration with polydopamine nanoparticle on polymeric 

ultrafiltration membrane for enhanced heavy metal removalʼ, Chemical 

Engineering Journal, 314,pp. 38–49. 



 

155 

Furukawa, H., Cordova, K. E., Keeffe, M. O. and Yaghi, O. M. (2013) ʻThe chemistry 

and applications of metal-organic frameworksʼ, Science, 341, p. 1230444. 

Gagliardi, G. G., Ibrahim, A., Borello, D. and El-Kharouf, A. (2020) ʻComposite 

polymers development and application for polymer electrolyte membrane 

technologies-A reviewʼ, Molecules, 25(7). 

Gates, B., Yin, Y. and Xia, Y. (1999) ʻFabrication and characterization of porous 

membranes with highly ordered three-dimensional periodic structuresʼ, 

Chemistry of Materials, 11(10), pp. 2827-2836. 

Guillen, G. R., Pan, Y., Li, M. and Hoek, E. M. V. (2011) ʻPreparation and 

characterization of membranes formed by nonsolvent induced phase 

separation: A reviewʼ, Industrial and Engineering Chemistry Research, 50(7), 

pp. 3798-3817. 

Guo, Y., Jiang, Z., Ying, W., Chen, L., Liu, Y., Wang, X., Jiang, Z., Chen, B and Peng, 

X. (2018) ʻA DNA-threaded ZIF-8 membrane with high proton conductivity 

and low methanol permeabilityʼ, Advanced Materials, 30, p. 1705155. 

Hacquard, A. (2005). Improving and understanding direct methanol fuel cell (DMFC) 

performance, PhD Thesis, Worcester (May), 107. 

Haile, S. M. (2003) ̒ Fuel cell materials and componentsʼ, Acta Materialia, 51, p. 5981-

6000. 

He, M., Yao, J., Li, L., Zhong, Z., Chen, F. and Wang, H. (2013) ʻAqueous solution 

synthesis of ZIF-8 films on a porouos nylon substrate by contra-diffusion 

methodʼ, Microporous and Mesoporous Materials, 179, pp. 10-16. 

Heinzel, A. and Barragán, V. M. (1999) ʻA review of the state-of-the-art of the 

methanol crossover in direct methanol fuel cellsʼ, Journal of Power Sources, 

84(1), pp. 70-74. 

Hess, S. C., Grass, R. N. and Stark, W. J. (2016) ʻMOF channels within porous 

polymer film: Flexible, self-supporting ZIF-8 poly(ether sulfone) composite 

membraneʼ, Chemistry of Materials, 28(21), pp. 7638-7644. 

Hołda, A. K., Aernouts, B., Saeys, W. and Vankelecom, I. F. J. (2013) ʻStudy of 

polymer concentration and evaporation time as phase inversion parameters for 

polysulfone-based SRNF membranesʼ, Journal of Membrane Science, 442, pp. 

196-205. 

Höök, M. and Tang, X. (2013) ʻDepletion of fossil fuels and anthropogenic climate 

change-A reviewʼ, Energy Policy, 52, pp. 797-809. 



 

156 

Hou, C., Xu, Q., Peng, J., Ji, Z. and Hu, X. (2013) ʻ(101)-oriented ZIF-8 thin films on 

ITO with controllable thicknessʼ, ChemPhysChem, 14(1), pp. 140-144. 

Hsu, P., Hu, T., Kumar, S. R., Chang, C., Wu, K. C., Tung, K. and Lue, S. J. (2018) 

ʻHighly zeolite-loaded polyvinyl alcohol composite membranes for alkaline 

fuel-cell electrolytesʼ, Polymers, 10(1), pp. 102. 

Huang, Q., Luo, Q., Chen, Z., Yao, L., Fu, P. and Lin, Z. (2018) ʻThe effect of 

electrolyte concentration on electrochemical impedance for evaluating 

polysulfone membranesʼ, Environmental Science: Water Research and 

Technology, 4(8), pp. 1145-1151. 

Hurd, J. a, Vaidhyanathan, R., Thangadurai, V., Ratcliffe, C. I., Moudrakovski, I. L. 

and Shimizu, G. K. H. (2009) ʻAnhydrous proton conduction at 150°C in a 

crystalline metal-organic frameworkʼ, Nature Chemistry, 1(9), pp. 705-710. 

Hwang, H. Y., Kim, S. J., Oh, D. Y., Hong, Y. T. and Nam, S. Y. (2011) ʻProton 

conduction and methanol transport through sulfonated poly(styrene-b-

ethylene/butylene-b-styrene)/clay nanocompositeʼ, Macromolecular 

Research, 19(1), pp. 84-89. 

Idris, A., Man, Z., Maulud, A. S. and Khan, M. S. (2017) 'Effect of phase separation 

behavior on morphology and performance of polycarbonate membranes', 

Membranes, 21, pp. 1-18. 

Ilbeygi, H., Ismail, A. F., Mayahi, A., Nasef, M. M., Jaafar, J. and Jalalvandi, E. (2013) 

ʻTransport properties and direct methanol fuel cell performance of sulfonated 

poly (ether ether ketone)/Cloisite/triaminopyrimidine nanocomposite polymer 

electrolyte membrane at moderate temperatureʼ, Separation and Purification 

Technology, 118, pp. 567-575. 

Jaafar, J., Ismail, A. F., Matsuura, T. and Nagai, K. (2011) ʻPerformance of SPEEK 

based polymer-nanoclay inorganic membrane for DMFCʼ, Journal of 

Membrane Science, 382(1-2), pp. 202-211. 

Jiang, Y., Hao, J., Hou, M., Hong, S., Song, W., Yi, B. and Shao, Z. (2017) ʻA novel 

porous sulfonated poly (ether ether ketone)-based multi-layer composite 

membrane for proton exchange membrane fuel cell applicationʼ, Sustainable 

Energy anf Fuels, 1(6), pp. 1405-1413. 

Josephine, M., Ordo, C., Jr, K. J. B., Ferraris, J. P. and Musselman, I. H. (2010) 

ʻMolecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranesʼ, 

Journal of Membrane Science, 361(1-2), pp. 28-37. 



 

157 

Khabibullin, A., Minteer, S. D. and Zharov, I. (2014) ̒ The effect of sulfonic acid group 

content in pore-filled silica colloidal membranes on their proton conductivity 

and direct methanol fuel cell performanceʼ, Journal of Materials Chemistry A, 

2(32), pp. 12761-12769. 

Khan, M. I., Yasmeen, T., Shakoor, A., Khan, N. B. and Muhammad, R. (2017) ʻ2014 

oil plunge: Causes and impacts on renewable energyʼ, Renewable and 

Sustainable Energy Reviews, 68(1), pp. 609-622. 

Kharisov, B. I., Elizondo Martínez, P., Jiménez-Pérez, V. M., Kharissova, O. V., 

Nájera Martínez, B. and Pérez, N. (2010) ʻrecent advances on ditopic ligandsʼ, 

Journal of Coordination Chemistry, 63(1), pp. 1-25. 

Kim, S., Dawson, K. W., Gelfand, B. S., Taylor, J. M. and Shimizu, G. K. H. (2013) 

ʻEnhancing proton conduction in a metal-organic framework by isomorpous 

ligand replacementʼ, Journal of The American Chemical Society, 135, pp. 963-

966. 

Klaysom, C., Ladewig, B. P., Lu, G. Q. M. and Wang, L. (2011) ʻPreparation and 

characterization of sulfonated polyethersulfone for cation-exchange 

membranesʼ, Journal of Membrane Science, 368(1-2), pp. 48-53. 

Kumar, G. G. and Nahm, K. S. (2011) Polymer nanocomposites-fuel cell applications, 

in Advances in Nanocomposites-synthesis, characterization and industrial 

applications, InTech.  

Kumar, M., Khan, M. A., Al-Othman, Z. A. and Choong, T. S. Y. (2013) ʻRecent 

developments in ion-exchange membranes and their applications in 

electrochemical processes for in situ ion substitutions, separation and water 

splittingʼ, Separation and Purification Reviews, 42(3), pp. 187-261. 

Kuo, C.-Y., Lin, H.-N., Tsai, H.-A., Wang, D.-M. and Lai, J.-Y. (2008) ʻFabrication 

of a high hydrophobic PVDF membrane via nonsolvent induced phase 

separationʼ, Desalination, 233(1-3), pp. 40-47. 

Kusworo, T. D., Budiyono, Ikhsan, D., Rokhati, N., Prasetyaningrum, A., Mutiara, F. 

R. and Sofiana, N. R. (2017) ʻEffect of combination dope composition and 

evaporation time on the separation performance of cellulose acetate membrane 

for demak brackish water treatmentʼ, in MATEC Web of Conferences, 101. 

 

 

 



 

158 

Kwon, H. T. and Jeong, H.-K. (2013) ʻHighly propylene-selective supported zeolite-

imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-

assisted seeding and secondary growthʼ, Chemical Communications, 49, pp. 

3854-3856. 

Ladewig, B. and Al-Shaeli, M. N. Z. (2017) Fundamentals of membrane processes, in 

Fundamentals of membrane Bioreactors. Springer transactions in civil and 

environmental engineering, Singapore: Springer, pp. 13-37. 

Lai, L. S., Yeong, Y. F., Ani, N. C., Lau, K. K. and Shariff, A. M. (2014) ʻEffect of 

synthesis parameters on the formation of zeolitic imidazolate framework 8 

(ZIF-8) nanoparticles for CO2 adsorptionʼ, Particulate Science and 

Technology, 32(5), pp. 520-528. 

Lalia, B. S., Kochkodan, V., Hashaikeh, R. and Hilal, N. (2013) ʻA review on 

membrane fabrication : Structure , properties and performance relationshipʼ, 

Desalination, 326, pp. 77-95. 

Lee, J., Lee, S., Han, D., Gwak, G. and Ju, H. (2017) ʻNumerical modeling and 

simulations of active direct methanol fuel cell (DMFC) systems under various 

ambient temperatures and operating conditionsʼ, International Journal of 

Hydrogen Energy, 42(3), pp. 1736-1750. 

Lee, Y. R., Jang, M. S., Cho, H. Y., Kwon, H. J., Kim, S. and Ahn, W. S. (2015) ʻZIF-

8: A comparison of synthesis methodsʼ, Chemical Engineering Journal, 271, 

pp. 276-280. 

Li, A.-L., Gao, Q., Xu, J. and Bu, X.-H. (2017) ʻProton-conductive metal-organic 

frameworks: Recent advances and perspectivesʼ, Coordination Chemistry 

Reviews, 344, pp. 54-82. 

Li, Chenxu, Huang, N., Jiang, Z., Tian, X., Zhao, X., Xu, Z., Yang, H. and Jiang, Z. 

(2017) ʻSulfonated holey graphene oxide paper with SPEEK membranes on its 

both sides: a sandwiched membrane with high performance for semi-passive 

direct methanol fuel cellsʼ, Electrochimica Acta, 250, pp. 68-76. 

Li, J.-R. and Zhou, H. (2009) ʻMetal-organic hendecahedra assembled form dinuclear 

paddlewheel nodes and mixtures of ditopic linkers with 120 and 90° bend 

anglesʼ, Angewandte Chemie, 121(45), pp. 8617-8620. 

Li, L., Zhang, J. and Wang, Y. (2003) ̒ Sulfonated poly(ether ether ketone) membranes 

for direct methanol fuel cellʼ, Journal of Membrane Science, 226, pp. 159-167. 

 



 

159 

Li, M., Li, D., O’Keeffe, M. and Yaghi, O. M. (2014) ʻTopology analysis of metal-

organic frameworks with polytopic linkers and/or multiple building units and 

the minimal transitivity principleʼ, Chemical Reviews, 114(2), pp. 1343-1370. 

Li, S.-L. and Xu, Q. (2013) ʻMetal-organic frameworks as platforms for clean eneryʼ, 

Energy and Environmental Science, 6(6), pp. 1656-1683. 

Liu, S., Yue, Z. and Liu, Y. (2015) ̒ Incorporation of inidazole within the metal-organic 

framework UiO-67 for enhanced anhydrous proton conductivityʼ, Dalton 

Transactions, 44(29), pp. 12976-12980. 

Liu, W. and Yin, X.-B. (2016) ʻMetal-organic frameworks for electrochemical 

applicationsʼ, TrAC Trends in Analytical Chemistry, 75, pp. 86-96. 

Lu, W. Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., 

Gentle III, T., Bosch, M., and Zhou, H.-C. (2014) ʻTuning the structure and 

function of metal-organic frameworks via linker designʼ, Chemical Society 

Reviews, 43(16), pp. 5561-5593. 

Lucia, U. (2014) ʻOverview on fuel cellsʼ, Renewable and Sustainable Energy 

Reviews, 30, pp. 164-169. 

Lufrano, F. and Baglio, V. (2015) ̒ Selectivity of direct methanol fuel cell membranesʼ, 

Membranes, 5(4), pp. 793-809. 

Ma, X. and Liu, D. (2018). 'Zeolitic imidazolate framework membranes for light 

olefin/paraffin separation', Crystals, 9, pp. 1-26. 

Madaeni, S. S. and Rahimpour, A. (2005) ʻEffect of type of solvent and non-solvents 

on morphology and performance of polysulfone and polyethersulfone 

untrafiltration membranes for milk concentrationʼ, Polymers for Advanced 

Technologies, 16(10), pp. 717-724. 

Mekhilef, S., Saidur, R. and Safari, A. (2012) ʻComparative study of different fuel cell 

technologiesʼ, Renewable and Sustainable Energy Reviews, 16, pp. 981-989. 

Meng, X., Wang, H.-N., Song, S.-Y. and Zhang, H.-J. (2017) ʻProton-conducting 

crystalline porous materialsʼ, Chemical Society Reviews, 46(2), pp. 464-480. 

Miyake, T. and Rolandi, M. (2016) ʻGrotthuss mechanisms: from proton transport in 

wires to bioprotonic devicesʼ, Journal of Physics: Condensed Matter, 28(2), 

pp. 23001. 

Mohanapriya, S., Rambabu, G., Bhat, S. D. and Raj, V. (2018) ʻPectin based 

nanocomposite membranes as green electrolytes for direct methanol fuel cellsʼ, 

Arabian Journal of Chemistry, 13(1), pp. 2024-2040. 



 

160 

Mondal, S., Soam, S. and Kundu, P. P. (2014) ʻReduction of methanol crossover and 

improved electrical efficiency in Direct Methanol Fuel Cell by the formation 

of a thin layer on Nafion 117 membrane : Effect of dip-coating of a blend of 

sulphonated PVdF-co-HFP and PBIʼ, Journal of Membrane Science, 474, pp. 

140-147. 

Mosqueda-Jimenez, D. B., Narbaitz, R. M. and Matsuura, T. (2004) ʻmanufacturing 

conditions of surface-modified membranes: effects on ultrafiltration 

performanceʼ, Separation and Purification Technology, 37(1), pp. 51-67. 

Muthumeenal, A., Abirami, M. S., Rana, D. and Nagendran, A. (2017) ʻFabrication 

and electrochemical properties of highly selective SPES/GO composite 

membranes for direct methanol fuel cellsʼ, Journal of Environmental Chemical 

Engineering, 5(4), pp. 3828-2822. 

Muthumeenal, A., Neelakandan, S., Rana, D., Matsuura, T., Kanagaraj, P. and 

Nagendran, A. (2014) ʻSulfonated polyethersulfone (SPES)-charged surface 

modifying macromolecules (cSMMss) blends as a cation selective membrane 

for fuel cellsʼ, Fuel Cells, 14(6), pp. 853-861. 

Nagarkar, S. S., Unni, S. M., Sharma, A., Kurungot, S. and Ghosh, S. K. (2014) ʻTwo-

in-one: Inherent anhydrous and water-assisted high proton conduction in a 3D 

metal-organic frameworkʼ, Angewandte Chemie-International Edition, 53(10), 

pp. 2638–2642. 

Nasir, R., Mukhtar, H. and Man, Z. (2014) ʻMiscibility studies of polyethersulfone 

(PES ), N-Methyl-2-Pyrrolidone (NMP) and alkanolamines on the basis of 

Hansen solubility parametersʼ, International Journal of Scientific Engineering 

and Technology, 3(5), pp. 450-453. 

Nawi, N. I. M., Chean, H. M., Shamsuddin, N., Bilad, M. R., Narkkun, T., 

Faungnawakij, K. and Khan, A. L. (2020) ʻDevelopment of hydrophilic PVDF 

membrane using vapour induced pahse separation method for produced water 

treatmentʼ, Membranes, 10(6), pp. 1–17. 

Neelakandan, S., Kanagaraj, P., Sabarathinam, R. M. and Nagendran, A. (2015) 

ʻPolypyrrole layered SPEES/TPA proton exchange membrane for direct 

methanol fuel cellsʼ, Applied Surface Science, 359, pp. 272–279. 

 

 

 



 

161 

Neelakandan, S., Kanagaraj, P., Nagendran, A., Rana, D., Matsuura, T. and 

Muthumeenal, A. (2015) ʻEnhancing proton conduction of sulfonated poly 

(phenylene ether ether sulfone) membrane by charged surface modifying 

macromolecules for H2/O2 fuel cellsʼ, Renewable Energy, 78, pp. 306–313.  

Neelakandan, S., Rana, D., Matsuura, T., Muthumeenal, A., Kanagaraj, P. and 

Nagendran, A. (2014) ʻFabrication and electrochemical properties of surface 

modified sulfonated poly (vinylidene fluoride-co-hexafluoropropylene) 

membranes for DMFC applicationʼ, Solid State Ionics, 268, pp. 35-41. 

Nguyen, T. H. and Wang, X. (2009) ʻFabrication of the porous polyimide film as a 

matrix of the composite membrane of the direct methanol fuel cellʼ, Separation 

and Purification Technology, 67(2), pp. 208-212. 

Norddin, M. N. A. M., Ismail, A. F., Rana, D., Matsuura, T., Mustafa, A. and Tabe-

mohammadi, A. (2008) ̒ Characterization and performance of proton exchange 

membranes for direct methanol fuel cell: Blending of sulfonated poly(ether 

ether ketone) with charged surface modifying macromoleculesʼ, Journal of 

Membrane Science, 323(2), pp. 404-413. 

Norddin, M. N. A. M., Ismail, A. F., Rana, D., Matsuura, T. and Tabe, S. (2009) ʻThe 

effect of blending sulfonated poly(ether ether ketone) with various charged 

surface modifying macromolecules on proton exchange membrane 

performanceʼ, Journal of Membrane Science, 328(1-2), pp. 148-155. 

Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Goh, P. S., Rana, D. and Matsuura, T. 

(2014) ʻAqueous room temperature synthesis of zeolitic imidazole framework 

8 (ZIF-8) with various concentrations of triethylamineʼ, RSC Advances, 4(63), 

pp. 33292-33300. 

Oke, S., Higashi, K., Shinohara, K., Izumi, Y., Takikawa, H., Sakakibara, T., Itoh, S., 

Yamaura, T., Xu, G., Miura, K., Yoshikawa, K., Sakakibara, T., Sugawara, S., 

Okawa, T. and Aoyagi, N. (2008) ʻDispersion of Pt/Ru catalyst onto arc-soot 

and its performance evaluation as DMFC electrodeʼ, Chemical Engineering 

Journal, 143(1–3), pp. 225–229. 

Othman, M. H. D., Ismail, A. F. and Mustafa, A. (2007) ʻPhysico-Chemical Study of 

Sulfonated Poly ( Ether Ether Ketone ) Membranes for Direct Methanol Fuel 

Cell Applicationʼ, Malaysian Polymer Journal, 2(1), pp. 10-28. 

 

 



 

162 

Padmavathi, R., Karthikumar, R. and Sangeetha, D. (2012) ʻMultilayered sulphonated 

polysulfone/silica composite membranes for fuel cell applicationsʼ, 

Electrochimica Acta, 71, pp. 283–293. 

Pan, Y. and Lai, Z. (2011) ʻSharp separation of C2/C3 hydrocarbon mixtures by 

zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous 

solutionsʼ, Chemical Communications, 47(d), pp. 10275–10277. 

Pandey, J., Seepana, M. M. and Shukla, A. (2015) ʻZirconium phosphate based proton 

conducting membrane for DMFC applicationʼ, International Journal of 

Hydrogen Energy, 40(30), pp. 9410–9421. 

Papporello, R. L., Miró, E. E. and Zamaro, J. M. (2015) ʻSecondary growth of ZIF-8 

films onto copper-based foils. Insight into surface interactionsʼ, Microporous 

and Mesoporous Materials, 211, pp. 64–72. 

Pardo, E., Train, C., Gontard, G., Boubekeur, K., Fabelo, O., Liu, H., Dkhil, B., Lloret, 

F., Nakagawa, K., Tokoro, H., Ohkoshi, S. I. and Verdaguer, M. (2011) ʻHigh 

proton conduction in a chiral ferromagnetic metal-organic quartz-like 

frameworkʼ, Journal of the American Chemical Society, 133, pp. 15328–

15331. 

Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. 

K., O’Keeffe, M. and Yaghi, O. M. (2006) ʻ Exceptional chemical and thermal 

stability of zeolitic imidazolate frameworksʼ, Proceedings of the National 

Academy of Sciences of the United States of America, 103, pp. 10186–10191. 

Parnian, M. J., Gashoul, F. and Rowshanzamir, S. (2017) ʻStudies on the SPEEK 

membrane with low degree of sulfonation as a stable proton exchange 

membrane for fuel cell applicationsʼ, Iranian Journal of Hydrogen and Fuel 

Cell, 3(2016), pp. 221–232. 

Parthiban, V., Akula, S. and Sahu, A. K. (2017) ʻ Surfactant templated nanoporous 

carbon-Nafion hybrid membranes for direct methanol fuel cells with reduced 

methanol crossoverʼ, Journal of Membrane Science, 541, pp. 127–136. 

Perez, E. V, Jr, K. J. B., Ferraris, J. P. and Musselman, I. H. (2009) ʻMixed-matrix 

membranes containing MOF-5 for gas separationsʼ, Journal of Membrane 

Science, 328(1-2), pp. 165-173. 

 

 

 



 

163 

Pili, S., Argent, S. P., Morris, C. G., Rought, P., García-Sakai, V., Silverwood, I. P., 

Easun, T. L., Li, M., Warren, M. R., Murray, C. A., Tang, C. C., Yang, S. and 

Schröder, M. (2016) ̒ Proton conduction in a phosphonate-based metal-organic 

framework mediated by intrinsic “free diffusion inside a sphereʼ, Journal of 

the American Chemical Society, 138(20), pp 6352–6355. 

Ponomareva, V. G., Kovalenko, K. A., Chupakhin, A. P., Dybtsev, D. N., Shutova, E. 

S. and Fedin, V. P. (2012) ʻImparting high proton conductivity to a metal-

organic framework material by controlled acid impregnationʼ, Journal of the 

American Chemical Society, 134(38), pp. 15640–15643. 

Rajendran, R. G. (2005) ʻPolymer electrolyteʼ, MRS Bulletin, 30, pp. 587-590. 

Ramaswamy, P, Wong, N. E. and Shimizu, G. K. (2014) ʻMOFs as proton conductors-

-challenges and opportunitiesʼ, Chemical Society Reviews, 43, pp. 5913–5932. 

Ramaswamy, Padmini, Wong, N. E., Gelfand, B. S. and Shimizu, G. K. H. (2015) ʻA 

Water Stable Magnesium MOF That Conducts Protons over 10 –2 S cm –1ʼ, 

Journal of the American Chemical Society, 137(24), pp. 7640–7643. 

Rana, D., Matsuura, T., Narbaitz, R. M. and Feng, C. (2005) ʻDevelopment and 

characterization of novel hydrophilic surface modifying macromolecule for 

polymeric membranesʼ, Journal of Membrane Science, 249(1–2), pp. 103–112. 

Ranjani, M., Jin, D. and Gnana, G. (2018) ʻSulfonated Fe3O4@SiO2 nanorods 

incorporated sPVdF nanocomposite membranes for DMFC applicationsʼ, 

Journal of Membrane Science, 555(March), pp. 497–506.  

Rao, A. S., Manjunatha, D. V., Jayarama, A., Achanta, V. G., Duttagupta, S. P. and 

Pinto, R. (2019) ʻ Power enhancement of passive micro-direct methanol fuel 

cells with self-sulfonation of P(VDF-TrFE) copolymer during lamination on 

Nafion membraneʼ, International Journal of Hydrogen Energy, 44(57). 

Razi, F., Sawada, I., Ohmukai, Y., Maruyama, T. and Matsuyama, H. (2012) ʻSurface 

Functionalization by Grafting ( 2-Dimethylamino ) ethyl Methacrylate Methyl 

Chloride Quaternary Salt ( DMAEMAq ) onto Hollow Fiber Polyethersulfone 

( PES ) Membranes for Improvement of Antibiofouling Propertiesʼ, Solvent 

Extraction Research and Development, Japan, 19, pp. 101–115. 

Remanan, S., Sharma, M., Bose, S. and Ch, N. (2018) ʻRecent advances in preparation 

of porous polymeric membranes by unique techniques and mitigation of 

fouling through surface modificationʼ, Chemistry Select, 3(2), pp. 609–633. 

 



 

164 

Ren, Y., Chia, G. H. and Gao, Z. (2013) ʻMetal-organic frameworks in fuel cell 

technologiesʼ, Nano Today, 8(6), pp. 577–597. 

Rowsell, J. L. C. and Yaghi, O. M. (2004) ʻMetal-organic frameworks: a new class of 

porous materialsʼ, Microporous and Mesoporous Materials, 73(1-2), pp. 3-14. 

Sadakiyo, M., Yamada, T. and Kitagawa, H. (2009) ʻRational designs for highly 

proton-conductive metal-organic frameworksʼ, Journal of the American 

Chemical Society, 131(29), 9906–9907. 

Sahoo, S. C., Kundu, T. and Banerjee, R. (2011) ʻHelical water chain mediated proton 

conductivity in homochiral metal-organic frameworks with unprecedented 

zeolitic unh -topologyʼ, Journal of the American Chemical Society, 133(44), 

pp. 17950–17958. 

Salim, N. E., Nor, N. A. M., Jaafar, J., Ismail, A. F., Qtaishat, M. R., Matsuura, T., 

Othman, M. H. D., Rahman, M. A., Aziz, F. and Yusof, N. (2019) ʻEffects of 

hydrophilic surface macromolecule modifier loading on PES/O-g-C3N4 hybrid 

photocatalytic membrane for phenol removalʼ, Applied Surface Science, 

465(May 2018), pp. 180–191. 

Sanabria-chinchilla, J., Kim, Y., Li, D., Baltruschat, H. and Soriaga, M. P. (2010). 

Theory and experiment in electrocatalysis. New York: Springer.  

Sen, S., Nair, N. N., Yamada, T., Kitagawa, H. and Bharadwaj, P. K. (2012) ʻHigh 

proton conductivity by a metal-organic framework incorporating Zn8O clusters 

with aligned inidazolium groups decorating the channelsʼ, Journal of the 

American Chemical Society, 134(47), pp. 19432-19437. 

Sen, U., Erkartal, M., Kung, C., Ramani, V. K., Hupp, J. T. and Farha, O. K. (2016) 

ʻProton conducting self-assembled metal-organic framework/polyelectrolyte 

hollow hybrid nanostructuresʼ, Applied Materials and Interfaces, 8(35), pp. 

23015-23021. 

Shaari, N., Kamarudin, S. K., Basri, S., Shyuan, L. K., Masdar, M. S. and Nordin, D. 

(2018) ʻEnhanced proton conductivity and methanol permeability reduction 

via sodium alginate electrolyte-sulfonated graphene oxide bio-membraneʼ, 

Nanoscale Research Letters, 13. 

Shao, Z. and Hsing, I. (2002) ʻNafion membrane coated with sulfonated poly(vinyl 

alcohol)-nafion film for direct methanol fuel cellsʼ, Electrochemical and Solid-

State Letters, 5(9), A185. 

 



 

165 

Shimizu, G. K. H., Taylor, J. M. and Kim, S. (2013) ʻProton conduction with metal-

organic frameworksʼ, Science, 341(6144), pp. 354-355. 

Shin, D. W., Guiver, M. D. and Lee, Y. M. (2016) ʻHydrocarbon-based polymer 

electrolyte membranes: importance of morphology on ion transport and 

membrane stabilityʼ, Chemical Reviews, 117(6), pp. 4759-4805. 

Son, N. H. and Nguyen, N.-T. (2020) 'A study in development and application of a 

virtual fuel cell test platform', The Int. J. Eng. Sci., 9, pp. 29-37. 

Spiegel, C. (2018, March 27). Direct Methanol Fuel Cell, Improvement in Fuel Cell 

Basics. Fuelcell Store. Retrieved 2021 August 17, from 

http://www.fuelcellstore.com. 

Stassen, I., Campagnol, N., Fransaer, J., Vereecken, P., De Vos, D. and Ameloot, R. 

(2013) ʻ Solvent-free synthesis of supported ZIF-8 films and patterns through 

transformation of deposited zinc oxide precursorsʼ, Crystal Engineering 

Communications, 15, pp. 9308. 

Suk, D. E., Chowdhury, G., Matsuura, T., Narbaitz, R. M., Pleizier, G. and Deslandes, 

Y. (2002) ʻStudy on the kinetics of surface migration of surface modifying 

macromolecules in membrane preparationʼ, Macromolecules, 35, pp. 3017-

3021. 

Sun, H., Tang, B. and Wu, P. (2017) ʻTwo-dimensional zeolitic imidazolate 

framework / carbon nanotube hybrid networks modi fi ed proton exchange 

membranes for improving transport propertiesʼ, Applied Materials and 

Interfaces, 9(40), pp. 35075-35085. 

Tao, K., Cao, L., Lin, Y., Kong, C. and Chen, L. (2013) ʻA hollow ceramic fiber 

supported ZIF-8 membrane with enhanced gas separation performance 

prepared by hot dip-coating seedingʼ, Journal of Materials Chemistry A, 1(3), 

pp. 13046–13049. 

Taylor, J. M., Dawson, K. W. and Shimizu, G. K. H. (2013) ʻA water-stable metal-

organic framework with highly acidic pores for proton-conducting 

applicationsʼ, Journal of the American Chemical Society, 135, pp. 1193–1196. 

Thuyavan, Y. L., Anantharaman, N., Arthanareeswaran, G. and Ismail, A. F. (2016) 

ʻImpact of solvents and process conditions on the formation of 

polyethersulfone membranes and its fouling behavior in lake water filtrationʼ, 

Journal of Chemical Technology and Biotechnology, 91(10), pp. 2568–2581. 

 



 

166 

Tung, S. P. and Hwang, B. J. (2005) ʻSynthesis and characterization of hydrated 

phosphor-silicate glass membrane prepared by an accelerated sol-gel process 

with water/rapor managementʼ, Journal of Materials Chemistry, 15(34), pp. 

3532-3538. 

Umeyama, D., Horike, S., Inukai, M., Hijikata, Y. and Kitagawa, S. (2011) 

ʻConfinement of mobile histamine in coordination nanochannels for fast proton 

transferʼ, Angewandte Chemie - International Edition, 50(49), 11706–11709. 

Unnikrishnan, L., Nayak, S. K., Mohanty, S. and Sarkhel, G. (2010) ʻPolyethersulfone 

membranes: The effect of sulfonation on the propertiesʼ, Polymer - Plastics 

Technology and Engineering, 49(14), 1419–1427. 

Venna, S. R., Jasinski, J. B. and Carreon, M. A. (2010) ̒ Structural evolution of zeolitic 

imidazolate framework-8ʼ, Journal of the American Chemical Society, 

132(51), pp. 18030-18033. 

Verweij, H. (2012) ʻInorganic membranesʼ, Current Opinion in Chemical 

Engineering, 1(2), pp. 156–162. 

Wang, D. and Lai, J. (2013) ʻRecent advances in preparation and morphology control 

of polymeric membranes formed by nonsolvent induced phase separationʼ, 

Current Opinion in Chemical Engineering, 2(2), 229–237. 

Wang, F. and Tarabara, V. V. (2008) ʻPore blocking mechanisms during early stages 

of membrane fouling by colloidsʼ, Journal of Colloid and Interface Science, 

328(2), pp. 464–469. 

Wang, J., Zheng, X., Wu, H., Zheng, B., Jiang, Z., Hao, X. and Wang, B. (2008) ̒ Effect 

of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cellʼ, 

Journal of Power Sources, 178(1), 9–19. 

Wang, L. S., Lai, A. N., Lin, C. X., Zhang, Q. G., Zhu, A. M. and Lin, Q. (2015) 

ʻOrderly sandwich-shaped graphene oxide / Na fi on composite membranes for 

direct methanol fuel cellsʼ, Journal of Membrane Science, 492, pp. 58–66.  

Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. and Adroher, X. C. (2011) ʻA review of 

polymer electrolyte membrane fuel cells: Technology, applications, and needs 

on fundamental researchʼ, Applied Energy, 88(4), pp. 981–1007. 

Wei, Y. S., Hu, X. P., Han, Z., Dong, X. Y., Zang, S. Q. and Mak, T. C. W. (2017) 

ʻUnique proton dynamics in an efficient mof-based proton conductorʼ, Journal 

of the American Chemical Society, 139(9), pp. 3505–3512. 

 



 

167 

Wu, Q. X., Zhao, T. S., Chen, R. and An, L. (2013) ʻA sandwich structured membrane 

for direct methanol fuel cells operating with neat methanolʼ, Applied Energy, 

106, pp. 301–306. 

Xu, G., Otsubo, K., Yamada, T., Sakaida, S. and Kitagawa, H. (2013) ʻSuperprotonic 

conductivity in a highly oriented crystalline metal-organic framework 

nanofilmʼ, Journal of the. American Chemica. Society, 135(20), 7438–7441.  

Xu, W., Lu, T., Liu, C. and Xing, W. (2005) ʻLow methanol permeable composite 

Nafion/silica/PWA membranes for low temperature direct methanol fuel cellsʼ, 

Electrochimica Acta, 50(16-17), pp. 3280-3285. 

Yaghi, O. M., Davis, C. E., Li, G. and Li, H. (1997) ̒ Selective guest binding by tailored 

channels in a 3-d porous zinc (II) -benzenetricarboxylate networkʼ, Journal of 

the American Chemical Society, 119(12), pp. 2861-2868. 

Yamaguchi, B. T., Zhou, H., Nakazawa, S. and Hara, N. (2007) ʻAn extremely low 

methanol crossover and highly durable aromatic pore-filling electrolyte 

membrane for direct methanol fuel cellsʼ, Advanced Materials,19, pp; 592-596. 

Yan, M. P. (2012). Crystal growth of the metal-organic framework ZIF-8, PhD Thesis, 

University of Manchester. 

Yan, X. H., Wu, R., Xu, J. B., Luo, Z. and Zhao, T. S. (2016) ʻA monolayer graphenee 

Nafion sandwich membrane for direct methanol fuel cellsʼ, Journal of Power 

Sources, 311, pp. 188–194. 

Yang, C., Lee, Y. and Ming, J. (2009) ʻDirect methanol fuel cell ( DMFC ) based on 

PVA / MMT composite polymer membranesʼ, Journal of Power Sources, 188, 

pp; 30–37. 

Yang, F., Huang, H., Wang, X., Li, F., Gong, Y., Zhong, C. and Li, J. R. (2015) ̒ Proton 

conductivities in functionalized UiO-66: tuned properties, thermogravimetry 

mass, and molecular simulation analysesʼ, Crystal Growth and Design, 15(12), 

pp. 5827–5833. 

Yang, L., Tang, B. and Wu, P. (2015) ʻComposites : a facile method to highly improve 

the proton conductivity of PEMs operated under low humidityʼ, Journal of 

Materials Chemistry A: Materials for Energy and Sustainability, 3(31), pp. 

15838–15842. 

Yao, J., Dong, D., Li, D., He, L., Xu, G. and Wang, H. (2011) ʻContra-diffusion 

synthesis of ZIF-8 films on a polymer substrateʼ, Chemical Communications, 

47(9), pp. 2559-2561. 



 

168 

Yee, R. S. L., Zhang, K. and Ladewig, B. P. (2013) ʻThe effects of sulfonated 

poly(ether ether ketone) ion exchange preparation conditions on membrane 

propertiesʼ, Membranes, 3(3), pp. 182-195. 

Yeow, M. L., Liu, Y. T. and Li, K. (2004) ʻMorphological study of poly (vinylidene 

fluoride) asymmetric membranes : effects of the solvent , additive , and dope 

temperatureʼ, Journal of Applied Polymer Science, 92(3), pp. 1782-1789. 

Yoon, M., Suh, K., Natarajan, S. and Kim, K. (2013) ʻProton conduction in metal-

organic frameworks and related modularly built porous solidsʼ, Angewandte 

Chemie - International Edition, 52, 2688–2700. 

Zaidi, S. M. J. (2005) ̒ Preparation and characterization of composite membranes using 

blends of SPEEK / PBI with boron phosphateʼ, Electrochimica Acta, 50, pp. 

4771–4777. 

Zanon, A., Chaemchuen, S., Mousavi, B. and Verpoort, F. (2017) ʻ1 Zn-doped ZIF-67 

as catalyst for the CO2 fixation into cyclic carbonatesʼ, Journal of CO2 

Utilization, 20(July), pp. 282–291. 

Zhang, B., Cao, Y., Li, Z., Wu, H., Yin, Y. and Cao, L. (2017) ʻProton exchange 

nanohybrid membranes with high phosphotungstic acid loading within metal-

organic frameworks for PEMFC applicationsʼ, Electrochimica Acta, 240, pp. 

186–194. 

Zhang, H., Liu, D., Yao, Y., Zhang, B. and Lin, Y. S. (2015) ʻStability of ZIF-8 

membranes and crystalline powders in water at room temperatureʼ, Journal of 

Membrane Science, 485, pp. 103–111. 

Zhang, L., Chae, S., Hendren, Z., Park, J. and Wiesner, M. R. (2012) ʻRecent advances 

in proton exchange membranes for fuel cell applicationsʼ, Chemical 

Engineering Journal, 204–206, pp. 87–97. 

Zhao, D., Shui, J.-L., Chen, C., Chen, X., Reprogle, B. M., Wang, D. and Liu, D.-J. 

(2012) ʻIron imidazolate framework as precursor for electrocatalysts in 

polymer electrolyte membrane fuel cellsʼ, Chemical Science, 3, pp. 3200–

3205. 

Zheng, K. and Shen, S. (2018) ʻThe microstructure effect on ion conduction in 

composite electrolyteʼ, International Journal of Energy Research, 42, pp. 

4229-4234. 

Zuo, Z., Fu, Y. and Manthiram, A. (2012) ʻNovel blend membranes based on acid-

base interactions for fuel cellsʼ, Polymers, 4, pp. 1627-1644.  



 

171 

LIST OF PUBLICATIONS 

Journal with Impact Factor 

1. Junoh, H., Jaafar, J., Nordin, N. A. H., Ismail, A. F., Othman, M. H. D., 

Rahman, M. A., Aziz, F., Yusof, N., & Daud, S. N. S. S. (2021). Porous 

polyether sulfone for direct methanol fuel cell application: Structural analysis. 

International Journal of Energy Research. 45(2), 2277-2291 (Q1, IF: 3.741). 

2. Junoh, H., Jaafar, J., Nordin, N. A. H., Ismail, A. F., Othman, M. H. D., 

Rahman, M. A., Aziz, F., & Yusof, N. (2020). Performance of polymer 

electrolyte membrane for direct methanol fuel cell application: Perspective on 

morphological structure. Membranes. 10(3), 34 (Q2, IF: 3.094). 

Indexed Journal 

1. Junoh, H., Jaafar, J., Nordin, N. A. H., Ismail, A. F., Othman, M. H. D., 

Rahman, M. A., Aziz, F., Yusof, N., & Salleh, W. N. W. (2019). Porous proton 

exchange membrane based zeolitic imidazolate framework 8 (ZIF-8). Journal 

of Membrane Science and Research. 5(1), 65-75 (Indexed by Scopus). 

2. Junoh, H., Jaafar, J., Nordin, N. A. H., Ismail, A. F., Othman, M. H. D., 

Rahman, M. A., Yusof, N., & Aziz, F. (2021). Inclusion of zeolitic imidazolate 

framework-8 (ZIF-8) crystals within porous polyether sulfone (PES) via 

filtration methods as potential electrolytes for DMFC applications. Materials 

Today: Proceedings. (Indexed by Scopus- in press). 

 

Indexed and Non-Indexed Conference Proceedings 

1. Junoh, H., Jaafar, J., Nordin, N. A. H., & Ismail, A. F. (2018). Fabrication of 

porous poly ether sulfone by non-solvent induced phase separation (NIPS) 

techniques. 7th International graduate conference on engineering, science and 

humanities (IGCESH), Universiti Teknologi Malaysia, Johor. 13-15 August. 

(Abstract, Indexed by Scopus) 

 

 

 



 

172 

Book Publications 

1. Junoh, H., Jaafar, J., Nordin, N. A. H., Ismail, A. F., Othman, M. H. D., 

Rahman, M. A., Aziz, F., & Yusof, N. (2020). Chapter 15- Synthetic polymer-

based membranes for direct methanol fuel cell (DMFC) applications. In 

Synthetic Polymeric Membranes for Advanced Water Treatment, Gas 

Separation, and Energy Sustainability. 337-363. Elsevier 

 

 

 

 




