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ABSTRACT 

 When cloud-ground lightning occurs, electromagnetic waves, known as 

electromagnetic pulses (EMPs) propagate within the earth’s atmosphere. 

Consequently, they may interfere with many man-made systems such as electric 

power lines and telecommunication networks. Several theoretical lightning return 

stroke models had been previously proposed. However, these models can still be 

improved in terms of the accuracy of the electromagnetic field (EMF) generated, the 

applicability for nonlinear conditions for EMP propagation, such as frequency 

dependence of soil parameters, the applicability for complex geometries for EMP 

interference with surrounding objects, and the efficiency of computation. In this 

research, an improvement to the finite-difference timedomain (FDTD) method was 

made to solve Maxwell equations in dispersive media. This includes the utilization of 

the recursive convolution for the solution of Ampere's law-Maxwell equations for the 

nonlinear conditions faced when considering the frequency dependency of soil 

permittivity and conductivity. Due to the relationship between the total current 

density and the total admittance of the soil, the convolution operator will be only 

used between the electric field and a time-dependent admittance. A C++ 

programming language was utilised to build a 3D constant recursive convolution 

finite-difference time-domain (CRC-FDTD) model. The proposed CRC-FDTD 

method had made it possible to study the effects of various factors, such as soil 

structures, water content, distance, and return strokes parameters, on the behaviour of 

lightning EMF propagation. The main EMFs considered are the vertical and 

horizontal electric fields, and the azimuthal magnetic field, the magnitudes of which 

were measured both above and underground. The results obtained from the proposed 

method were compared to those using the finite element analysis (FEA) based on 

COMSOL and the previous results adopted Delfino’s expressions. This study has 

successfully developed a time-domain analysis of frequency dependency by 

combining the CRC and FDTD techniques. The CRC-FDTD method could 

determine electromagnetic radiation over frequency-dependent soil in the time 

domain with less simulation duration, lower computational requirements, a simpler 

procedure, and better applicability compared to its predecessors. This has enabled us 

to improve the accuracy and efficiency of lightning EMF modelling and computation 

and investigate the effects of the soil model on electromagnetic propagation through 

a comparison between frequency dependent soil (FDS) model and frequency 

independent soil (FIS) model. The CRC-FDTD has enabled these effects such as 

observation distance, soil moisture, soil structure, and parameters of lightning 

current, to be accurately studied and analysed. CRC-FDTD is comparable to 

Delfino’s expressions with a slight difference in tail time, and to FEA with mean 

differences of 3.2% for the peak magnitude, 3.3 % for the front time, and 7.6 % for 

the tail time. These mean differences are considered acceptable and the validation of 

the CRC-FDTD can be said to be accomplished.
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ABSTRAK 

Apabila kilat awan-bumi berlaku, gelombang elektromagnetik yang dikenali 

sebagai denyutan elektromagnetik (EMP) merambat dalam atmosfera bumi. 

Akibatnya ia mungkin mengganggu banyak sistem buatan manusia seperti talian 

kuasa elektrik dan rangkaian telekomunikasi. Beberapa model panahan balik kilat 

telah dicadangkan sebelum ini. Walau bagaimanapun, model ini masih boleh 

dipertingkatkan dari segi ketepatan medan elektromagnetik (EMF) yang dijana, 

kebolehgunaan untuk penyebaran EMP bagi keadaan tak linear seperti penyandaran 

parameter tanah pada frekuensi, kebolehgunaan untuk geometri kompleks bagi 

menentukan gangguan EMP kepada objek persekitaran, dan dari segi kecekapan 

pengiraan. Dalam penyelidikan ini, penambahbaikan kepada kaedah perbezaan 

terhingga domain masa (FDTD) telah dibuat untuk menyelesaikan persamaan 

Maxwell dalam bahantara serakan. Ini termasuk penggunaan lingkaran rekursif bagi 

penyelesaian hukum Maxwell-persamaan Ampere untuk keadaan tak linear yang 

dihadapi apabila mempertimbangkan penyandaran kebertelusan dan keberaliran 

tanah pada frekuensi. Disebabkan oleh hubungan antara ketumpatan arus total dan 

admitans total tanah, pengendali lingkaran hanya akan digunakan antara medan 

elektrik dan admitans bersandar masa. Bahasa pengaturcaraan C++ telah digunakan 

untuk membina model 3D lingkaran rekursif berterusan-perbezaan terhingga domain 

masa (CRC-FDTD). Kaedah CRC-FDTD yang dicadangkan telah membolehkan 

kajian kesan pelbagai faktor, seperti struktur tanah, kandungan air, jarak, dan 

parameter panahan balik, ke atas tingkah laku perambatan EMF kilat. EMF utama 

yang dipertimbangkan ialah medan elektrik menegak dan mendatar, dan medan 

magnetik azimut, di mana semua magnitud diukur di atas dan di bawah tanah. 

Keputusan yang diperoleh daripada kaedah yang dicadangkan telah dibandingkan 

dengan analisis unsur terhingga (FEA) berdasarkan COMSOL dan dengan keputusan 

terdahulu menggunakan persamaan Delfino. Kajian ini telah berjaya membangunkan 

analisis domain masa bersandar frekuensi dengan menggabungkan teknik CRC dan 

FDTD. Kaedah CRC-FDTD boleh menentukan sinaran elektromagnetik ke atas tanah 

bersandar frekuensi dalam domain masa dengan tempoh simulasi lebih kecil, 

keperluan pengiraan lebih rendah, prosedur lebih mudah dan kebolehgunaan yang 

lebih baik berbanding dengan pendahulunya. Ini telah membolehkan peningkatan 

ketepatan dan kecekapan pemodelan dan pengiraan EMF kilat serta penyiasatan 

kesan model tanah terhadap perambatan elektromagnetik melalui perbandingan 

antara model tanah bersandar frekuensi (FDS) dan model tanah tak bersandar 

frekuensi (FIS). Kaedah CRC-FDTD telah membolehkan kesan seperti jarak cerapan, 

kelembapan tanah, struktur tanah dan parameter arus kilat, dikaji dan dianalisis 

dengan tepat. Kaedah CRC-FDTD adalah setanding persamaan Delfino dengan 

sedikit perbezaan pada masa ekor, dan setanding kaedah FEA dengan min perbezaan 

3.2% untuk magnitud puncak, 3.3 % untuk masa hadapan dan 7.6% untuk masa ekor. 

Perbezaan min ini dianggap boleh diterima dan pengesahsahihan CRC-FDTD boleh

dikatakan tercapai.
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Lightning is a vigorous natural phenomenon that has a significant presence in, 

and effects on, human lives and man-made systems. The electrical discharge with high 

current passes through the air for up to several kilometres. Several types of lightning 

include the cloud-to-ground, cloud-to-cloud, and intro-cloud discharges. However, 

cloud-to-ground lightning is the most important type since it can severely affect man-

made systems such as the electric power system [1, 2]. The lightning electric discharge, 

normally called a flash, consists of twelve stages, starting from the point when the 

charges are distributed inside the cloud and ending with the occurrence of the last 

subsequent return stroke [3-5]. The return-stroke phase of a flash has garnered the most 

attention for its potential use for protection objectives. Uman estimates that the 

duration of a lightning flash is 63 milliseconds, and each of the phases described above 

lasts for a certain amount of time [3]. The term "lightning return-stroke model" refers 

to a definition of the time and height-dependent current in the return-stroke channel 

(RSC) that allows the computation of the resulting distant electromagnetic fields [6]. 

Much research has been performed to solve the difficulty of estimating the 

electromagnetic fields produced by lightning return strokes. Several current 

distribution models for the lightning strike channel have been presented [6, 7].  Several 

approaches to model and compute the lightning electromagnetic fields [8-10] were also 

described. In addition, comparisons between computed and measured fields were also 

made [11-13]. It is noted that, in these studies, the ground had been assumed either as 

a perfectly conducting plane, or as a soil having constant conductivity and permittivity, 
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irrespective of the frequency of the propagating electromagnetic fields. In recent years, 

several attempts had been made to consider the influence of frequency on soil 

conductivity and permittivity, and hence their effects on the propagating waves [14-

18]. 

 

 

1.2 Research Motivation 

 

 

 

As previously stated, electromagnetic field radiation, also known as 

electromagnetic pulses (EMP), is generated by the lightning return stroke due to the 

enormous current traveling via the discharge channel initiated between cloud and 

ground. The electromagnetic field or the EMP propagates in all directions and over 

long distances. In fact, the electromagnetic wave may travel through different media, 

including the soil. Because of this, it may pose a threat to the stability and reliability 

of man-made systems such as the overhead electric power transmission and 

telecommunication systems, as well as buried or underground transmission systems. 

Therefore, it is important to be able to know exactly the interaction between the 

lightning EMP and these systems so that appropriate measures can be taken to 

minimise its effects [19-22]. It is noted that the lightning electromagnetic fields 

experience certain changes as they propagate through a given propagation medium due 

to phenomena such as wave attenuation, especially for the high-frequency signals 

when propagating over a finitely conducting ground, also known as a lossy ground. 

Thus, the measured lightning electromagnetic fields at a given observation location 

can be said to be dependent on the propagation distance as well as on the ground or 

soil conductivity. Key measured parameters of the fields include the peak, the rise 

time, and the time derivatives. An assumed lossless ground may therefore give 

underestimated magnitudes of the lightning fields and hence may underestimate their 

deleterious effects.  

 

 

Because of its important effect on lightning electromagnetic field propagation, 

the soil or ground is usually modelled as lossy instead of lossless ground. Several lossy 
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ground models have been previously proposed. However, a simplified version of the 

models, that is using constant values of soil conductivity and permittivity, was adopted 

[23-25]. Then, in 2009 [14], an improved model using frequency dependent soil 

conductivity and permittivity, was proposed. However, the proposed method has a 

drawback, namely, it is only applicable for a uniform soil condition. It did not cater 

for non-homogenous or non-uniform soil structures.  

 

 

Apart from the soil model drawbacks, the computation of the lightning 

electromagnetic fields, which is primarily based on solving the relevant Maxwell 

equations, at a given observation point is also a challenge to many researchers. 

Recently, an improved numerical solver over its predecessors to compute lightning 

electromagnetic fields in frequency domain was proposed [26]. Thereafter, the 

frequency dependent soil was also incorporated in the frequency domain solvers [14, 

15, 17, 18]. However, several limitations of the methods still exist, for example, in 

terms of accuracy, applicability, and computational requirements. Because of these 

limitations, alternative methods were further explored, including solving the field 

computation in the time domain. One promising method that can give superior 

performance is known as the finite difference time domain (FDTD) method [27]. 

Among the FDTD method's advantages are simplicity, suitability for non-

homogeneous geometries, capable of incorporating nonlinear effects and components, 

and ability to handle wideband quantities from a single run [24, 28]. 

 

 

 The challenge when using the FDTD technique is to solve the Maxwell 

equations in a lossy or dispersive propagation medium. This is because the resultant 

equations are rather complex, primarily due to the step which involves a recursive 

implementation of the convolution between the time-dependent electric susceptibility 

function and the electric field in the so-called Maxwell update equations [29]. The 

convolution is basically an integral that expresses the amount of overlap of the electric 

field as it is shifted over the electric susceptibility function. The electric field in the 

convolution integral form may be approximated by three main approaches that were 

previously proposed to solve this specific problem, namely, the Recursive Convolution 
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(RC), the auxiliary differential equation, and the Z-transform techniques [30]. It is to 

be noted, in the previous studies, the soil had been modelled as having a permittivity 

in a complex number format, and conductivity in a real number format and of constant 

value [31]. The main drawback of these studies is that the soil conductivity is actually 

treated as a constant parameter [28]. However, based on previous studies of return 

stroke models, the frequency dependence of soil conductivity is more significant since 

it has more effect on the lightning fields than that of the permittivity of the soil [14-

16, 18]. 

 

 

In the above studies, the soil is modelled as having a uniform profile. The 

consideration of a non-homogeneous or non-uniform soil structure poses another 

challenge since not only the soil permittivity and conductivity have to be frequency 

dependent, the number of soil types or layers need also to be varied at the same time.  

Even though the effects of soil homogeneity on the lightning propagation have been 

studied for different cases such as vertical and horizontal straight layers [32-35], most 

of the studies did not consider the frequency dependency of the soil permittivity and 

conductivity. In addition, several studies were also previously carried out on the effects 

of soil condition, namely, soil conductivity, on lightning field propagation. In the 

studies, the soil conductivity was varied using water content [14, 15]. However, the 

behaviour of EMFs in the existence of frequency dependent soil with varying soil 

conductivity is yet to be fully explored.  

 

  

1.3 Problem Statement 

 

 

 

A precise understanding of the lightning electromagnetic pulse (LEMP) is 

critical for determining the precise interaction of the LEMP with any sensitive systems 

and for selecting the appropriate hazard level, which results in a well-organized design 

of protective systems. Electromagnetic waves propagating across the flat ground are 

primarily influenced by the ground's physical and geometric features, such as the soil's 
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electric properties and homogeneity. Several limitations of the methods still exist, for 

example, in terms of accuracy, applicability, and computational requirements. Because 

of these limitations, alternative methods were further explored, including solving the 

field computation in the time domain.  

Several previous time-domain based lightning electromagnetic field 

propagation models can be used to compute the field at a given observation location. 

However, in these time-domain models, the frequency dependency of soil permittivity 

and conductivity cannot be incorporated even though it is known that the soil 

properties change with the propagating wave frequency. The inaccuracy of the 

estimated electromagnetic fields may lead to an underestimation of the LEMP's 

interaction with any sensitive devices and the selection of the appropriate hazard level. 

In addition, the accuracy, applicability, and computing needs of the techniques are still 

limited. Because of these disadvantages, it was recognized that a practical method was 

necessary. Therefore, there is a need to mathematically develop a new model for 

lightning propagation together with a frequency-dependent soil so that more accurate 

fields can then be computed. Previous attempts on the calculation of lightning EMFs 

involving a frequency-dependent soil were only carried out using a finite element 

analysis (FEA), which is a frequency domain solver. Even though the frequency-

domain method provides more accurate results than that of the time-domain method, 

it suffers from many drawbacks in terms of simulation speed, procedure complexity, 

observation range, consideration for nonlinear effects, and cost. Therefore, there is a 

need to overcome these drawbacks by using alternative techniques such as the time-

domain approach instead of the inferior frequency-domain method.  

There is a problem that appears when employing the FDTD approach, the 

Maxwell equations can't be solved in a lossy propagation medium. There are three 

methods to represent Maxwell’s equations through the dispersive material: the exact, 

the simplified, and the approximation models. The exact equation is frequency-

dependent for both permittivity and conductivity. Due to the difficulty of needing to 

do two convolution processes, the FDTD approach cannot be implemented. The 
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simplified equation treats permittivity and conductivity as constant quantities. The 

approximation equation takes permittivity only as a frequency-dependent parameter 

into account. These simplifications will impact the precision of the results. So, there is 

a need for an equation that takes into account that both permittivity and conductivity 

are frequency dependent and avoids complexity. This is owing to the presence of a 

convolutional term in the Maxwell update equations, which makes the resulting 

equations quite complex. Three main approaches previously proposed to solve the 

convolution term problem, are the Recursive Convolution (RC), the auxiliary 

differential equation and the Z-Transform techniques. The main drawback of previous 

studies is that the soil conductivity is actually treated as a constant parameter even 

though the frequency dependence of soil conductivity significantly affects the 

lightning electromagnetic fields. Therefore, there is a need to overcome this major 

drawback by proposing a new technique that considers the frequency dependency of 

both soil permittivity and conductivity. 

 

 

The lightning electromagnetic propagation is also known to be affected by soil 

structure. However, previous work on lightning propagation models over frequency 

dependent soil assumes the soil to be uniform. Hence, there is also a need to propose 

a lightning propagation model with soil non-uniformity to be taken into consideration. 

In addition, the effect of soil conductivity together with frequency dependency, on the 

lightning electromagnetic field propagation need also be fully understood. The effects 

of soil structure, lightning return stroke current parameters, and observation distance 

at which the lightning field is computed, on the computed fields also remain to be fully 

understood.    

 

 

1.4 Research Objectives 

 

 

 

The main purpose of this study is to improve a more accurate, more efficient, 

faster, and simpler method to model and compute lightning electromagnetic fields with 
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frequency dependency of soil permittivity and conductivity taken into consideration. 

To achieve this aim, the following specific objectives are given: 

 

 

1. To develop an improved model of lightning electromagnetic field 

propagation incorporating frequency dependent soil based on CRC-FDTD 

method. 

2. To validate the proposed CRC-FDTD method using a direct comparison 

with the frequency domain method.  

3. To determine the effects of soil structure, soil conductivity, observation 

distance, and lightning return stroke parameters on the lightning 

electromagnetic fields using the proposed technique. 

 

  

1.5 Scope of Work 

 

 

 

The study focuses on the modelling of a return stroke model that is limited by the 

following scopes:  

 

 

(i) The air propagation medium is considered as a homogeneous medium with 

the following constant properties: Permittivity = 1, conductivity = 0 

(mho/m). This means the variation of air property is not considered. This 

limitation does not adversely affect the computation accuracy, since the air 

does not have frequency dependency.  

(ii) The lightning electromagnetic fields are assumed to propagate without any 

reflections from any blocking objects or outer atmosphere. Also, the 

ground is considered as a complete flat surface. For the outer atmosphere, 

Liao's second-order is applied.  

(iii) The typical cloud-to-ground lightning flash consists of an electrical 

conductor channel that is over 6.4 kilometres (4 miles) in height, extending 
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from inside the cloud to the surface of the earth. In this research, the 

recommended height for the lightning channel is 7 km [24].   

(iv) The soil moisture is selected as a percentage of soil water content and is 

limited to a range from 0.5% to 100%. The frequency-dependency is 

limited to the range of 0 Hz (DC) to 5 MHz since the proportional relation 

of permittivity and conductivity to frequency can be neglected. 

(v) In the frequency independent soil (FIS) model, the conductivity and 

permittivity are considered as a mean value (constant value) of frequency-

dependent soil for the same frequency range at each water content.  

(vi) In soil structure, the scenarios are limited to two layers, and each layer has 

different water content percentages. This research is limited to five soil 

structures. 

(vii) Only four typical cases of return stroke currents are carried out in this 

research. The study of return stroke effects is limited to main parameters, 

namely; peak values, front times, and decay time. 

(viii) The comparison between soil models is limited to which model the 

conductivity can be governed through the initial value conductivity. 

Because the conductivity and the permittivity can be calculated for various 

percentages of water content. The soil models are utilised in this research; 

Scott (S) Expressions, Smith and Longmire (SL) Expressions, Visacro and 

Portela (VP) Expressions, Messier (M) Expressions, and Alipio and 

Visacro (AV) Expressions.       

 

 

1.6 Research Contributions 

 

 

 

The following are the primary contributions of this thesis work: 

 

 

 i.  Proposed CRC-FDTD algorithm for EMF computation in time domain 
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Electromagnetic field modelling and computation in the time domain poses a challenge 

to mathematical expressions. This study has successfully developed a time domain 

analysis taking consideration of the frequency dependency of the soil medium through 

a combination of the CRC and FDTD techniques. The proposed algorithm considers 

the dispersive or lossy properties of the soil propagation medium without resorting to 

approximations for soil permittivity and conductivity as were done in previous 

research.  

ii. Lightning electromagnetic field propagation model

There are several limitations faced when carrying out simulation studies in the 

frequency domain, such as the problem of speed and ease of use. It is desired to have 

an alternative lightning EMF propagation model in the time domain where the 

simulation process is faster and easier. Based on the developed Constant Recursive 

Convolution Finite-Difference Time-Domain (CRC-FDTD) algorithm, the return 

stroke lightning electromagnetic field propagation and determination at any 

observation location are possible to be materialized. The propagation and computation 

of the electromagnetic fields were implemented in the time domain using C++ and the 

soil is modelled as having frequency dependent permittivity and conductivity. The 

lightning electromagnetic field propagation model was successfully implemented with 

the measured electromagnetic fields that can be determined at any observation distance 

and for both in the air as well as within the soil. This has helped to improve the 

accuracy and efficiency of lightning electromagnetic field modelling and computation, 

and hence eventually may solve the problem of underestimating their effects on man-

made systems.  

iii. Effects of key factors on lightning EMF

The effects of several key factors, such as observation distance, soil moisture, soil

structure, and parameters of lightning current, on the behaviour of the return stroke 

lightning electromagnetic fields when propagating over lossy soil remain are yet to be 

fully understood. The electromagnetic field propagation model developed in this work 

has enabled these effects to be studied and analysed. The effects of these key factors 

on the lightning electromagnetic fields are listed below: 
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a. Observation Distance 

Compared to the propagation model using frequency independent soil, the propagation 

model using the frequency dependent soil gives a more accurate result. This is true for 

all electromagnetic field components studied and measured in air as well as within the 

soil. The frequency-dependency of the soil has some impacts on the generated 

lightning EMFs above and within the soil. For various observation distances, the 

frequency dependency of soil affects both the computed vertical and radial electric 

fields. To a lesser extent, it also affects the azimuthal magnetic field (within soil). The 

waveshape, peak values, and polarities of EMFs may all be affected by the distance 

from the lightning channel. These variations give a new insight into the behaviour of 

lightning EMF. 

 

 

b. Soil Moisture 

The impacts of variable soil water content on the lightning EMFs using a frequency 

dependent soil (FDS) model were also studied. The research has shown that water 

presence in the soil gives different effects on the lightning electromagnetic field 

propagation when, together with the water presence, the soil is also modelled either as 

frequency dependent or as frequency independent. Also, water presence affects the 

lightning electromagnetic fields within the soil more than it affects the fields above the 

soil. 

 

 

c. Soil Homogeneity  

The soil structure has a direct impact on the lightning electromagnetic field 

propagation. The structure and uniformity of soil give significant effects on the above 

ground lightning electric field, and these effects increase with the propagation 

distance. However, they have an unnoticeable effect on the above ground azimuthal 

magnetic field. On the other hand, the propagation of the three electromagnetic field 

components within the soil is significantly affected by the soil structure and 

uniformity, and these effects reduce with the propagation distance. The presence of 

water in the non-uniform soil also affects the EMF propagation for all fields.  
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d. Lightning Current

Beside the effects of soil water content, the return stroke current parameters effects,

namely, the decay time, rise time, and peak value, on EMF propagation are yet to be 

fully discovered. The soil response on the lightning electromagnetic field propagation 

was found to be dependent on these parameters. The shape and magnitude of above 

and below ground electromagnetic fields were directly influenced by the current 

waveform. The measurement of the lightning electromagnetic field waveforms enables 

us to determine the magnitudes and shape of a lightning currents source.  

iv. Comparative Performance of Frequency Domain Soil Models

Because of its attractive attributes, frequency domain electromagnetic field simulation

using frequency domain soil models still remains popular for certain applications. 

Researchers have previously developed a number of soil models that include frequency 

dependence. However, an analysis on their relative performance is yet to be made 

available. In this work, five soil models were assessed in a frequency domain 

simulation. By comparing the computed electromagnetic fields in the air as well in the 

soil, it is found that two frequency domain soil models, namely, the Scott mode (S) 

and the Alipio and Visacro (AV) models are more suitable to be adopted in frequency 

domain electromagnetic field propagation studies. 

1.7 Research Significance 

This research has made several contributions as listed above. The research also 

has several significance as listed below.  

i. The use of frequency domain solvers to study lightning EMF poses many

challenges such as a very long simulation duration due to thousands of frequencies 

needed to be simulated so as to accurately represent the fast rising lightning return 

stroke current. A quicker method is provided by a time domain solver, such as the 

FDTD method. However, the challenge when using the FDTD method is the difficulty 
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to solve the Maxwell equations in a lossy propagation medium. This is mainly due to 

the complexity of the algorithm or resultant equations, primarily due to the presence 

of a recursive convolution term when deriving the so-called Maxwell update equations. 

This research has solved the said difficulty by introducing the CRC-FDTD method 

which is more accurate than previously reported FDTD methods.  The introduction of 

this new method has enabled us to carry out lightning EMF studies in an easier and 

faster manner compared to that provided by the frequency domain method. 

 

 

ii. The use of the proposed CRC-FDTD method has enabled us to carry out 

many studies on the lightning EMF including the effects of many key factors such as 

soil moisture, soil homogeneity, propagation distance and return stroke parameters. 

Such studies were not so easily carried out previously because of the limitations faced 

when using the frequency domain method. 

 

 

iii. Despite the frequency domain method having a better simulation result 

accuracy than that of the time domain method, the currently available frequency 

domain methods are not capable of simulating the non-linear properties of the 

propagation medium, such as the soil ionization phenomenon. The proposed CRC-

FDTD method however is able to model such nonlinear properties. Under such a 

situation, this may narrow the difference in accuracy between the CRC-FDTD method 

and the frequency domain method.  

 

 

1.8 Thesis Outline 

 

 

 

This thesis is organized into five chapters that contain in-depth information of 

the study and provide a comprehensive description of the work. The first chapter 

discusses the research background, the reasons for carrying out this thesis, the goals to 
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achieve to complete this work, research objectives, research scopes, research 

contributions, and research significance. 

Chapter 2 covers the literature review on lightning return-stroke, lightning 

channel models, lightning current waveform, lightning electromagnetic pulse (LEMP) 

models, the propagation media, the effects of frequency-dependent soil, and soil 

uniformity on lightning electromagnetic propagation, and an overview of numerical 

solvers used to determine electromagnetic fields in time and frequency domain. 

Chapter 3 outlines the research methodology, which starts with the general 

differential form for Maxwell’s equations and the shortcomings in previous 

electromagnetic radiation models and the need to adjust the finite-difference time-

domain approach for lightning propagation models, followed by a comparison between 

non-dispersive medium and dispersive medium. The lightning return stroke model 

consists of four parts, namely, determination of the lightning return stroke current 

parameters, modelling of the return stroke, the soil, and electromagnetic field 

propagation. The numerical solvers were described that have been used in this research 

to determine the electromagnetic field. The method and model parameters of the 

lightning electromagnetic pulse over soil frequency-dependent, the effect of FDS on 

LEMP, effects of soil uniformity on LEMP, the return stroke parameters effects on 

LEMP, and distance effect on LEMP was described. Five soil models and their 

expressions and equations are given in detail to be assessed based on their eligibility 

to model lightning electromagnetic propagation. 

Chapter 4 reports and discusses the results obtained from simulations. At the 

beginning of this chapter, the CRC-FDTD mathematical derivation and the linear 

relationship between the soil total current density, JT, and the soil electric field, E, are 

explained. The results of the CRC-FDTD method have been validated with the FEA 

method through the examination for the lightning EMF propagation over and within a 

FDS. Also, the chapter reports the results of the FDS effect, soil uniformity effects, 
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return stroke parameters effects, and distance effects, on LEMP by using the improved 

CRC-FDTD method. In addition, soil models assessments are also presented. All the 

results are given in form of graphical plots namely; the radial electric field (Er), the 

vertical electric field (Ez), and the azimuthal magnetic field (Hɸ). 

 

 

The findings of this study are summarized in Chapter 5. This chapter also 

includes recommendations and plans for future research. 

. 
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