UTILIZING MANAGED PRESSURE DRILLING (MPD) TECHNOLOGY TO MITIGATE DRILLING PROBLEMS IN HPHT EXPLORATION WELLS

MOHD AFIQ BIN MD KHALID

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Petroleum Engineering)

Faculty of Petroleum and Renewable Energy Engineering Universiti Teknologi Malaysia

JULY 2015

Special dedication to both of my parents, Md Khalid bin Hasim and Hayati binti Abdul Hamid. They are truly my pillars of strength, who always believe in what I do. I also dedicate this thesis to my brothers, Mohd Haziq, Mohd Zulhilmy and Mohd Hazwan for their continuous support and motivation.

ACKNOWLEDGEMENT

Firstly, the author would like to thank Allah for His guidance throughout the process of completing this thesis.

In particularly, the author wishes to express his gratitude to Assoc. Prof. Abdul Razak Ismail, for encouragement, guidance, critics and friendship. Without his continued support and interest, this thesis would not have been the same as presented here.

The author also indebted to MyBrain by Ministry of Education Malaysia for funding his Master's study. Librarians at UTM also deserve special thanks for their assistance in supplying the relevant literatures.

Lastly, the author would like to thank his fellow colleagues, friends and families who have support and contributed throughout the programme.

ABSTRACT

Managed Pressure Drilling (MPD) is a relatively new technology that has improved some old ideas of Underbalanced Drilling (UBD). The main aim of MPD discussed in this study is to avoid continuous influx of formation fluids to the surface by maintaining a state of effective overbalance. Nowadays, most of the remaining resources around the globe might only be located in harsh reservoir environment such as deepwater and high pressure high temperature (HPHT). This kind of situation also represents real threats to most drilling contractors, if conventional drilling methodology were applied. However, with MPD capability, it allows them to drill through the "un-drillable" formations, helps to reduce non-productive time (NPT) and overcome drilling problems such as narrow pressure window, kick-loss scenarios, low rate of penetration (ROP), loss of circulation, and failure to reach target depth (TD). These problems can be avoided if wellbore pressures are controlled, maintained and managed in more efficient way. However, in order to mitigate those challenges, implementing the right tools, techniques and necessary rig modification are crucial. In fact, during the MPD operation, controlling the wellbore breathing, and identifying the upper and lower limit of pore pressure were the main issues and concerned, which are also discussed. Lastly, conclusions are drawn and future recommendations are suggested in this study. In offshore Malaysia, MPD is proven to be a successful operation, while managed to drill through the HPHT condition, narrow pressure window, reach deeper target, control kick issues and minimize wellbore fatigue stress. Cross referencing with drilling contractors, and conducting verbal interview with drilling personnel are also recommended for furthering the study area.

ABSTRAK

Penggerudian tekanan terurus (MPD) adalah teknologi yang baru yang telah ditambahbaik daripada idea yang lama seperti penggerudian dibawah imbangan (UBD). Tujuan utama MPD yang dibincangkan di dalam kajian ini adalah untuk mengelakkan kemasukan cecair formasi yang berterusan ke dalam permukaan dengan mengekalkan keadaan imbangan yang berkesan. Pada masa kini, kebanyakan sumber yang tinggal di serata dunia hanya boleh dijumpai di dalam persekitaran takungan yang payah seperti laut dalam dan suhu tinggi tekanan tinggi (HPHT). Situasi ini juga memberi ancaman yang hebat kepada kebanyakan kontraktor penggerudian, jika kaedah penggerudian konvensional diguna pakai. Walau bagaimanapun, dengan kemampuan MPD, ia membolehkan mereka untuk menggerudi formasi "yang tidak tertembus", membantu mengurangkan masa tidak produktif (NPT), dan mengatasi beberapa masalah penggerudian, seperti tingkap tekanan yang sempit, senario tendangan-kehilangan, kadar penembusan yang rendah (ROP), kehilangan edaran, dan kegagalan untuk mencapai kedalaman sasaran (TD). Masalah-masalah ini boleh dielakkan jika tekanan lubang telaga dapat dikawal, disenggara dan diurus dengan cara Akan tetapi, untuk mengatasi masalah-malasah tersebut, yang lebih efisien. perlaksanaan alat-alat dan teknik yang betul, serta pengubahsuaian pelantar adalah perkara sangat penting dan perlu dititikberatkan. Malah, semasa operasi MPD dijalankan, pengawalan pernafasan telaga, dan mengenal pasti had atas dan bawah tekanan liang merupakan isu utama yang perlu dikhuatiri, dan juga telah dibincangkan. Akhir sekali, kesimpulan telah diputuskan dan cadangan untuk masa hadapan juga dikemukakan di dalam kajian ini. Di luar pesisir pantai Malaysia, operasi MPD telah terbukti berkesan, di mana telaga yang berjaya digerudi adalah berkeadaan HPHT, tingkap tekanan yang sempit, berjaya mencapai sasaran yang lebih dalam, mengawal isu tendangan dan mengurangkan tekanan keletihan telaga. Selain, rujukan secara menyeluruh, mengendalikan temubual bersama kontraktor dan kakitangan penggerudian juga dicadangkan untuk penambahbaikan kajian ini di masa hadapan.

TABLE OF CONTENTS

CHAPTER			TITLE	PAGE
	DECLARATION			ii
	DED	ICATIO)N	iii
	ACK	NOWL	EDGEMENT	iv
	ABS'	TRACT		V
	ABS'	TRAK		vi
	ТАВ	LE OF (CONTENTS	vii
	LIST	C OF TA	BLES	xi
	LIST	C OF FIG	GURES	xii
	LIST	C OF AB	BREVIATIONS	XV
1	INTI	RODUC	TION	
	1.1	Resear	rch Background	1
	1.2	Proble	em Statement	2
	1.3	Resear	rch Objectives	3
	1.4	Scope	s of Study	4
2	LITI	ERATUI	RE REVIEW	
	2.1	Defini	tion of Basic Concept	5
		2.1.1	Formation Pore Pressure	5
		2.1.2	Wellbore Pressure	6
		2.1.3	Overburden Pressure	7
		2.1.4	Fracture Pressure	9
		2.1.5	Collapse Pressure	10
		2.1.6	Conventional Drilling	11

	2.1.7	Underbalanced Drilling	12
	2.1.8	High Pressure High Temperature Well	13
2.2	Defini	ition of Managed Pressure Drilling	19
2.3	Catego	ories of MPD	22
	2.3.1	Reactive	22
	2.3.2	Proactive	23
2.4	The D	ifference between MPD and UBD	23
2.5	Varia	nts of MPD	26
	2.5.1	Return Flow Control	26
	2.5.2	Constant Bottomhole Temperature	27
	2.5.3	Dual Gradient Drilling	29
	2.5.4	Pressurized Mud Cap Drilling	31
2.6	Tools	and Equipment for MPD Operation	32
	2.6.1	Annular Seal	33
		2.6.1.1 Rotating Control Device	34
		2.6.1.2 Riser Pressure Control Device	36
	2.6.2	Drill Pipe Non Return Valve	37
	2.6.3	ECD Reduction Tool	38
	2.6.4	Slip Joint	40
	2.6.5	Riser Gas Handling	40
	2.6.6	Active Choke Manifold System	41
		2.6.6.1 Choke	44
		2.6.6.2 Control System	44
		2.6.6.3 Backpressure Pump	45
		2.6.6.4 Coriolis Flowmeter	45
	2.6.7	Mud Gas Separator	47
	2.6.8	Real-time Data Acquisition	47
		2.6.8.1 Pressure While Drilling	47
		2.6.8.2 Mud Pulse Telemetry	48
		2.6.8.3 Wired Drill Pipe	48
	2.6.9	Continuous Circulation Equipment	49
		2.6.9.1 Continuous Circulation System	50
		2.6.9.2 Continuous Circulation Valve	51

MPD S	SYSTE	M DURING DRILLING HPHT WELLS	
3.1	The Cl	nallenges and Effects during MPD Operation	54
	3.1.1	Surge and Swab Effect	54
	3.1.2	U-Tube Effect	57
	3.1.3	Riser Margin	58
3.2	Rig M	odifications	60
	3.2.1	Slip Joint System	61
	3.2.2	Heave Motion Compensation	62
	3.2.3	Wired Drill Pipe	63
	3.2.4	Utilizing both Active MPD Choke System and	
		Continuous Circulation	64
	3.2.5	The Positioning of RCD	65
		3.2.5.1 Above the Slip Joint with the Slip Joint	
		Collapsed and Locked	66
		3.2.5.2 Above the Slip Joint with the Slip Joint	
		Inner Barrel Removed	66
		3.2.5.3 Below the Tension Ring and Slip Joint	67
		3.2.5.4 At the BOP Stack below the LMRP	67
		3.2.5.5 At Surface with the BOP Stack	67
	3.3	Overview of MPD Implementation on the	
		Floating Rig	68
	3.4	Recent Experiences with MPD Application	69

4 METHODOLOGY

3

4.1	Title and Scopes Specifying	72
4.2	Research Plans and Approaches	72
4.3	Literature Review	73
4.4	Data Collection and Management	74
4.5	Data Evaluation	75
4.6	Data Analyzing	76

5 **DISCUSSION AND ANALYSIS**

5.1	Drilling Problems Mitigated Through MPD	77

	5.1.1	Early Kick Detection	77
	5.1.2	Wellbore Ballooning and Influx	78
	5.1.3	Lost Circulation	79
	5.1.4	Stuck Pipe	80
	5.1.5	Wellbore Instability	81
	5.1.6	Hole Cleaning	81
	5.1.7	Wellbore Pressure Control	81
	5.1.8	Excessive Casing Strings	82
	5.1.9	Riser Gas	82
	5.1.10	Other Problems Mitigated By MPD	83
5.2	Analys	sis of Case Study: Automated MPD System	
	Optim	ization on HPHT Well in SK Block,	
	Offsho	ore Sarawak	86
	5.2.1	Field Overview	86
	5.2.2	Optimizing Automated MPD System	87
	5.2.3	MPD Strategy, Planning and Operation	89
	5.2.4	Analysis of the Post MPD Operation	92
		5.2.4.1 Discussion	92
		5.2.4.2 Conclusion	99

6 CONCLUSION AND RECOMMENDATIONS

6.1	Conclusion	102
6.2	Recommendations for Future Studies	103

REFERENCES

105

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Recent successful experiences of MPD	70

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Sedimentary process (Galloway et. al., 1983)	
2.2	Drilling window for conventional drilling, MPD and	
	UBD (Malloy and McDonald, 2008)	8
2.3	Leak-off Test monitored with APWD	10
2.4	Static and dynamic bottomhole pressure profile	
	(Malloy, 2007)	11
2.5	Example of wide pressure window (Malloy, 2007)	12
2.6	Well classification according to pressure and	
	temperature (Modified from Falcón, 1997)	14
2.7	HPHT classification (Doane, 2012)	15
2.8	Baker Hughes HPHT classification system	
	(Baker Hughes, 2005)	16
2.9	BP HPHT classification system	16
2.10	Halliburton HPHT classification system	
	(Halliburton, 2012)	17
2.11	Total HPHT classification system (Total, 2012)	17
2.12	Schlumberger HPHT classification system	
	(DeBruijn et al., 2008)	18
2.13	Formation pressure profile in deep water (Kjell, 2011)	20
2.14	Typical MPD process flow diagram	21
2.15	MPD rig-up for return flow control	27
2.16	Constant bottomhole pressure method (Malloy, 2007)	28
2.17	Continuous circulation system (Kjell, 2011)	29
2.18	Dual gradient method (Malloy, 2007)	30

2.19	Artificial mud lift system	31	
2.20	Mud cap method (Malloy, 2007)		
2.21	Example of setup of a MPD system used on		
	Transocean rigs in Africa	33	
2.22	P&ID of RCD	34	
2.23	RCD on top of BOP stack	35	
2.24	Principle of the RPCD (Courtesy of SIEM WIS)	36	
2.25	The cross-section of NRV	37	
2.26	ECD reduction method (Malloy, 2007)	38	
2.27	Weatherford 8.2" ECD RT	39	
2.28	Riser gas handling system	41	
2.29	Cross-section of an adjustable choke valve	42	
2.30	Microflux TM Control System (Courtesy of		
	Weatherford)	43	
2.31	Weatherford Coriolis flow meter	46	
2.32	Continuous circulation system unit (Malloy, 2007)	51	
2.33	Three-way sub in a CCV system (Sveinall, 2010)	52	
2.34	Principle of the three-way valve used in continuous		
	circulation systems	53	
3.1	The piston movement of the drillstring during		
	connection	56	
3.2	U-Tube effect in deepwater drilling	58	
4.1	Stage of research project	72	
4.2	Data collection and management	75	
4.3	Evaluation criteria (UMUC, 1998 and Litman, 2012)	76	
5.1	Relationship of overbalance pressure to ROP		
	(Bourgoyne et. al., 1991)	84	
5.2	Cost uncertainty between conventional drilling and		
	MPD (Saponja et. al., 2006)	85	
5.3	TTD-1 well location (Rodriguez et. al., 2014)	87	
5.4	TTD-1 MPD system PFD (Rodriguez et. al., 2014)	88	
5.5	Influx detected during DFC (Rodriguez et. al., 2014)	93	
5.6	Wellbore breathing potential (Rodriguez et. al., 2014)	95	
5.7	Dynamic FIT #3 graph (Rodriguez et. al., 2014)	97	

5.8	TTD-1 drilling operating window summary		
	(Rodriguez et. al., 2014)	97	
5.9	DAPC system installed at cantilever deck		
	(Mi-SWACO, 2014)	99	
5.10	TTD-1 drilling plan vs. the actual		
	(Rodriguez et. al., 2014)	101	

LIST OF ABBREVIATIONS

AD	-	Air Drilling
AFP	-	Annular Friction Pressure
API	-	American Petroleum Institute
APWD	-	Annulus Pressure While Drilling
ASM	-	Along String Measurements
ATR	-	Above Tension Ring
BP	-	Back Pressure
BHA	-	Bottomhole Assembly
BHP	-	Bottomhole Pressure
BOP	-	Blow Out Preventer
BSP	-	Back Surface Pressure
BTR	-	Below Tension Ring
CBHP	-	Constant Bottom Hole Pressure
CCS	-	Continuous Circulation System
CCV	-	Continuous Circulation Valve
CPD	-	Control Pressure Drilling
DAPC	-	Dynamic Annular Pressure Control
DFC	-	Dynamic Flow Check
DFIT	-	Dynamic Formation Integrity Test
DGD	-	Dual Gradient Drilling
DWOP	-	Drilling Well on Paper
E-CD	-	Eni Circulation Device
ECD	-	Equivalent Circulating Density
EKD	-	Early Kick Detection
ENBD	-	Eni Nearbalanced Drilling
ESD	-	Emergency Shutdown
FG	-	Fracture Gradient

FIT	-	Formation Integrity Test		
FMCD	-	Floating Mud Cap Drilling		
FP	-	Fracture Pressure		
H_2S	-	Hydrogen Sulphide		
HAZID	-	Hazard Identification Study		
HAZOP	-	Hazard and Operability Study		
HP	-	High Pressure		
HT	-	High Temperature		
HPHT	-	High Pressure High Temperature		
HPHT-hc	-	High Pressure High Temperature Hors Catégorie (beyond		
		classification)		
HSE	-	Health, Safety and Environment		
IADC	-	International Association of Drilling Contractors		
ID	-	Internal Diameter		
LCM	-	Lost Circulation Material		
LMRP	-	Lower Marine Riser Package		
LOT	-	Leak-off Test		
LWD	-	Logging While Drilling		
MD	-	Measured Depth		
MFC	-	Microflux TM Control		
MGS	-	Mud Gas Separator		
MODU	-	Mobile Offshore Drilling Unit		
MPC	-	Managed Pressure Cementing		
MPD	-	Managed Pressure Drilling		
MWD	-	Measurement While Drilling		
NCS	-	Norwegian Continental Shelf		
NPT	-	Non-Productive Time		
NRV	-	Non-Return Valve		
OBD	-	Overbalanced Drilling		
PCSB	-	PETRONAS Carigali Sdn. Bhd.		
P&ID	-	Process & Instrumentation Diagram		
PD	-	Power Drilling		
PFD	-	Process Flow Diagram		
PLC	-	Programmable Logic Controller		

PMCD	-	Pressurized Mud Cap Drilling
PP	-	Pore Pressure
ppg	-	Pound per Gallon
PWD	-	Pressure While Drilling
RCD	-	Rotating Control Device
ROP	-	Rate of Penetration
RPCD	-	Riser Pressure Control Device
RPM	-	Rotation per Minute
RT	-	Reduction Tool
SPE	-	Society of Petroleum Engineers
TD	-	Target Depth
TVD	-	True Vertical Depth
UBD	-	Underbalanced Drilling
WDP	-	Wired Drill Pipe

CHAPTER 1

INTRODUCTION

1.1 Research Background

Although the term managed pressure drilling was not launched until 2003, the history of MPD and MPD equipment dates back to the 1930s when the first rotating heads where described in the catalogue of Shaffer Tool Company in 1937 (Hannegan, 2011). These rotating heads are quite similar and based on much of the same principle as the modern rotating control devices (RCD) in use today. In the beginning, RCD where used for air drilling and underbalanced operations, but over time the industry understood how they could use this equipment to control and manipulate equivalent circulating density (ECD) and from the 1970s RCD equipment was used to control ECD and more effectively control the pressure in the well (Nas, 2010). The technology used today combines new technology with older principles and techniques to manage common drilling problems.

The first example of offshore managed pressure drilling was seen in the 1970s in Gulf of Mexico. MPD in the form of mud cap drilling and pressurized mud cap drilling were developed throughout the 1980s and 1990s. Rehm et. al. (2008) described that development over the last decades have been within the use of precise control of surface backpressure to compensate for ECD, application of constant bottomhole pressure, continuous circulation systems, various dual-gradient systems applicable for deepwater and ultra-deepwater, and various types of down-hole valves.

MPD operations have been conducted offshore from both fixed installations such as jack-up rigs and production platforms with surface Blow Out Preventer (BOP), and floating installations such as, semi-submersibles and drill ships with both surface and subsea BOP (Hannegan, 2011). Bjørkevoll et. al. (2010) has mentioned, on the Norwegian side of the North Sea, managed pressure drilling has been used successfully both for production drilling in depleted reservoirs and for exploration wells from jackup rigs. In areas where the weather conditions are quite calm, such as in the Mediterranean Sea, South East Asia and in deepwater fields outside the west coast of Africa, MPD operations has been performed successfully for several years (Nas, 2010). This development seems to continue, bringing MPD technology into new areas and integrating it more and more in the operations. Even though there are challenges associated with MPD, the drilling contractor and big players in the industry seem to be determined to solve the challenges and take the technology into the future by utilizing MPD to mitigate problems and hazards through implementing the right tools, techniques and necessary rig modifications to the next level.

1.2 Problem Statement

As a result of many of the easy prospects offshore has already been drilled, nowadays operators and drilling contractors are focusing on the more challenging environments such as extreme water depths, thorough depleted formations and high pressure high temperature (HPHT) wells. As mentioned earlier, much of the remaining resources around the globe might be located in HPHT environments, while that kind of situation represents real challenges to most drilling contractor, if conventional drilling methodology were applied. Thus, to be able to increase the recovery in older fields, new wells needs to be drilled, but the problem in older field which have been producing for several years is that the formation pressures decreases. Both pore and fracture pressure decreases as the reservoir is being drained, making the operational window for drilling narrower and harder or near impossible to drill. Furthermore, drilling in challenging environments with different drilling hazards causes a lot of nonproductive time (NPT), i.e. time where the rig is not drilling. The result of NPT and high rig costs is a lot of money spent on nothing productive. Evidently, most (if not all) of HPHT drilling prospects are not economically viable using conventional drilling methods with conventional drilling equipment. The main reason for that are excessive costs caused by narrow pressure window, riser gas problem, early kick and formation influx, lost circulation, wellbore instability and stuck pipe, in which most of them may cause high amount of NPT and a lot of well control issues. All of drilling-related issues mentioned above have one thing in common – they can be avoided if wellbore pressures are controlled, maintained and managed in more precise way. Thus, in order to solve the challenges associated with challenging environments and narrow pressure window and high percentage of non-productive time, there is in particular one drilling method many operators have been looking towards for the last decade, and that is MPD with its variations.

1.3 Research Objectives

The main objectives of this research are:

- To discuss the potential of MPD in mitigating drilling hazards and problems in HPHT exploration wells through MPD tools, techniques and technology, in comparison with conventional drilling method.
- ii. To discuss the current MPD technology, planning, approach and operation pioneered by drilling contractors throughout the operation based on recent successful experiences of MPD.

1.4 Scopes of Study

This study covered the following aspects:

- i. HPHT well issue associated with narrow pressure window and drilling problems which makes the conventional drilling is relatively undoable.
- ii. The focus is solely on technical aspects when discussing MPD technology in mitigating drilling problems, rather than commercial aspects.
- iii. Benefits and implication of MPD in HPHT wells which based on proven case study.
- iv. Reliability of technology existing today and the experiences gained up to date with MPD implementation in HPHT wells.

REFERENCES

- Aldred, W., Cook, J., Carpenter, B., Hutchinson, M., Lovell, J., Cooper, I.R. & Leder, P.C. (1998). Using Downhole Annular Pressure Measurements to Improve Drilling Performance. *Oilfield Review Journal*, 40-55.
- Andresen, J. A. & Askeland, T. (2011). New Technology, Which Enables Closed, Looped Drilling (MPD) from Mobile Offshore Drilling Units (MODU). SPE/IADC Drilling Conference and Exhibition. Amsterdam, Netherlands.
- Bansal, R. K., Grayson, B. & Stanley, J. (2008). ECD Reduction Tool Control Pressure Drilling and Testing. *Drilling Engineering Association, Fourth Quarter Meeting*. 20 November 2012.
- Bjørkevoll, K. S., Hovland, S., Aas, I. B. & Vollen, E. (2010). Successful Use of Real Time Dynamic Flow Modelling to Control a Very Challenging Managed Pressure Drilling Operation in the North Sea. SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. 24-25 February. Kuala Lumpur, Malaysia: SPE/IADC 130311.
- Bjørkevoll, K. S., Molde, D. O., Rommetveit, R. & Syltøy, S. (2008). MPD Operation Solved Drilling Challenges in a Severely Depleted HP/HT Reservoir. *IADC/SPE Drilling Conference*. 4-6 March. Orlando, Florida, USA: IADC/SPE 112739.
- Bourgoyne, Jr., A. T., Millheim, K. K., Chenevert, M. E. & Young Jr., F. S. (1991). Applied Drilling Engineering. *SPE Textbook*. 2.

- Calderoni, A. & Girola, G. (2009). ENBD, the Proprietary Eni Managed Pressure Drilling with Uninterrupted Mud Circulation: Technical Update after the First Year's Activity. *International Petroleum Technology Conference*. Doha, Qatar.
- Calderoni, A., Girola, G., Maestrami, M., Santos, H. & Holt, C. (2009). Microflux[™] Control and E-CD Continuous Circulation Valves Allow Operator to Reach HPHT Reservoirs for the First Time. *IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition*. San Antonio, Texas, USA: IADC/SPE 122270.
- Calderoni, A., Masi, S., Repetto, C., Tufo, M., Molaschi, C. & Poloni, R. (2011).
 Managing Pressure Drilling with Continuous Circulation, a Summary of Eni Experience. SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: SPE 147147.

Dowell, D. (2011). Dual Gradient Drilling the System. DEA Presentation. 23 June.

- Drilling Engineer Association. (1996). Underbalanced Drilling and Completion Manual. *DEA 101*. October 1996.
- Frink, P. (2006). Managed Pressure Drilling What's In the Name?. Drilling Contractors. March/April 2006.
- Gravdal, J. E., Lorentzen, R. J. & Time, R. W. (2010). Wired Drill Pipe Telemetry Enables Real-Time Evaluation of Kick During Managed Pressure Drilling. SPE Asia Pacific Oil & Gas Conference and Exhibition. Brisbane, Queensland, Australia.
- Hannegan, D. M. (2005). Brownfields Applications for MPD. *E&P Journal*. October 2005, 45-48.

- Hannegan, D. M. (2011). MPD Drilling Optimization Technology, Risk Management Tool, or Both? SPE Annual Technical Conference and Exhibition. 30 October-2 November. Denver, Coloardo, USA: SPE 146644.
- Hannegan, D. M. (2011). Managed Pressure Drilling Applications on Offshore HPHT Wells. *Offshore Technology Conference*. 2-5 May. Houston, Texas, USA.
- Hannegan, D. M. & Gray, K. (2013). Real-Time Data From Closed-Loop Drilling Enhances Offshore HSE. World Oil. 234 (3).
- Hsieh, L. (2013). Changing the game: MPD Provides Edge In High-Cost Deepwater: Drilling Contractor. Retrieved on 5 April, 2015, from http://www.drillingcontractor.org/changing-the-game-mpd-provides-edge-inhigh-cost-deepwater-20398.
- Iversen, F., Gravdal, J. E., Dvergsnes, E. W., Nygaard, G., Gjeraldstveit, H., Carlsen, L. A., Low, E., Munro, C. & Torvund, S. (2006). Feasibility study of Managed Pressure Drilling with Automatic Choke Control in Depleted HP/HT Field: . SPE Drilling Conference and Exhibition: SPE 102842.

Kjell K. F. (2011). Managed Pressure Drilling – What Is It. MPE Course. 710.

- Mahdianfar, H., Aamo, O. M. & Pavlov, A. (2012). Suppression of Heave-Induced Pressure Fluctuations in MPD. *IFAC Workshop on Automatic Control in Offshore Oil and Gas Production*. May 31 - June 1. Trondheim, Norway.
- Malloy, K. P., Stone, C. R., Medley Jr, G. H., Hannegan, D., Coker, O., Reitsma, D., Santos, H., Kinder, J., Eck-Olsen, J. & McCaskill, J. (2009). Managed-Pressure Drilling: What It Is and What It Is Not. *IADC/SPE Managed Pressure Drilling* and Underbalanced Operations Conference and Exhibition. 12-13 February. San Antonio, Texas, USA: IADC/SPE 122281.

- Malloy, K. P. (2007). Managed Pressure Drilling What is it anyway?" *Journal of World Oil*. March 2007, 27-34.
- Malloy, K. P. & McDonald, P. (2008). A Probabilistic Approach to Risk Assessment of Managed Pressure Drilling in Offshore Applications. *Technology Assessment and Research Study*. 28-31 October. Final Report.
- Mazerov, K. (2013). MPD Deployment from Floating Rig Positions Petrobras for Ambitious Campaign through 2017: Drilling Contractor. Retrieved on 2 May, 2015, http://www.drillingcontractor.org/mpd-deployment-from-floating-rigpositions-petrobras-for-ambitious-campaign-through-2017-22321.
- Medley, G.H. & Reynolds, P. (2006). Distinct Variations of Managed Pressure Drilling Exhibit Application Potential. World Oil Magazine Archive. 227 (3), 1-7.
- Naesheim, S. K., Lefdal, F., Oftedal, T. Ø. & Sveinall, H. (2011). How MPD with Advanced Flow Detection System was Successfully Applied on an e-HPHT Well in the Norwegian North Sea. *Offshore Technology Conference*. 2-5 May. Houston, Texas, USA: OTC 21682.
- Nas, S. (2010). Deepwater Managed Pressure Drilling Applications. CPS/SPE International Oil & Gas Conference and Exhibition. 8-10 June. Beijing, China: SPE 132049.
- Nas, S., Gedge, B., Palao, F. & Nguyen, V. (2010). Advantages of Managed Pressure Drilling and the Recent Deployment of the Technology in Vietnam. *IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition*. 1-3 November. Ho Chi Minh City, Vietnam.

- Ostroot, K., Shayegi, S., Lewis, D. & Lovorn, R. (2007). Comparison of Underbalanced and Managed Pressure Drilling Techniques. *AADE National Technical Conference and Exhibition*. 10-12April. Houston, Texas, USA.
- Ostroot, K., Shayegi, S., Lewis, D. & Lovorn, R. (2007). Comparison and Advantages of Underbalanced and Managed Pressure Drilling Techniques: When Should Each Be Applied?. *Offshore Technology Conference*. 30 April-3 May: OTC 18561.
- Pavlov, A., Kaasa, G. O., Landet, I. & Aamo, O. M. (2012). Handling Severe Heave for MPD on Floaters. MPD & UBO Conference. Milan, Italy.
- Rasmus, J., Dorel, A., Azizi, T., David, A., Duran, E., Lopez, H., Aguinaga, G., Beltran, J. C., Ospino, A. & Ochoa, E. (2013). Utilizing Wired Drill Pipe Technology During Managed Pressure Drilling Operations to Maintain Direction Control, Constant Bottom-hole Pressures and Well-bore Integrity in a Deep, Ultra-depleted Reservoir. SPE/IADC Drilling Conference and Exhibition. Amsterdam, Netherlands: SPE/IADC 163501.
- Rasmussen, O. S. & Sangesland, S. (2007). Evolution of MPD Methods for Compensation of Surge-And-Swab Pressures in Floating Drilling Operations. SPE/IADC Drilling Conference and Exhibition: SPE/IADC 108346.
- Rehm, B., Schubert, J., Haghshenas, A., Paknejad, A.S. & Hughes, J. (2008). Managed Pressure Drilling Gulf Drilling Series. Houston, Texas, 2008, 3, 4, 21-23, 229-231, 241-248.
- Rodriguez, F. R., Prasetia. A. E. & Mettai, A. (2014). HP/HT Exploration Well in Offshore Malaysia Pushed Automated MPD System to Maximum Utilization, Identifying Safest Drilling Operating Window. *IADC/SPE Drilling Conference and Exhibition*. 4 6 March. Fort Worth, Texas, USA: IADC/SPE 167930.

- Sammat, E., Pavesi, R., Besenzoni, L. & Copercini, P. (2013). Managed Pressure Drilling Experience on deepwater application in West Africa. SPE/IADC Drilling Conference and Exhibition. Amsterdam, Netherlands: SPE/IADC 163497.
- Santos, H., Leuchtenberg, C. & Shayegi, S. (2003). Micro-Flux Control: The Next Generation in Drilling Process for Ultra-deepwater. Offshore Technology Conference. Houston, Texas, USA.
- Santos, H., Reid, P., McCaskill, J., Kinder, J. & Kozicz, J. (2007). Deepwater Drilling Made More Efficient and Cost-Effective Using the MicrofluxTM Control Method and an Ultralow Invasion Fluid to Open the Mud-Weight Window. SPE Drilling & Completion. 22 (3), 189-196.
- Saponja, J., Adeleye, A. & Hucik, B. (2006). Managed-Pressure Drilling (MPD) Field Trial Demonstrate Technology Value. *IADC/SPE Conference and Exhibition*. 21-23 February. Miami, Florida, USA: IADC/SPE 98787.
- Schubert, J. J., Juvkam, H. C. & Choe, J. (2006). Well Control Procedures for Dual Gradient Drilling as Compared to Conventional Riser Drilling. SPE Drilling and Completion. December.
- SPE. (2011). SPE E&P Glossary: Society of Petroleum Engineers. Retrieved on 28 April, 2015, from http://www.spe.org/glossary/wiki/doku.php/terms:hpht.
- Standard Norge. (2012). NORSOK Standard D-010 Well Integrity in Drilling and Well Operations. 4, 20.
- Syazwan, M., Yap, Y., Umar, L. & Pepple, M. M. (2014). Successful HP/HT Drilling Through Innovative Practices: Sharing a Case Study of a Deep HP/HT Well.

SPE Annual Technical Conference and Exhibition. 30 September – 2 October. New Orleans, Louisiana, USA: SPE 166110.

- Toralde, J. S. & Karnugroho, A. (2012). Deepwater Challenges & Solutions In E&P. Retrieved on 7 April, 2015, http://www.epmag.com/item/Deepwater-Challenges-Solutions_100218.
- Torsvoll, A., Horsrud, P. & Reimers, N. (2006). Continuous Circulation During Drilling Utilizing a Drillstring Integrated Valve - The Continuous Circulation Valve. *IADC/SPE Drilling Conference*. Miami, Florida, USA.
- Vieira, P., Arnone, M., Torres, F. & Barragan, F. (2009). Roles of Managed Pressure Drilling Technique in Kick Detection and Well Control - The Beginning of New Conventional Drilling Way. SPE/IADC Middle East Drilling Technology Conference and Exhibition. 26-28 October. Manama, Bahrain.
- Weatherford. (2011). SeaShieldTM BTR RCD, MicrofluxTM System Combine to Safely Drill Deepwater Wildcat Wells on Drillship Offshore Indonesia. *Weatherford Homepage*.