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ABSTRACT

In recent years, due to significant evolution in adopting new technologies and 
development methodologies in the field of software engineering, there is an increased 
requirement to have an accurate effort estimation model that can cater for the needs of 
the continually growing software industry. Accurate effort estimation model is an 
essential feature of software engineering for effective planning, controlling and on- 
time delivering quality software projects within budget. In the last few decades, several 
models and practices of estimating the software effort have evolved, but it is still an 
essentially unresolved problem. One of the main reasons for inaccuracy is due to 
ineffective use of estimation models. Nevertheless, there is no proven software 
estimation model that can be used continuously in various situations to accurately 
estimate the software effort. In software development, it is difficult to accurately 
estimate the amount of work required to develop a software system of which suitable 
estimation model is a major concern. The over-estimation may result in a lost bid while 
under-estimation may fail the project. Consequently, the inaccuracy in estimating the 
software effort may result in serious consequences for developers and customers; 
resulting in disappointment, inaccurate estimation and hence, contribute to either low- 
quality project, team frustration or cost overrun. The main aim of this research is to 
optimize the estimation accuracy performance of software development effort using 
an ensemble technique. In this research, a novel software effort predictive model is 
proposed in which it incorporates techniques such as 1) Use Case Points (UCP), 2) 
Expert Judgement, and 3) Case-Based Reasoning as base models to create an 
ensemble. In this model, a feature importance selection technique (Extra Tree 
Classifier) and K-Nearest Neighbour machine learning algorithm are applied to 
identify the most relevant features from the UCP benchmark dataset and to assess 
project similarity respectively. Finally, the effort of the individual base models is 
ensembled using linear combination methods. This research is conducted through 
primary (a multi-case study involving software companies and university students’ 
projects), and secondary case studies to make an ensemble model. To show the 
accuracy, reliability and applicability of the proposed model, the software projects 
from primary studies as case selections are selected by applying a quantitative 
approach through experiments, industrial experts, archival data about estimates and 
evaluation metrics. The results of this research revealed that in comparison to UCP, 
expert judgement, and CBR techniques, the ensemble technique produced 15.9%, 14.6 
%, and 14.6 % Mean Magnitude of Relative Error; 20.6 %, 14 %, and 1% Mean 
Magnitude of Error Relative; 10.94 %, 14.53 %, and 1.1 % PRED (25) accuracy 
improvement. The proposed ensemble model can be used by software development 
firms and practitioners as an instrument to accurately estimate the effort required to 
develop new software projects at an earlier stage.
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ABSTRAK

Dalam beberapa tahun terakhir, kerana evolusi yang penting dalam menerima 
pakai teknologi baharu dan metodologi pengembangan di bidang kejuruteraan 
perisian, terdapat peningkatan keperluan untuk memiliki model anggaran usaha yang 
tepat yang dapat memenuhi keperluan industri perisian yang terus berkembang. Model 
anggaran usaha yang tepat adalah ciri penting kejuruteraan perisian untuk merancang, 
mengawal dan menyerahkan projek perisian yang berkualiti tepat pada waktunya 
dalam lingkungan belanjawan. Dalam beberapa dekad terakhir, beberapa model dan 
praktik menganggar usaha perisian telah berkembang, tetapi masih merupakan 
masalah yang tidak dapat diselesaikan. Salah satu sebab utama ketidaktepatan adalah 
disebabkan penggunaan model anggaran yang tidak berkesan. Walaupun begitu, tidak 
ada model anggaran perisian yang terbukti dapat digunakan secara berterusan dalam 
pelbagai situasi untuk menganggarkan usaha perisian dengan tepat. Dalam 
pembangunan perisian, sukar untuk menganggarkan secara tepat jumlah kerja yang 
diperlukan untuk membangunkan sistem perisian yang mana model anggaran yang 
sesuai menjadi perhatian utama. Anggaran yang berlebihan boleh mengakibatkan 
hilang tawaran manakala anggaran yang terkurang mungkin akan menggagalkan 
projek. Akibatnya, ketidaktepatan dalam menganggarkan usaha perisian boleh 
menghasilkan akibat yang serius bagi pemaju dan pelanggan; mengakibatkan 
kekecewaan, anggaran yang tidak tepat dan oleh itu, menyumbang kepada projek 
berkualiti rendah, kekecewaan pasukan atau kos yang berlebihan. Tujuan utama 
penyelidikan ini adalah untuk mengoptimumkan prestasi ketepatan anggaran usaha 
perisian dengan menggunakan teknik ensemble. Dalam penyelidikan ini, model 
ramalan usaha perisian baharu dicadangkan di mana ia menggabungkan teknik seperti 
1) Gunakan Titik Kes (UCP), 2) Penghakiman Pakar dan 3) Penaakulan Berasaskan 
Kes sebagai model asas untuk mencipta ensemble. Dalam model ini, teknik pemilihan 
kepentingan (Extra Tree Classifier) dan algoritma pembelajaran mesin K-Nearest 
Neighbor digunakan untuk mengenal pasti ciri yang paling berkaitan daripada set data 
penanda aras UCP dan untuk menilai persamaan projek masing-masing. Akhirnya, 
usaha model asas individu digabungkan menggunakan kaedah gabungan linear. 
Penyelidikan ini dilakukan melalui kajian utama (kajian pelbagai kes yang melibatkan 
syarikat perisian dan projek pelajar universiti), dan kajian menengah untuk membuat 
model ensemble. Untuk menunjukkan ketepatan, kebolehpercayaan dan 
kebolehgunaan model yang dicadangkan, projek perisian daripada kajian utama 
sebagai pemilihan kes dipilih dalam menggunakan pendekatan kuantitatif melalui 
eksperimen, pakar industri, data arkib mengenai anggaran dan metrik penilaian. Hasil 
penyelidikan ini mendedahkan bahawa berbanding dengan UCP, pertimbangan pakar, 
dan teknik CBR, teknik ensemble menghasilkan 15.9%, 14.6 %, dan 14.6 % Purata 
Magnitud Ralat Relatif; 20.6 %, 14 % dan 1% Purata Magnitud Ralat Relatif; 10.94 
%, 14.53 % dan 1.1 % PRED (25) peningkatan ketepatan. Model ensemble yang 
dicadangkan boleh digunakan oleh syarikat pembangunan perisian dan pengamal 
sebagai instrumen untuk menganggarkan dengan tepat usaha yang diperlukan untuk 
membangunkan projek-projek perisian baharu pada peringkat awal.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Software Effort Estimation (SEE) studies have started since the 1960s and 

continuous research has been conducted due to numerous claims on attaining accurate 

estimation results (Bardsiri et al., 2013; Lehtinen et al., 2014). In the planning phase 

of project management, SEE is an essential feature to deliver a successful software 

system. Software effort estimation is defined as a process of predicting the amount of 

work and hours required to develop software systems. It is typically measured in man- 

hours or man-months unit (Wen et al., 2012). Today, developing software systems are 

expensive and difficult. The software engineering presents several ways to quantify a 

project. One of the most important steps in software engineering process is to 

accurately estimate the cost, effort and time which has an important role in determining 

the success or failure of the project. The software development cost and effort 

estimation are important in development process and customer requirements. The 

reports on conducting projects show that there is almost no control over software 

projects and usually, the scale of the accomplished work is more than what has been 

estimated before. Therefore, usually projects terminate later than planned time (Jain et 

al., 2014).

In software engineering, managers would be able to estimate, forecast, and 

properly quote the needs for schedule, budget, and personnel to effectively finish 

software projects using effort estimation techniques. Delivering high-quality software 

to end users on time and on budget is still a big challenge for software project teams 

(Kerzner, 2018). The importance of the software project manager's involvement in the 

success or failure of a project has been underlined in several studies (Gupta and Kalia, 

2017; Medina and Francis, 2015). According to Lehtinen et al. (2014), a failure of 

software project indicates recognizable cost, scope, effort, schedule, or quality failure.
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According to the CHAOS report (2015) of The Standish Group International 

("Standish Group International," CHAOS Report 2015), 60% of IT projects were not 

on their scheduled time and 56% were not on budget. The International Society of 

Parametric Analysis (ISPA) studied that inaccurately estimating the staff’s skills level, 

underestimating software size and lack of requirement’s understandings are some of 

the core reasons behind project failures (Eck et al., 2009). To date, researchers have 

therefore introduced different types of SEE techniques. On the other hand, the majority 

of the techniques, were proposed at the start of the software development process, 

based on pre-defined requirements.

Software effort estimation is broadly divided into three main categories: 1) 

algorithmic, 2) expert estimation and 3) machine learning (Wen et al., 2012). 

Considering these estimation techniques, the experts and practitioners proposed to 

develop numerous estimation methods for accomplishing high effort estimation 

accuracy and afterwards chosen just a single best method to utilize. However, there is 

no consensus between the research communities that concludes the best solo method. 

A new endeavours on ensemble estimation methods have been proposed (E. 

Kocaguneli et al., 2012; Minku and Yao, 2013; Pai et al., 2013). An ensemble effort 

estimation technique is defined as the combinations of more than one single technique 

to estimate software development effort of a new project using a combination rule i.e. 

mean, median, Inverse Rank Weighted Mean (IRWM) etc., (Seni and Elder, 2010). 

The estimation of each base model is combined that produced the estimation of an 

ensemble.

In this research, an ensemble model is proposed to improve the estimation 

accuracy of software development effort. It integrates approaches such as Use Case 

Points (UCP), expert judgement, and Case-Based Reasoning (CBR). In addition, this 

research examined a systematic review of studies on use case points and expert 

judgment-based software development effort estimation. Furthermore, a comparative 

study is conducted concerning effort estimation accuracy in solo and ensemble 

techniques. The estimation accuracy of the proposed model is evaluated by using 

projects from software development organizations and student projects as case studies 

in a quantitative manner that includes experiments, industrial experts, archival data on

2



estimates, and evaluation criteria. Software development firms and practitioners will 

use the proposed model at the end of this research as an instrument to estimate the 

software effort.

The rest of this chapter is organized as follows: The problem background is 

presented in Section 1.2, which includes a brief explanation of the primary software 

engineering domains investigated in this study. Section 1.3 explains the problem 

statement. The research questions are presented in Section 1.4. Section 1.5 summarizes 

research objectives. The scope of the research and its significance are briefly described 

in Section 1.6 and 1.7 respectively. The operational definitions are presented in Section 

1.8. Section 1.9 organizes the remaining chapters of this thesis.

1.2 Problem Background

Any software project’s success depends primarily on its accuracy in estimating 

effort. To date, a lot of research has been conducted to estimate the accuracy of 

software effort using distinctive techniques. In any case, researchers and specialists 

are striving to recognize which estimation technique gives increasingly accurate 

outcomes on the given datasets and the other applicable attributes. The number of 

software projects fails due to incomplete requirements and inaccuracy in software 

estimation (Kaur and Sengupta, 2013). The Project Management Institute (PMI) 

conducted a survey in 2017, investigated that 69% of software successfully achieved 

the project’s original goals and business priorities, 43% were not finished within their 

initial budgets, 48% were delivered late and 32% failed due to budget lost (PMI's.,

2017).

The factors that influence effort and cost during the conception and design 

phases have been extensively researched, mostly using cost-estimating techniques. 

According to Doloi (2013), proper cost and effort estimation is the key to avoiding 

project cost overruns, regardless of management skill or financial strength of the 

contractor. Cost and effort estimation is a technical technique for predicting 

expenditures, and its success is dependent on the resources and project execution.
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According to widely published initial estimates, project complexity, technology needs, 

and project team requirements are among the factors influencing cost performance.

A study of information systems managers and other information systems 

professionals of 596 software development team member’s data on various 

organizations to investigate the reasons behind in accuracy as well as suggestions and 

improvements to avoid these factors confirmed that information systems software cost 

and effort estimating is an important concern (Lamba, 2020). Table 1.1 shows the top 

ten causes of inaccuracy estimates indicated by the respondents.

Table 1.1 Top ten causes of inaccuracy estimates (Lamba, 2020)

No. Causes of Inaccuracy Mean

1 Less Training 4.9

2 Survival pressure in market 4.6

3 Different working methods within team 4.5

4 Complex environment 4.3

5 Unexpected maintenance work 3.9

6 Problems with development tools 3.6

7 Overlooked tasks 3.59

8 Predefined project cost requires 3.4

9 Issues with acceptance testing 3.3

10 Slow continuous integration feedback 3.1

An enterprise International Project Management Association ("International 

Project Management Association," 2019) conducted a survey of 100 software 

businesses across a broad cross section of industries. The results of the study show that 

implementing consistent governance supervision, focusing on managing benefits, and 

managing change throughout the project lifecycle is difficult. According to the survey, 

70% of firms had at least one project failure in the preceding year. Moreover, half of 

the respondents said their initiative didn't always accomplish what it set out to do. 

Projects are expected to be delivered on time and on budget in 30 % and 36% of 

organisations, respectively. IBM-PMO ("IBM," 2019) consultants conducted a survey
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of 1,500 change management executives and investigated that 40% of projects reached 

their schedule, budget, and quality goals, with underestimating project complexity also 

listed as a challenge factor in 35% of projects.

In SEE literature, the researchers have proposed different models and 

techniques for accomplishing high effort estimation accuracy. Tronto et al. (2007), 

conducted a comparison of artificial neural networks (ANN) and regression models. 

ANN and regression analysis were applied on COCOMO dataset for estimating effort 

from size. The performance of both methods was compared and results revealed that 

ANN was effective in effort estimation. Wen et al. (2012), compared two machine 

learning techniques and found that it is more accurate than non-machine learning. They 

investigated that the mean of PRED (25) was 46% and MMRE was 51% for case- 

based reasoning (CBR) as compared to mean of PRED (25) = 64% and MMRE = 37% 

for ANN. Kamal and Ahmed (2011), performed a comparison of several UCP metrics 

and proposed a use case-based model using fuzzy logic. The results showed that the 

UCP method in machine learning techniques estimation approaches may bring 

significant impact on estimation accuracy. Azzeh and Nassif (2016), presented a 

hybrid model to predict UCP and productivity using the Radial Basis Neural Network 

(RBNN) and Support Vector Machine (SVM) which included prediction and 

classification stages. In this model, the historical productivity was clustered into fine- 

grain productivity using bisecting K-medoids algorithm clustering technique and then 

classified based on environmental factors. The results found that the use of RBNN 

shows significant improvement for effort estimation. They also investigated that the 

environmental complexity factor (ECF) may be removed from the estimation and the 

productivity factor should be more focused. Nagar and Dixit (2012), combined the 

UCP and COCOMO and divided four software projects into sub-modules to estimate 

the KLOC with the help of use cases. It was found that dividing the project into smaller 

sub-modules gets the estimated effort closer to the actual effort relative to the entire 

project.

Silhavy et al. (2018), evaluated Gaussian Mixture Model Clustering, Moving 

Window, K-means clustering, and Spectral Clustering techniques as a subset selection 

method for UCP estimation. The prediction error of linear regression methods was
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shown to be significantly decreased when clustering approaches were used. When 

compared to UCP, the SC reduced prediction error by up to 98 %. The moving window 

produced inconsistent results due to its sensitivity of data. Toka and Turetken (2013), 

presented an empirical assessment on parametric software estimation models (SLIM, 

COCOMO II, True Planning, and SEER-SEM) based on their prediction accuracy. The 

results suggested that COCOMO-II model showed significant results than the other 

three models on MMRE metrics. Patil et al. (2014), showed the improved accuracy of 

component-based software development (CBSD) effort estimation using fuzzy logic 

technique and found component point to be the best method accurately estimate the 

size. Wu et al. (2018), introduced a combined method integrating CBR and PSO for 

software effort estimation. The optimised weight derived from the PSO approach is 

proposed for three extensively used CBR methods in SEE (Euclidean distance, 

Manhattan distance, and grey relational grade). The suggested models are evaluated 

using two well used datasets (the Desharnais and Maxwell datasets), and the results 

are compared to other widely used methods, such as MICBR and GABE, using the 

MMRE, PRED (25), and MdMRE criteria. The experimental results showed that the 

combination technique incorporating PSO and CBR increased estimation performance 

for the three performance metrics at both the training and test stages. Ardiansyah et al. 

(2018), proposed an analogy effort estimation model by adjusting three distance 

measurements, namely Euclidean, Manhattan and Minkowski distance. Manhattan 

distance yields the best results, with a % MMRE, a 28 % MdMRE, and a 48% PRED 

(25). The analogy method has a mean accuracy of 49.9%, MdMRE 29.37 %, and 

PRED (25) 51.23 %. An empirical study is conducted using five popular datasets and 

the 30% hold-out validation approach to evaluate and compare the performance of 

optimal tree ensemble. In terms of MMRE, MdMRE, and PRED (25), the proposed 

ensemble outperforms regression trees and random forest models (Abdelali et al., 

2019). Alhazmi (2020) conducted a comparison study of twelve ensemble approaches 

for estimating effort. With an MMRE value of 10% and PRED (25) of 97%, the 

Genetic Algorithm feature selection for the bagging M5 rule was shown to be the best 

method for forecasting efforts. In expert estimation, the experts use their prior 

experiences and knowledge to analyze numerous factors for effort estimation. To 

empower the organizations to get profited by expert judgment, they should distinguish 

the human elements influencing the expert judgment (Magazinius et al., 2012) and 

apply useful guidelines for delivering better estimates. According to Basri et al.
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(2016), due to its simplicity and versatility, software development teams prefer to use 

expert judgement rather than other estimation models.

Based on the evidence mentioned, the fewer endeavours have been managed 

to accurately estimate the effort of the software systems. Hence, this research aims to 

propose an ensemble model to improve the estimation accuracy of software 

development effort. The proposed model has incorporated Use Case Points (UCP), 

expert judgement and Case-Based Reasoning (CBR) techniques to optimize the effort 

accuracy.

1.3 Problem Statement

In recent years, due to significant adoption of new technologies and 

development processes in the field of software engineering, developers and researchers 

have been working on improving the accuracy of software effort estimation. 

Development practitioners and researchers have long been frustrated by the inaccuracy 

of software effort estimates. Despite significant efforts to improve this key activity, 

estimation accuracy remains low (Usman et al., 2018). Earlier researchers (Azzeh and 

Nassif, 2016; Wu et al., 2018) highlighted that the software industry lacks in accurately 

estimating the effort of software applications. According to a review of surveys on 

effort estimation conducted by Keshta (2017), schedule and budget overruns occurred 

in 60%-80% of the projects examined. Inaccurate effort estimates can result in 

unrealistic schedules and budgets, which can be a significant business risk. According 

to a report by The Standish Group International ("Standish Group International," 

CHAOS Report 2015), over 25,000 projects highlight the consequences of not using 

the estimation method to enable accurate software estimation. These consequences 

range from a lack of competitiveness and underestimation to project failures and, 

ultimately, corporate loss. In the last few decades, several models and practices of 

estimating the software effort have evolved, but it is still an essentially unresolved 

problem (Sehra et al., 2017). The software industry is striving to optimize accuracy as 

there is no proven software estimation model that can be used continuously in various 

situations to estimate the software effort (Gautam and Singh, 2018). Consequently,
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underestimation and overestimation may result in serious consequences for developers 

and customers towards disappointment, inaccurate estimation and hence, contribute to 

either low-quality project, team frustration or cost overrun. This research aims to 

propose an ensemble model to improve the accuracy of software development effort. 

The proposed model has incorporated Use Case Points (UCP), expert judgement and 

Case-Based Reasoning (CBR) techniques to optimize the effort accuracy. It is 

evaluated using projects from software development organisations and student projects 

as case studies, with a quantitative approach involving experiments, industry experts, 

archival data on estimations, and evaluation criteria.

1.4 Research Questions

The main research question of this research is:

“How to improve the estimation accuracy of software development effort?”

Four research questions are stated to provide an effective solution to the main 

research question:

i) RQ1: What does the existing studies investigate about effort estimation

models and accuracy improvement in ensemble and solo techniques?

ii) RQ2: How to develop an ensemble effort estimation model using Use Case

Points (UCP), expert judgement and Case-Based Reasoning (CBR)

techniques?

iii) RQ3: Does the ensemble model improve estimation accuracy of software

development effort compared to the existing solo techniques?

iv) RQ4: How can the ensemble effort estimation model be accurate and

applicable in software development?
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1.5 Research Objectives

This research aims to propose an ensemble model to improve the estimation 

accuracy of software development effort. The ensemble model is incorporated with 

Use Case Point (algorithmic), expert judgement (non-algorithmic) and Case-Based 

Reasoning (machine learning) techniques to make an ensemble. Hence, the objectives 

are as follows to achieve this aim:

i) RO1: To investigate the effort estimation models and the accuracy

improvement of ensemble and solo techniques.

ii) RO2: To develop an ensemble effort estimation model using Use Case Points

(UCP), expert judgement and Case-Based Reasoning (CBR) techniques.

iii) RO3: To evaluate the improvement of estimation accuracy of an ensemble

model by comparing existing solo models.

iv) RO4: To validate the applicability of the proposed model with diverse

evaluation metrics in software development.

1.6 Scope of Research

The main purpose in defining a research scope is to concentrate on how far the 

research area has been explored in terms of research limits and constraints. The 

limitations of the research scope are as following:

1.6.1 Research Context

The objective of this research is to develop an ensemble estimation model to 

optimize the accuracy of software development effort. While most of the ensemble 

models are developed using machine learning techniques only. However, this research 

focusses on combining Use Case Point (algorithmic), expert judgement (non-
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algorithmic) and Case-Based Reasoning (machine learning) techniques to make an 

ensemble for improving effort estimation accuracy.

1.6.2 Research Challenges

Since this study focused on the software development phase, the challenges of 

gathering actual industry data in real software projects due to the COVID-19 pandemic 

were faced. The software industry therefore has limitations with real software 

development; for example, confidentiality, approaching technical experts, complex 

organization structures and politics. These factors affected the milestones of the 

research and collection of data. This study, therefore, summaries the following 

challenges:

i) Find estimation experts: This research needs contribution from industrial 

software experts to estimate software effort and gather related data. To find 

estimation experts based on experiences and competency in solving the task 

with highly related domain background and good estimation records is a 

challenge.

ii) Selection o f real software projects: This research aims to investigate effort 

estimation (phenomenon) in the real context. This study, therefore, selected a 

case study methodology to perform this investigation in its natural context. The 

selection of real software projects requires participation from the industry. This 

research might not be able to benefit from them directly due to commercial 

obligations, confidentiality, privacy policies and complex organizational 

structure. Such challenges obstructed to capture and collection of meaningful 

data for this research.

iii) Sufficient documentation: The documentation or information required to 

estimate software effort includes Software Requirement Specification 

Document (SRS), progress report (used for the actual amount of effort), 

software design document (if available), case selection and opinion from 

experts using UCP size and checklist. In Agile methodology, the 

documentation includes the product backlogs and sprint backlogs. The
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availability and integrity of the aforementioned documents are found missed in 

few software industries due to less focusing on the documentation. Moreover, 

in the UCP method, the UML were not well-written and structured for accurate 

estimation of software effort that caused difficulties.

1.7 Significance of Research

The main effect of this research is significant in opinions shown in Figure 1.1. 

In the first opinion, the proposed ensemble effort estimation model will provide 

significant information while estimating the amount of work and hours needed to 

develop software. Previous studies conclude that the key factor in project failure is 

inaccurate effort estimation, hence, this research will help practitioners and developers 

in making good management decisions, project planning and controlling activities. 

The proposed model developed at the end of this research will be useful to software 

development companies and practitioners as a tool for accurately estimating the time 

and effort required to develop new software systems.

Significance

Aspect-1
Ensemble

Aspect-2 technique

UCP

Expert
Judgement

CBR

0 # ̂ ^  Practitioner

-7 i Improve estimation
accuracy

Managerial
decisions

Project
Planning

Monitoring/
Controlling

Figure 1. 1 Significance of research
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In other opinion, by realizing the significance of an ensemble technique, 

incorporating algorithmic, expert estimation and machine learning approaches using 

combination rules will need to improve the accuracy of the development effort.

1.8 Research Gaps

The research gaps investigated in this thesis are described below:

Gap 1: The gap was identified during the initial literature review of thesis topic. 

The different types of reviews of studies have been conducted on effort estimation in 

software development. However, to the best of the knowledge regardless of the number 

of review of studies in this perspective, algorithmic, non-algorithmic and machine 

learning based effort have not been accumulated so far in their studies in a solitary 

review. It is also found that since 2016 none of the systematic literature reviews has 

been studied.

Gap 2: This gap was identified during execution and analysis phases of the 

SLR. To the best of knowledge, comparative study of ensemble and solo machine 

learning techniques on effort estimation accuracy have not been addressed in the 

literature.

Gap 3: The different types of studies have been conducted on effort estimation 

categories. However, algorithmic, expert estimation and machine learning techniques 

have not been ensembled so far in the research literature. It is investigated that the 

accuracy improvement using ensemble technique gaining researchers’ attention 

towards further exploring this technique for achieving accurate effort estimation 

results. It is also found that an ensemble technique produced better estimation results 

than a solo technique. This is because each solo estimation technique has merits and 

demerits which leads to somehow inaccurate estimation results.
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1.9 Operational Definitions

The operational terminologies used in this research are briefly stated below:

Software development It is the process of gathering requirements, 

designing, coding, testing and fixing bugs involved 

in creating and maintaining software applications.

Algorithmic models It uses statistical and mathematical formulation that 

take set of inputs, manipulate and produce output to 

derive estimation results.

Expert estimation The experts involved in this technique analysed a 

variety of factors using their knowledge and previous 

experience with similar projects.

Software Effort estimation It is the process of estimating how much time and 

effort will be required to develop a software system; 

it is typically measured in man-days, man-months, 

and man-hours.

Magnitude o f Relative Error It is defined as the ratio of actual effort to estimated

(MRE) effort.

Mean Magnitude o f Relative The amount of estimated effort to know the under-

Error (MMRE) estimation or over-estimation attributes in 

comparison to the actual estimation.

Magnitude o f Error Relative It is defined as the ratio of estimated effort to actual

(MER) effort.

Mean Magnitude o f Error The amount of actual effort to know the under-

Relative (MMER) estimation or over-estimation attributes in 

comparison to the estimated estimation.

PRED (25) It is the percentage of estimation within 25% of the 

actual efforts.

Applicability The degree of significance of the proposed model in 

software development.

Accuracy The degree of precision of the estimated effort 

compared to the actual effort
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Ensemble Effort Estimation It consists of combining more than one technique by 

means of a combination rule.

Case-Based Reasoning It identifies one or more past projects that are similar

(CBR) to the target project and extracts the effort estimation 

from those projects.

Use Case Point (UCP) In object-oriented software environment, the use 

case diagrams are converted into size metrics.

MSE The average squared difference between the actual 

and estimated values is measured by the Mean 

Squared Error (MSE).

1.10 Organization of the Thesis

The mapping of the research questions with chapters and research objectives 

with the research questions addressed in remainder chapters are shown in Table 1.2.

Table 1.2 Mapping of research questions with chapters

Chapters

RQs 2 3 4 5 6 7
Study1 Study2

1 RQ1/RO1
RQ1/RO1

2 RQ2/RO2
3
4 RQ3/RO3; RQ4/RO4

There are seven chapters in this thesis. Introduction to research, research 

background, problem statement, research questions (RQ), research objectives (RO), 

scope, significance of research, and operational definitions are all covered in the first 

chapter. The overview of the remainder chapter of thesis is shown in Figure. 1.2.
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