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ABSTRACT 

Rapid urbanisation has resulted in uncontrollable growth in developing cities, 

thus threatening the environment‘s stability and quality of life. While expanding 

infrastructure development is intended to benefit city dwellers, rising traffic, health, 

and environmental problems are causes for concern. To mitigate the negative effects 

of increasing urbanisation, urban planning is critical in improving city planning and 

advancing the goal of sustainable urban development. The urban planning sector uses 

land use land cover (LULC) change as a primary reference point for monitoring, 

where it is now primarily used to monitor environmental conditions with little 

emphasis on defining infrastructure in developed areas. A more accurate 

representation of urban development properties for a densely populated area allows 

urban planners to make better decisions about future development, hence mitigating 

the effects of uncontrollable growth caused by rapid urbanisation. As a consequence, 

this research aims to enhance urban planners' visualisation of urban development by 

developing an urban built land classification model using Google Earth Engine 

(GEE) and satellite data. The research was conducted in three phases: first, a 

literature review was conducted; second, the classification model was developed 

using satellite imaging data; and third, the classification model's performance was 

evaluated using designated assessment metrics. The first step in developing this 

model was to investigate the machine learning techniques and features used in 

existing LULC models, focusing on those built using the GEE platform. Random 

Forest was chosen to develop the urban built model in this study due to its resilience 

and performance in creating classification models on the GEE platform. In addition, 

the features analysis resulted in the emergence of a new set of granular features for 

the classification of urban developed land, namely the automobile, construction land, 

transport lane, building, vegetation, and water bodies. In the LULC class system, 

these characteristics represent a finer scale for urban or built-up land and come 

closest to defining an area's urban development properties. The urban built land 

classification model was developed on GEE using Landsat 7 and Landsat 8 imagery 

from the Google Earth Engine Data Catalog for Selangor from 2015 to 2020. The 

model was created using Random Forest with the optimal number of trees and the 

feature set of automobile, construction land, transport lane, building, vegetation, and 

water bodies after the hyperparameters were tuned. Each feature's classification 

result was displayed on the map, clearly illustrating the distribution of pixels for each 

detected feature using a defined colour code to provide an accurate representation of 

the feature's concentration. The accuracy of the urban built land classification model 

was then determined using the Overall Accuracy (OA), Kappa coefficient, Producer 

Accuracy, and User Accuracy, yielding 88% to 92%, 0.69 to 0.79, 53% to 98%, and 

53% to 96%, respectively. The high overall accuracy showed that the urban built 

land classification model had successfully classified finer scale details such as 

automobile, construction land, transport lane, and building spread, thereby improving 

existing LULC models and providing a more complete picture of development. In 

conclusion, the findings of this study will help urban planners make informed 

decisions about highly urbanised cities, thereby achieving a safe, resilient, and 

sustainable city whilst limiting unsustainable development. 
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ABSTRAK 

Perbandaran yang pesat membawa kepada pertumbuhan bandar yang tidak terkawal 

dan boleh mengancam kestabilan alam sekitar dan kualiti hidup. Walaupun pembangunan 

infrastruktur memberi manfaat kepada penduduk bandar, peningkatan lalu lintas, kesihatan 

dan kebimbangan alam sekitar adalah punca kebimbangan. Untuk mengurangkan kesan 

negatif peningkatan urbanisasi, perancangan bandar memainkan peranan penting dalam 

mencapai matlamat pembangunan bandar yang mampan. Sektor perancangan bandar 

menggunakan perubahan guna tanah litupan tanah (LULC) sebagai titik rujukan utama untuk 

pemantauan, di mana ia sekarang digunakan terutamanya untuk memantau keadaan 

persekitaran dengan sedikit penekanan pada penentuan infrastruktur di kawasan maju. Ciri-

ciri pembangunan bandar yang lebih tepat untuk kawasan berpenduduk padat membolehkan 

perancang bandar membuat keputusan yang lebih baik tentang pembangunan akan datang, 

mengurangkan kesan pertumbuhan yang tidak terkawal yang disebabkan oleh urbanisasi 

pesat.Tujuan penyelidikan ini adalah untuk meningkatkan visualisasi perancang bandar 

dalam pembangunan bandar dengan membangunkan model klasifikasi tanah binaan bandar 

menggunakan Google Earth Engine (GEE) dan data satelit. Penyelidikan dijalankan dalam 

tiga fasa: pertama, tinjauan literatur; kedua, pembangunan model klasifikasi menggunakan 

data pengimejan satelit; dan ketiga, penilaian prestasi model klasifikasi menggunakan metrik 

penilaian yang ditetapkan. Langkah pertama dalam pembangunan model ini adalah untuk 

menyiasat teknik dan ciri pembelajaran mesin yang digunakan dalam model LULC sedia 

ada, terutamanya yang dibina menggunakan platform GEE Mesin pembelajaran Random 

Forest dipilih untuk membangunkan model binaan bandar dalam kajian ini kerana ketahanan 

dan prestasinya dalam menghasilkan model klasifikasi di platform GEE. Selain itu, kajian ini 

menggunakan satu set fitur baharu dalam klasifikasi pembangunan tanah bandar, iaitu 

kenderaan, tanah pembinaan, lorong pengangkutan, bangunan, tumbuh-tumbuhan, dan 

kawasan berair.  Dalam sistem kelas LULC, fitur ini mewakili skala yang lebih halus untuk 

kawasan bandar atau tanah binaan dan lebih sesuai dalam menentukan sifat pembangunan 

sesuatu kawasan. Model klasifikasi tanah binaan bandar di platform GEE menggunakan imej 

Landsat 7 dan Landsat 8 daripada Katalog Data GEE untuk Selangor dari tahun 2015 hingga 

2020. Model ini dibuat menggunakan Random Forest dengan bilangan pokok yang optimum 

setelah hiperparameter ditala dan set fitur kenderaan, tanah pembinaan, lorong 

pengangkutan, bangunan, tumbuh-tumbuhan, dan kawasan berair. Hasil klasifikasi setiap 

fitur dipaparkan pada peta dengan jelas menggambarkan penyebaran piksel untuk setiap fitur 

yang dikesan menggunakan kod warna yang ditentukan, memberikan gambaran yang tepat 

mengenai tumpuan fitur tersebut. Ketepatan model klasifikasi tanah binaan bandar kemudian 

ditentukan dengan menggunakan Keseluruhan Ketepatan (OA), pekali Kappa, Ketepatan 

Pengeluar, dan Ketepatan Pengguna, masing-masing menghasilkan 88% hingga 92%, 0.69 

hingga 0.79, 53% hingga 98%, dan 53% hingga 96%. Ketepatan keseluruhan yang tinggi 

menunjukkan bahawa model klasifikasi tanah binaan bandar berjaya mengklasifikasikan 

perincian skala yang lebih halus seperti kenderaan, tanah pembinaan, lorong pengangkutan, 

dan penyebaran bangunan. Dengan itu model cadangan kajian ini menambah baik model 

LULC sedia ada dan berupaya memberikan gambaran pembangunan yang lebih lengkap. 

Kesimpulannya, dapatan kajian ini akan membantu perancang bandar membuat keputusan 

yang tepat mengenai bandar-bandar yang sangat pesat pembangunannya, dan juga dapat 

menghadkan pembangunan yang tidak mampan dalam usaha untuk mencapai bandar yang 

selamat, berdaya tahan, dan mampan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Rapid urbanisation refers to the movement of a large population from villages 

or rural settlements to an urban area. According to the United nation, Africa and Asia 

are the two continents to witness rapid urbanisation soon as they would see a 90% 

increase in urban population by 2050. Going further, the Southeast Asia region 

population will reach 740 million by 2035, and Malaysia is a country to be 

categorised as a highly urbanised country (Samat et al., 2019). According to Farrell 

(2017), urban growth refers to the increase of people in urban areas. Urbanisation 

refers to the rise in the proportion of urban versus rural areas (Gomes, 2020). While 

both terms are used, the focus of this research is on urbanisation. 

Urbanisation is a positive indicator of any country because it correlates with 

economic growth (Evans Mwamba, 2021; Riffat et al., 2016; D. o. E. a. S. A. United 

Nations, Population Division 2019). Job opportunities, technology advancement, and 

economic growth are the pull factors for rural to city migration. Undoubtedly, 

urbanisation offers economic advantages, but it has projected significant 

disadvantages to the environmental stability and quality of life (Riffat et al., 2016). 

In specific, rapid urbanisation poses a high risk for infrastructure, disease, and 

climate management, making city management a daunting task.  

Many literature highlights the negative impacts of accelerated urbanisation 

(Gomes, 2020; Riffat et al., 2016). An increase of 83% in urbanisation, in 

Bhubaneswar, a city in India, had a significant alteration in land use land cover 

(LULC), causing an accumulation of heat and a drastic drop in vegetation area, 

impacting long term sustainability (Swain et al., 2017). Megacities in China faced 
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extreme urban rainfall, leading to unpredicted climate issues due to rapid 

urbanisation (D.-L. Zhang, 2020). Another research in Egypt highlighted significant 

urban and built-up areas since the 1990s that have caused air temperature to increase, 

causing discomfort to the people in Cairo (Mahmoud and Gan, 2018). More recent 

research in  Bangladesh described how rapid urbanisation had increased the burden 

in managing infectious diseases like Covid 19, causing a dip of 40% income for the 

urban dwellers (Mohiuddin, 2020). These are some examples of environmental 

disruptions, directly or indirectly impacting the quality of life and sustainability.  

Rapid urbanisation is a primary contributor to uncontrollable development, 

which goes against the notion of sustainable development goals (SDG) prescribed by 

the United Nations (UN) (D. o. E. a. S. A. United Nations, Population Division 

2019). SDG, in particular, SDG 11 ―Making cities and human settlements inclusive, 

safe, resilient and sustainable‖, targets have adequate, safe infrastructure and 

facilities for urban dwellers to have a quality life (Krellenberg et al., 2019). A recent 

article by the UN further highlighted 90% of Covid-19 cases hit the highly dense 

cities (D. o. E. a. S. A. United Nations, Population Division, 2020). The same report 

(D. o. E. a. S. A. United Nations, Population Division, 2020) highlighted 

approximately 75% of carbon emissions in the cities expose the condensed urban 

areas to drastic climate change and natural disasters. Sustainable urban planning is 

key to stabilising the effects of rapid urbanisation and developing a safe, resilient, 

and sustainable city (Moroke et al., 2019). 

Sustainable urban planning or development is related to the physical and 

spatial planning to optimise the distribution of land allocation to support human 

activities (Geneletti et al., 2017). In an urban context, this implies creating efficient 

resource systems and good, engaging urban design for attractive cities with good 

quality of life (Haaland and van den Bosch, 2015)). A perfect urban design and 

planning start with a good analysis of the LULC. LULC provides an insight into the 

ground attributes and its change over time, helping urban planners plan development 

better  



 

3 

Rapid urbanisation and recent advancements in remote sensing technologies 

have invited increasing research interest on LULC dynamics in urban planning. 

Urban planning involves making alterations to the LULC, thus using tools and 

technologies is important to gain accurate information. However, with many 

variations in land use patterns , obtaining the correct information to understand the 

current situation and plan development for the future is a tedious and expensive 

process. Advancement in remote sensing technologies coupled with big data has 

provided an avenue for detailed research on LULC with mass amounts of 

heterogeneous spatial data from different sources. Urban planners using the 

standalone automation tools have also shifted to leverage the big data technologies 

and cloud platforms to better understand the city structure and further aid them in 

predicting and classifying geospatial data (Ilin et al., 2018). However, with such 

advancement, there is a gap in planning LULC either locally or regionally leading to 

uncontrollable development (Aboelnour and Engel, 2018). 

LULC classification gives an insight into urban built, vegetation, and water 

bodies, useful for urban planners to understand what changed the land cover 

properties.  However, these classification models cannot classify the granular 

attributes like automobiles, construction sites, transportation lines, and buildings 

because obtaining huge amounts of high resolution data and processing objects is 

resource-intensive. Having insights into detailed information on urban built areas 

will help urban planners control unplanned development. 

With the debut of Google Earth Engine as a geospatial data analytics cloud 

platform, LULC classification study has acquired academic interest and 

improvements in recent years (L. Lin et al., 2020). Google Earth Engine (GEE), a 

free cloud development platform with petabytes of geospatial data and the capacity 

to execute geospatial research on a high-end Google infrastructure, has shown 

enormous potential in the urban planning area. GEE's imagery classification 

capabilities, which include filtering image collection, image visualisation, Landsat 

simple composite, and generating statistics on image region, considerably assist the 

urban planning sector in efficiently classifying LULC properties without the 

requirement for a high-end infrastructure hosted locally (Tamiminia et al., 2020).  
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To date, there is little evidence on the further classification of urban or built-

up land attributes. This research aims to study the existing LULC classification 

models used in urban planning and further enhance the classification model with 

additional urban-built features using open source geospatial data on a cloud platform. 

The improved classification model would help urban planners better understand the 

granular features in a developed area and then use it for better planning in a highly 

urbanised area. In the problem background, the problems with urban planning, their 

relationship to sustainability, and the deficiencies in LULC categorization that 

contribute to rapid urbanisation are discussed further. 

1.2 Problem Background 

Increasing traffic, unpredicted climate, spreading infectious disease are 

common phenomena in highly urbanised countries(Sharifi and Khavarian-Garmsir, 

2020). Urbanites in smaller and dense cities spend most of their time in traffic, face 

health issues, and have unpredictable geohazards such as flash floods. These 

scenarios are a result of uncontrollable development caused by rapid urbanisation.  

Increased traffic, unpredictable weather patterns, and the spread of infectious 

diseases are all common occurrences in highly urbanised countries. Urbanites in 

smaller, more densely populated cities spend the majority of their time stuck in 

traffic, face health problems, and face unforeseen geohazards such as flash floods. 

These scenarios are the result of uncontrolled urbanisation. Urban design and 

planning departments carry the burden to ensure development plans create a 

sustainable city for a better future. The recent paradigm shift on urbanisation has also 

awakened the need for sustainable urban planning to support sustainability goals. 

Sustainable urban planning is related to the physical and spatial planning to optimise 

the distribution of land allocation to support human activities (Geneletti et al., 2017). 

Land development along with land transactions in the cities is a forced change by 

urbanisation. 
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Nevertheless, when global migration to major cities happens rapidly, this 

change is viewed as a positive relationship between land development and land-

based revenue growth (W. Chen et al., 2018). Due to this, policymakers and urban 

planners are often bound by the economic growth indicator to decide further 

development. The development of residential, commercial, and other amenities has 

continuously increased as city dwellers' need increases. As a result, the infrastructure 

ecosystem becomes unstable, causing traffic congestion, climate change, urban 

crimes, and many other adverse effects.  

To achieve sustainable urban planning, a good understanding of land change 

dynamics is essential, and for this, an accurate LULC is mandatory. The 1950's 

manual study of land use and land cover (LULC) has continued to the present day, 

but with the aid of advanced remote sensing technologies. The LULC maps servers 

as an important document for planning developments locally or at the national level 

(Hamad, 2020). The growing research interest in LULC classification techniques is 

driven by the continuous need for more accurate LULC maps to plan for sustainable 

development (Alshari and Gawali, 2021). The accuracy of LULC maps depends on 

the classifier and features employed in the classification model. 

A literature compilation by Alshari and Gawali (2021) highlighted various 

research attempts on finding the right combination of machine learning techniques 

and features to best classify the land cover properties to the classes defined in LULC 

classification classes by Anderson et al. (1976). While these researches have 

immensely helped to understand the land cover change assessment for the broader 

classes in the classification system, less work is demonstrated on the further 

classification of Urban or Built-up Land class.  One of the reasons for the lack of this 

research in this area could be tedious work in identifying the detailed features, 

requiring large and high quality geospatial data and a high-end processing platform. 

Spatial data also known as geospatial data are information about features, 

locations and natural earth constructs represented in numerical values in system 

(VoPham et al., 2018). Geospatial data refers to data associated with a geographical 

and are used in the form  of vector data, raster data and tabular data by the geospatial 
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processing platform and geographic information systems(GIS) tools for LULC 

analytics. Further improvement in LULC classification algorithm accuracy 

necessitates large data sets of high resolution geospatial data, which have always 

been a challenge in LULC analytics due to their availability and processing cost. 

With the emergence of Google Earth Engine (GEE) and its ability to provide high 

resolution geospatial data or satellite imagery data, its platform provides an excellent 

opportunity to develop a better classification model to better classify the attributes of 

Urban or Built-up Land classes and improve the visualisation of urban development 

on a LULC map (Tamiminia et al., 2020) 

The Urban or Built-up land class entails building all kinds of transportation; 

however, the existing LULC classification models do not classify these features 

individually. Uncontrollable residential and commercial development in major cities 

claims to support the needs of the growing population, but these developments have 

led to massive jams in major cities. To prohibit further development in a congested 

area,  a good understanding of existing structures would help urban planners to 

assess and plan the city development better. For this, additional classification of the 

Urban or Build Land is necessary. With a classification of the granular features of the 

urban development on the LULC map, the urban planners will understand the ground 

properties like the sprawl of automobiles, construction sites, transport lanes, and 

building individually.  For example, a high automobile spread on a classified LULC 

map would indicate that the area has high crowd mobility. Granular features in this 

study refer to properties on the LULC map with a low spatial resolution of less than 

10m, and granular classification refers to classifying granular features of land cover 

using a 30 resolution satellite imagery collection, which is also known as fine scale 

classification. These terms are defined in greater detail in Chapter 3 along with their 

application to this research.  

This research proposes an enhanced urban development classification model 

to classify urban built-land class granular features using open source geospatial data 

on Google Earth Engine platform. The classification map from this model would 

serve as an early indicator to evaluate the need for further development in a highly 
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urbanised area. The upcoming section describes the problem statement of this 

research, which is thereafter used to devise the research question and objective. 

1.3 Problem Statement 

Currently, the LULC classification model characterises any man-made 

infrastructure as urban or built land, making it impossible to determine the causes of 

increased development in the same focus area. The classification of urban or 

constructed land features at a granular scale has received little attention because it is 

believed that classifying pixels at that low resolution is impractical and may result in 

a lower accuracy of classification, in contrast to vegetation features which have a 

wider spread of pixels over a land area, which results in higher accuracy in LULC 

classification models. However, in order to gain precise insights into the 

development of a specific area and comprehend crowd mobility, traffic, and adjacent 

developments, the LULC maps must also display the granular features of urban built 

properties for the field of urban planning. Despite the fact that big data analysis has 

contributed new ways of developing LULC models, such as using cloud platforms 

like Google Earth Engine, classification on urban development properties is still not 

as clear as it is for vegetation land classification. 

The purpose of this thesis is to identify additional granular features for urban 

development classification and then to develop an urban built land classification 

model employing the identified granular features that is capable of detecting the 

urban development properties of a given geographical area using open source 

geospatial data on Google Earth Engine. 
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1.4 Research Questions 

Following are the research question outlined for this study: 

(a) What are the available LULC classification models for sustainable planning?  

(b) What are the additional granular features required for the urban built land for 

sustainable urban planning? 

(c) How to improve the accuracy of urban built land classification using spatial 

data for sustainable urban planning? 

(d) How accurate is the proposed urban built classification model? 

1.5 Research Objectives 

The objectives of the research are: 

(a) To analyse LULC classification model used in urban planning supporting 

sustainable urban planning. 

(b) To determine additional granular features required for the urban built land 

classification model in sustainable urban planning. 

(c) To develop an enhanced urban built land classification model using spatial 

data for sustainable urban planning. 

(d) To evaluate the accuracy of the proposed classification model. 

1.6 Significance of the Study 

Urban planners play an important role because they make decisions on local, 

state, and even national level developments. In urban planning, various automation 

tools use LULC modelling to understand changes in land cover over time. For these 

LULC models, the best feature set and classification approach for earth imaging to 

simulate the ground truth are still being developed. 
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The proposed urban built land classification model will improve upon the 

LULC classification models by incorporating more refined urban built features that 

are strongly associated with urban development. The model allows urban planners to 

visualise finer details of densely built-up urban land and use it as one of several 

indicators in deciding future development to support sustainable development. 

In addition, this research aims to develop the classification model using 

publicly available data and open source platforms in granular object classification, 

classifying the urban built properties. This methodology would significantly 

contribute to further research in granular object LULC classification and improve 

LULC maps' accuracy, which is a primary reference used in urban planning to 

achieve sustainable urban planning. 

1.7 Scope of Research 

This research will use Selangor as the area of study because it satisfies the 

population size criteria, contains an area of concentrated development, and shows a 

high traffic flow in urbanised areas. Selangor is an 8000 km
2
 state in the west of 

Malaysia and has 12 counties under its provision. The state has at least 80% of 

vegetation land, including farmland, forest and other types of greenery. The 

metropolitan areas with high development and traffic is seen in Subang Jaya, Shah 

Alam, Klang and Petaling Jaya. 

In the last five years, active constructions have been observed in these areas, 

which has significantly increased the traffic flow and soon will ace the 

uncontrollable development phenomena. These properties make Selangor a good 

study area because, with a better LULC map, it could indicate the finer details of 

urban built, which will help urban planners and the development boards gain a better 

insight before approving a new development in the same area. Wahap and Shafri 

(2020) used GEE with multiple supervised machine learning classification 

algorithms to classify agricultural land, forested land, water bodies, bare land, 

urbanised land, and paddy field to study the LULC change in Klang Valley with 
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Selangor as the highest area coverage. According to Wahap and Shafri (2020) 

Selangor has the largest economy and the most developed state in Malaysia in terms 

of gross domestic product (GDP), which is also a reason for selecting Selangor as the 

study area in this research. Additionally, this research compares impervious land 

properties and finer-scale land property classification using GEE to Landsat data 

collections by X. Liu et al. (2018) and Ai et al. (2020), which achieved an overall 

accuracy of 81% to 86%. This accuracy will be used as a bench mark to evaluate the 

accuracy of the developed urban built land classification model in this research.  

The proposed classification model in this research will be developed using 

the Google Earth Engine (GEE) cloud platform. Using the same platform, a publicly 

available satellite imagery data set from the Google Earth catalogue will be used as 

the base map for building the classified LULC map to show the granular features of 

urban built-in Selangor. Google Earth Engine is a cloud platform tool for developing 

and visualising classification performed on a selected spatial data set for a region and 

time period.  

1.8 Thesis outline 

The overall structure of this thesis is comprised of six chapters, including this 

introductory chapter. The first chapter discusses the problem's context, defines the 

research questions, and establishes the research objective. Additionally, this chapter 

defines the study area and scope of the research. The second chapter summarises the 

existing literature on rapid urbanisation, sustainability, the LULC model, and the 

LULC model's features. This chapter addresses the first two research questions and 

also defines the proposed urban built land model's machine learning model and 

features. Chapter three discusses the research's overall operational framework, data 

collection, sampling, and evaluation methods. Chapter four discusses the framework 

for designing and implementing the proposed urban built land classification model. 

Chapter four will detail the design framework and development phases, allowing 

readers to comprehend how the proposed classification model is developed. Chapter 

five discusses the evaluation of the classification model in terms of overall accuracy 
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and individual class accuracy. Chapter five also discusses the factors that affect the 

classification model's accuracy. Chapter six is the concluding chapter, in which the 

researcher discusses the accomplishment of the research's objective. Additionally, 

this section discusses the limitations and future opportunities for expanding this 

research. 
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