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ABSTRACT

Dengue is an acute viral illness caused by RNA virus of the family Flaviviridae
and spread by Aedes mosquitoes. It has imposed significant social, economic
and medical burdens which have led to loss of lives in dengue-endemic areas.
In order to understand its mode of transmission, dynamics and assess optimal
strategies for controlling the disease spread, several researchers have proposed
different compartmental deterministic models (single-patch, multi-strain and multi-
patch models). However, these models have the shortcomings of either not covering all
dengue transmission phases or feature the aquatic stage mosquito. Thus, the existing
model is not suitable as model frameworks in assessing different control intervention
strategies to effectively control the disease transmission in a homogeneous environment,
with coexistence of multiple Dengue Virus (DENV) serotypes in a community, and
in a patchy environment. Therefore, the deterministic models that can explain the
mechanisms involved in these aspects of dengue transmission and optimal control
are needed. This research proposes and analysed single-patch deterministic model
featuring all the necessary transmission phases of dengue fever in human, and both the
aquatic and adult mosquitoes. This is to facilitate the understanding of the real nature
of the dengue spread in a homogeneous environment and reliably use optimal personal
protection (uP), larvicide (uL) and adulticide (uA) for its effective control by formulating
different optimal control frameworks. By modifying the proposed single-patch model,
a two-strain model which groups the four DENV serotypes into two (DENV-1 and
DENV- j, j = 2, 3, 4) is developed to analyse the transmission dynamics and optimal
strategy for the dengue control using Dengvaxia vaccine (uV ) combined with the efforts
of controls uP and uA. A two-patch model is formulated using the single-patch model
to analyse the effect of human travels on the spatial spread and optimal control of
dengue using uP, uL and uA controls in two connected patches. Qualitative analysis
of the basic properties of the three models is performed. Meanwhile, the associated
optimal control problems are analysed using Pontryagin’s Maximum Principle. Data
from the 2012 dengue outbreaks in Johor and Kuala Lumpur, Malaysia is used in
these models. The simulated results of the single-patch model indicate that dengue
outbreak can be controlled using a combination strategy of optimal controls uP, uL and
uA in Johor and Kuala Lumpur. The results obtained from numerical simulations of
the two-strain model reveal that the use of combined efforts of optimal controls uV ,
uP and uA adequately decreases both the primary and secondary human infections in
the population. Numerical results of two-patch model show that the spatial spread
of dengue in Johor and Kuala Lumpur can be minimised by implementing optimal
controls uP, uL and uA simultaneously during an outbreak in the states.
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ABSTRAK

Denggi adalah penyakit virus akut yang disebabkan oleh virus RNA dari famili
Flaviviridae dan disebarkan oleh nyamuk Aedes. Ini telah memberi kesan yang besar
terhadap sosial, ekonomi dan beban perubatan yang menyebabkan kehilangan nyawa
di kawasan endemik denggi. Untuk memahami cara penyebaran, dinamik dan strategi
optimum untuk kawalan penyebaran denggi, beberapa penyelidik telah mencadangkan
model penentuan pembahagian yang berbeza (tampalan tunggal, pelbagai regangan
dan pelbagai tampalan). Walau bagaimanapun, model ini mempunyai kekurangan
sama ada ia tidak merangkumi semua fasa penularan denggi atau tidak mengambil
kira nyamuk di peringkat akuatik. Oleh itu, model sedia ada adalah tidak sesuai
sebagai kerangka model dalam menilai pelbagai strategi intervensi kawalan penularan
denggi secara efektif dalam lingkungan yang homogen, dengan wujudnya serotip
pelbagai Virus Denggi (DENV) dalam sebuah komuniti, dan dalam lingkungan yang
tidak rata. Oleh itu, model deterministik yang mampu menerangkan mekanisme
yang terlibat dalam aspek penularan denggi dan kawalan optimum adalah diperlukan.
Kajian ini mencadangkan danmenganalisis model deterministik tampalan tunggal yang
menampilkan semua fasa penularan demam denggi kepada manusia, dan kedua-dua
nyamuk akuatik dan nyamuk dewasa. Ini bertujuan untuk memudahkan pemahaman
mengenai sifat penyebaran denggi di persekitaran yang homogen dan penggunaan
perlindungan peribadi yang optimum (uP), larvisida (uL), dan pembunuhan nyamuk
dewasa (uA) sebagai kawalan efektif dengan merumuskan pelbagai kerangka kawalan
optimum. Dengan mengubahsuai model tampalan tunggal yang dicadangkan, model
dua regangan yang mengelompokkan empat serotaip DENV kepada dua (DENV-1
dan DENV- j, j = 2, 3, 4) telah dibangunkan untuk menganalisis dinamik penyebaran
dan strategi optimal bagi mengawal denggi menggunakan vaksin Dengvaxia (uV ) yang
digabungkan dengan usaha kawalan uP dan uA. Model dua tampalan dirumuskan
menggunakan model tampalan tunggal bagi menganalisis kesan pergerakan manusia
terhadap penyebaran ruang dan kawalan optimal denggi menggunakan kawalan uP, uL
dan uA dalam dua tampalan yang berhubung. Analisis kualitatif terhadap sifat asas
ketiga-tiga model telah dijalankan. Manakala masalah kawalan optimal yang berkaitan
pula dianalisis menggunakan Prinsip Maksimum Pontryagin. Data wabak denggi pada
tahun 2012 di Johor dan Kuala Lumpur, Malaysia digunakan dalam model-model ini.
Hasil simulasi model tampalan tunggal menunjukkan bahawa wabak denggi dapat
dikawal dengan menggunakan strategi kombinasi kawalan optimum uP, uL dan uA di
Johor dan Kuala Lumpur. Hasil yang diperolehi daripada simulasi berangka model dua
regangan pulamenunjukkan bahawa penggunaan gabungan usaha kawalan optimum uV ,
uP dan uA dapat mengurangkan jangkitan manusia primer dan sekunder pada populasi.
Keputusan berangka model dua tampalan menunjukkan bahawa penyebaran denggi di
Johor danKuala Lumpur dapat diminimumkan denganmelaksanakan kawalan optimum
uP, uL dan uA secara serentak semasa wabak di negeri terbabit.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Malaysia has continued to experience annual increase in number of dengue

cases. Dengue Fever (DF) is presently recognised as a noteworthy general health issue

in the country [1, 2]. An increasing trend of number of dengue cases and deaths during

the last decades in Malaysia is alarming. Figure 1.1 presents the record of dengue

in Malaysia for the years 1995–2017. The data showed a noteworthy fluctuation in

annual dengue-induced deaths between 2000 and 2010. In 2000 and 2001, an average

of 48 deaths was reported annually. However, 99 deaths in 2002 and 72 deaths in 2003

showed a remarkable variation in the subsequent two years. The number of deaths

increased from 102 to 107 in 2004 and 2005, respectively. Between 2006 and 2007,

an average of 95 deaths was recorded. Also, 112 deaths was reported in 2008 and an

average of 111 deaths was reported for the period 2009–2010. There was a significant

rise in the number of reported deaths between 2012 and 2015. Observing the trend of

reported deaths in the last two decades, it could be observed that the total number of

deaths reported between 2001 and 2010 was 954 while a total number of 1122 deaths

was reported for the years 2011–2017. This study of dengue trend from 2001–2017

shows that dengue has imposed more burdens to the population as well as claimed more

lives just between 2011–2017 than during the years 2001–2010.

Figures 1.1(a) and 1.1(b) show that there exists a linear relationship between

the reported dengue cases and deaths for the period of 1995–2017 in Malaysia. It

is observed that both Figures 1.1(a) and 1.1(b) exhibit an upward trend. In other

words, as long as high number of dengue cases is reported for Malaysia, high number

of deaths is expected. Consequently, endeavours to decrease the number of dengue

cases is presently a high need of different internal and external agencies in Malaysia,

particularly, Ministry of Health (MOH), Malaysia [4]. Today, it is the obligation of
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Figure 1.1 Record of Dengue in Malaysia for the Years 1995–2017 [3]

every medical practitioners in Malaysia to report each case of DF to the closest local

health office within twenty-four hours from the time of diagnosis [4, 5]. Through the

developed reporting systems, the trend of recorded dengue cases and dengue-induced

deaths has been reported on weekly basis by MOH, Malaysia [3]. However, this

practice is very insensitive because doctors have a low threshold to diagnose dengue

during inter-epidemic periods. In most cases, recognition of dengue outbreaks only

occur when the disease transmission is already at its peak. At this time, implementing

preventive and control measures to alter the transmission dynamics of the disease is

too late [6]. Therefore, there is the need to conduct a study in order to come up with a

better way to minimise dengue-induced burdens through integrated human protection

and vector management for effective prevention and control of dengue epidemics in

Malaysia.

Another concern about dengue outbreaks in Malaysia is the economic burden

it imposes on the Government and individuals in general. Endemicity and hyper-

endemicity (that is, the state of continuous circulation of various dengue virus serotypes

in the same area) of dengue disease transmission inMalaysia have adversely affected the

economyof the country. According to Liang et al. [7], aboutUSD73.45million (United

States Dollar) was estimated as the cost incurred on dengue-related vector control by

Malaysian government in 2010. This is about USD 2.63 per capita population of

the country during this year. Pang and Loh [8] also revealed that approximately

USD 56 million is allocated as management fee for dengue on annual basis by the

government. Hence, devising a control strategy that minimises dengue outbreak, and
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possibly eliminates the disease spread at low costs of control implementation would be

appealing to the Malaysian government and the general public.

1.2 Background of the Study

Dengue is the most widespread mosquito-borne disease in the world [9, 10, 11,

12]. The disease is a major public health issue throughout tropical and sub-tropical

areas of the globe [13, 14] where the disease is now endemic, including Central and

South America, South Asia, South-East Asia and the Pacific region countries [14].

The spectrum of dengue disease ranges from DF to more severe Dengue Hemorrhagic

Fever (DHF) andDengue Shock Syndrome (DSS) [15]. During the last decades, dengue

disease has become the major cause of deaths and hospitalisations by DHF and DSS

in most tropical nations [16]. According to the World Health Organisation (WHO)

[17], over 40% of the world’s population is presently at the risk of dengue, and it is

estimated that about 50–100 million dengue infections with over 20,000 deaths related

to DF is likely to occur per annum across the globe. In addition, up to 0.5 million

people develop DHF or DSS [17]. While dengue is a worldwide health concern, with

a relentless increment in the number of nations announcing the disease, presently near

75% of the worldwide population at dengue risk are in Asia Pacific region countries

[18]. Since the 1950s, dengue has become a serious health problem in the South-East

Asia region [19], including Malaysia. Hence, dengue prevention and management has

become a major concern to the world at large.

There is no specific treatment for both DF and DHF or DSS presently. Dengue

preventive action and control completely rely upon viable vector control measures

[13]. The use of interventions targeting the vector population has been the only

approach for the prevention and control of dengue virus spread for which integrated

vector management was suggested until a vaccine was introduced [20]. The vaccine

Dengvaxia (CYD-TDV) manufactured by Sanofi Pasteur was recently licensed, and

has been approved in 11 countries [17]. The vaccine protects against three Dengue

Virus (DENV) serotypes DENV-1, DENV-3 and DENV-4 but only confers imperfect

protection against DENV-2 serotype [21]. Therefore, an integrated strategy which
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combines Dengvaxia vaccine, human self-protection and vector control measures (such

as larvicide and adulticide) has been suggested for use in dengue-endemic region

countries (which include Malaysia) by WHO [17]. However, cost associated with

the implementation of vector control and prevention mechanisms for dengue is often

expensive and limited financial and health resources are usually available. Thus, it is

necessary to derive an optimal strategy for distributing the available limited resources.

The quest to gain insights into the dynamics of dengue disease transmission and optimal

control strategies by applying Optimal Control Theory (OCT) has attracted the interest

of many researchers to formulate various compartmental dengue models.

In the late 1920s, the pioneering work of Kermack and McKendrick established

the deterministic SIR (Susceptible-Infectious-Recovered) epidemic model as stated

in [22]. Since then, several extensions of this basic model have been proposed to

investigate different aspects of dengue by many researchers [12, 21, 23, 24, 25, 26, 27,

28, 29, 30]. For instance, Rodrigues et al. [23] developed a single-patch ShIhRh+AvSv Iv

model (where Sh, Ih and Rh denote the susceptible, infectious and recovered humans,

respectively, and Av, Sv and Iv are the subpopulations of aquatic, susceptible and

infectious mosquitoes, respectively) to examine the impact of adulticide and ecological

controls on dengue disease transmission and control dynamics in Madeira Island.

However, the model excludes the latent periods in human and mosquito, and covered

limited control measures. Agusto and Khan [24] developed single-patch ShVhEhIhRh +

SvEv Iv mathematical model (where Vh, Eh and Ev are the vaccinated humans, exposed

or latent humans and mosquitoes, respectively) for dengue. Optimal Control Problem

(OCP) formulation of the model was discussed, and the problem was qualitatively

analysed to derive the optimal strategy for the use of vaccination and adulticide controls

in preventing and controlling dengue disease spread in Pakistan by employing OCT.

A similar investigation on optimal control of dengue using vaccination and adulticide

controls was carried out by formulating single-patch ShEhIhRh + SvEv Iv deterministic

model in [25]. However, the use of only vaccination and adulticide controls considered

in [24, 25] impacts the disease prevalence in human and adult mosquito populations, but

not directly affects the size of aquatic stage mosquito which is also necessary to focus

on in dengue control plan. Consequently, all the transmission phases related to DF are

not well described by the models proposed in [23, 24, 25]. In addition, the models are

not suitable to explore several available human prevention and vector control measures,
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and explain the optimal strategy for the disease control using the control intervention

measures.

Further, compartmental models have been used to describe the transmission

dynamics and control of dengue with coexistence of multiple DENV serotypes.

Particularly, Rocha et al. [12] constructed a two-strain model based on ShIhRh+ AvSv Iv

framework to forecast the impact of adulticide control on the dynamics of dengue

disease spread when two DENV strains coexist in Madeira Island. However, open

space spraying of adulticide is only applied as a short time control measure when

a dengue outbreak occurs. Morales et al. [21] used a two-strain ShEhIhRh + Sv Iv

based deterministic model to describe the transmission dynamics and control of dengue

using different scenarios of Dengvaxia vaccine administered on the susceptible humans.

However, themodel does not incorporateDengvaxia vaccine according to the suggestion

on the use of the vaccine as well as the integrated control strategy recommended by

WHO [17]. Zheng and Nie [26] formulated an OCP for a two-strain ShIhRh + Sv Iv

dengue model capturing susceptible human awareness and adulticide controls. By

employing Pontryagin’s Maximum Principle (PMP), the problem was theoretically

analysed to derive the optimal awareness campaign and adulticide controls needed to

reduce or even eradicate the disease. However, it is necessary to extend this model

structure and integrate the control strategies with Dengvaxia vaccine in order to derive a

more realistic deterministic model framework and better control strategy for preventing

and controlling dengue disease transmission when multiple DENV serotypes coexist

in a population.

The role of host mobility on spatial dissemination of dengue have been studied

using deterministic models. Mishra and Gakkhar [27] used a two-patch ShIhRh + Sv Iv

based mathematical model to examine the impacts of human travel on dengue epidemic

dynamics using the states Rio de Jenerio and Ceara of Brazil as case studies. Phaijoo

and Gurung [28] constructed an n-patch dengue model based on ShEhIhRh + SvEv Iv

modelling framework to assess the impacts of humanmovements and seasonal variation

on dengue disease transmission dynamics in a patchy environment. Also, Bock and

Jayathunga [29] constructed n-patch ShIhRh+Sv Iv model in order to examine the optimal

strategy for dengue disease control in a patchy environment by applying personal
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protection control. In a similar study, Kim et al. [30] used two-patch ShEhIhRh+SvEv Iv

deterministic model to derive an optimal strategy for controlling dengue disease spread

using personal protection. However, none of these spatial models includes the aquatic

stage mosquito, which plays important roles in dengue disease spread and management.

In addition, the idea of optimal control introduced to the model formulation in [29, 30]

only considers personal protection which is not sufficient to decrease human infections

of the two connected patches to zero simultaneously.

1.3 Problem Statement

DF or DHF imposes significant social, economic and medical burdens in

Malaysia [31] and other countries in dengue-endemic areas. The disease causes

50-100 million infections worldwide every year [18], and has also caused increased

significant numbers of infections and dengue-related deaths in Malaysia in recent

years [3, 5]. A number of single-patch deterministic models have been proposed for

necessary assessment of the transmission dynamics of DF and impact of various control

interventions on ways to handle the disease outbreak in a homogeneous environment by

many researchers. However, the transmission phases related to DF are not all covered

by these models, and hence, not suitable to represent the reality of dengue disease

transmission and control. In several studies, two-strain or multi-strain compartmental

deterministicmodels have been developed and analysed for dengue disease transmission

in a population with coexistence of two or multiple DENV serotypes, and various

strategies for effective control of the disease, particularly by using the recently licensed

Dengvaxia vaccine, have also been examined. However, these models do not capture

all the disease transmission phases to appropriately integrate the vaccine with other

control intervention measures in accordance with the guideline on its usage. The effect

of human movement on spatial transmission and control of DF in a patchy environment

has been examined using n-patch deterministic models in other studies. However, these

models do not feature the aquatic stage mosquito, and consequently not suitable as

a compartmental model framework to assess different control intervention strategies

(particularly those that target the aquatic stage mosquito) to effectively control and

prevent the spatial spread of the disease outbreak. Until the complex relationship
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between infectiousness, symptom severity as a result of different DENV serotypes co-

circulating, and human mobility are extensively explored and well-understood in a way

to improve on the control strategies in curtailing the spread of dengue, the disease will

continue to be a national health threat in dengue endemic countries such as Malaysia.

Therefore, deterministic models that are capable of explaining themechanisms involved

in dengue disease transmission and optimal control in a homogeneous environment,

with coexistence of multiple DENV serotypes, and with spatial effect are needed.

Owing to different complex phenomena, such as distinct phases of

infectiousness, coexistence of multiple DENV serotypes and human dispersal, that

influence the severity of dengue infections, emergence and re-emergence of the disease

as well as the existing dengue control intervention measures, this research proposes

single-patch deterministic model based on ShEhIhRh + AvSvEv Iv structure featuring

all the transmission phases of DF in human, both the aquatic and adult mosquitoes,

and consideration of integrated vector management involving vaccination, personal

protection, treatment based on drug therapy, larvicide, adulticide and ecological control

measures in order to comprehend the real nature of the disease spread in a homogeneous

environment and analyse different control strategies for its effective control inMalaysia.

To facilitate the understanding of mechanisms involved in the dynamics of dengue

disease transmission with coexistence of two DENV serotypes in the interacting human

and mosquito population and control, the single-patch ShEhIhRh + AvSvEv Iv dengue

model is modified to two-strain ShEhIhRh + SvEv Iv by grouping the four DENV

serotypes into two, namely, DENV-1 and DENV- j (for j = 2, 3, 4), to analyse the

transmission dynamics of dengue when two virus serotypes coexist in a population.

By constructing a suitable control dynamical system, the optimal strategy for dengue

prevention and control using Dengvaxia vaccine, personal protection and adulticide

controls is examined in line with the guideline on the use of Dengvaxia vaccine in

dengue-endemic country like Malaysia by WHO [17]. This focus on the co-circulation

of two DENV serotypes is based on the evidence that secondary infection triggers the

risk of developing DHF than any subsequent post-secondary infections [12, 21, 32].

Finally, the single-patch ShEhIhRh+AvSvEv Iv model proposed in this study is modified

to a two-patch model to describe and analyse the effect of human travels on the spatial

dissemination of dengue disease, and derive an optimal strategy for curtailing the

disease transmission in two interconnected patches.
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1.4 Research Questions

Based on the problem statement highlighted in Section 1.3, several research

challenges are raised. Providing answers to the questions highlighted below

consequently addresses these challenges.

1. How would a deterministic model capturing all the phases of DF transmission

and stages of Aedes aegypti female mosquito be formulated and analysed for

the disease spread and control in a homogeneous environment?

2. How would dengue disease transmission with coexistence of two DENV

serotypes in the interacting human and mosquito populations and control be

modelled and analysed mathematically using two-strain ShEhIhRh + SvEv Iv

model based on single-patch ShEhIhRh + AvSvEv Iv dengue model?

3. How would single-patch ShEhIhRh + AvSvEv Iv dengue model be used as a

building block in formulating and analysing two-patch ShEhIhRh + AvSvEv Iv

deterministicmodel for spatial dissemination and control ofDF in two connected

patches?

1.5 Research Objectives

The aim of this study is to develop deterministic models to describe and analyse

the dynamics of transmission and control of dengue in homogeneous and patchy

environments. The main objectives are:

1. To develop and analyse single-patch ShEhIhRh + AvSvEv Iv deterministic

model describing dengue disease transmission and control in a homogeneous

environment.

2. To modify the developed single-patch ShEhIhRh + AvSvEv Iv model for the

formulation and analysis of two-strain ShEhIhRh + SvEv Iv deterministic model

for dengue disease spread with coexistence of two DENV serotypes and control.
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3. To modify the developed single-patch ShEhIhRh + AvSvEv Iv model for the

development and analysis of two-patch ShEhIhRh + AvSvEv Iv deterministic

model describing the dynamics of transmission and control of dengue in a

patchy environment.

1.6 Research Scope

Deterministic models will be developed to examine the dynamics of

transmission and control of dengue disease in homogeneous and patchy environments.

Single-patch ShEhIhRh + AvSvEv Iv dengue model which accommodates the necessary

transmission phases of DENVbetween the interacting human andmosquito populations

will be developed, solved and analysed. Themodel will bemodified to assess the impact

of seasonal variations as well as the efficacy of several control measures (that are

personal protection, vaccination, treatment of infectious humans, ecological control,

larvicide and adulticide) on dengue disease spread and derive optimal strategy for

the disease control. Also, two-strain ShEhIhRh + SvEv Iv dengue model capturing the

coexistence of twoDENVserotypeswill be formulated, solved and analysed, and used to

investigate the influence of seasonal variation, impacts of control measures (Dengvaxia

vaccine, human self-protection and adulticide) on the dynamics of dengue disease

transmission in the presence of two DENV strains co-circulating and derive optimal

strategy for controlling the disease spread. Moreover, the role of human movement

(without the consideration of mosquito dispersal) on dengue disease transmission

between only two interconnected patches, efficacy of different control measures

(personal protection, larvicide and adulticide) and optimal control strategies will be

examined by constructing, solving and analysing two-patch ShEhIhRh+AvSvEv Iv based

model. In each case, PMP will be applied to OCP in order to prove the existence and

characterise optimal controls.

Furthermore, the study will consider Malaysia, a country in South-East Asia

region, with focus on only two of themost affected states Johor and the Federal Territory

Kuala Lumpur/Putrajaya, particularly during the 2012 dengue outbreaks in the country.

The weekly reported dengue cases data documented by the MOH, Malaysia [33] will
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be used in parameterising and estimating the initial state variable values of the models

proposed in this research.

1.7 Significance of the Research

Inmany previous studies, ShIhRh+Sv Iv, ShIhRh+AvSv Iv and ShEhIhRh+SvEv Iv

mathematical model structures were used to describe the vector-host interactions for

dengue disease transmission dynamics and control in a homogeneous landscape. This

study proposes a single-patch model based on ShEhIhRh + AvSvEv Iv framework. The

new framework allows for investigating the efficacy of several control measures on

the dynamics of dengue disease spread. Also, ShIhRh + Sv Iv and ShIhRh + AvSv Iv

based deterministic models have been used to examine dengue disease transmission

dynamics and control when multiple DENV serotypes co-circulate. This study will

formulate two-strain deterministic model based on ShEhIhRh + SvEv Iv structure to

forecast the impacts of integrated control strategy through the use of Dengvaxia vaccine,

personal protection and adulticide. Furthermore, several mathematical models based

on ShIhRh + Sv Iv and ShEhIhRh + SvEv Iv frameworks have been proposed by previous

researchers to investigate the role of human travel on the epidemics of dengue. However,

these models did not capture the aquatic stage of mosquitoes which is important to

be considered in any dengue control plan. Hence, this study will develop a two-patch

ShEhIhRh+AvSvEv Iv based deterministic model to describe the transmission dynamics

and control of dengue in a patchy environment.

Various aspects of dengue disease (such as transmission dynamics and control)

are comprehended through the use of the proposed models. The models are used to

forecast the transmission dynamics and control of the disease. WHO, South-East Asia

countries, particularly Malaysia, and other dengue affected regions worldwide will

benefit from these findings.

The findings of this research form part of essential dengue database for MOH

Malaysia. The Malaysian government as well as the public health practitioners will
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make reference to the information provided in the research findings in taking decisions

concerning the prevention and control of the future dengue outbreakwhenever it occurs.

The models can be adapted by nations at dengue risk regions worldwide,

especially South-East Asian countries to understand the dynamics of dengue disease

transmission, control of new epidemic and prevention of future outbreak of the disease.

The findings of this research would be of benefit to higher institutions of

learning. The suggested directions for future work provided in this research will

be a foundation for further study.

1.8 Thesis Organisation

The organisation of the remainder of this thesis is as follows:

Chapter 2 presents the review of literature related to the research topic. The

review captures the general overview on vector-borne diseases. Brief history of dengue

in global and Malaysia perspectives is described. How dengue virus transmits, the

symptoms and measures to prevent and control it are discussed. A brief description

of Malaysia in terms of geographical location, distribution, population and climate is

given. Further, a review of related works on compartmental modelling of vector-borne

diseases and optimal control is considered. The chapter also provides a detail review

of recent works on compartmental modelling of different aspects of dengue.

In Chapter 3, the methodology adopted in this research is provided. The

chapter presents the research design and procedure, operational framework in

addition to the theoretical framework. The chapter discusses the theoretical analysis

of the general approach adopted as well as the specific tools employed for the

numerical implementations of the proposed compartmental deterministic models and

the formulated OCPs.
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The single-patch deterministic dengue models developed in this study are

discussed in Chapter 4. The formulation of single-patch ShEhIhRh + AvSvEv Iv

deterministic dengue model and the theoretical analysis of its basic properties are

conducted. The model serves as basis for the other single-patch models with seasonal

variation and control interventions presented in this chapter. In addition, OCP is

formulated based on the non-autonomous version of the model using five different

strategies, and PMP is used for its qualitative analysis. The model developed in the first

part is parametrised using data from the state of Johor and Kuala Lumpur/Putrajaya

dengue outbreaks in 2012. Graphical method is used to validate the model. Numerical

simulations of all the proposed models and OCP are also considered in the chapter.

Chapter 5 covers the construction and analysis of two-strain ShEhIhRh + SvEv Iv

based deterministic models proposed in this research. The development of two-strain

model for dengue disease transmission dynamics with coexistence of two DENV

serotypes is discussed. Qualitative analysis of the basic properties of the model is

carried out. The model is parametrised using information from the 2012 DF and

DHF outbreaks in Johor and Kuala Lumpur/Putrajaya. Furthermore, modification

of the model to two two-strain dengue models, one incorporating seasonal forcing

mosquito birthrate and the other involving three control parameters (that account for

Dengvaxia vaccine, personal protection and adulticide controls) is considered. OCP

of the two-strain model capturing three time-dependent control functions is formulated

by employing OCT. Lastly, the proposed two-strain compartmental models and the

optimality system obtained from OCP analysis are numerically solved.

In Chapter 6, the two-patch ShEhIhRh + AvSvEv Iv deterministic models

formulated in this study are discussed. Two-patch ShEhIhRh + AvSvEv Iv mathematical

model describing the effect of host mobility on dengue disease spread between two

interconnected patches is formulated and analysed. The model is first modified to

examine the impact of personal protection, larvicide and adulticide control measures

on dengue disease transmission dynamics in two connected patches via human

unidirectional and bidirectional movements. Later, the model is modified to include

three patch-specific time-dependent control functions accounting for human self-
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protection, larvicide and adulticide controls for OCP formulation. The models as

well as the optimality system derived from OCP analysis are numerically simulated.

Finally, the summary of the research and the conclusion of the whole study

based on the results obtained in Chapters 4, 5 and 6 are discussed in Chapter 7. The

chapter also provides the contributions to knowledge, limitation of the research, and

directions for future work.
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