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ABSTRACT 

A hybrid adsorbent was developed by introducing magnetite nanoparticles 

(Fe3O4) onto the surface of ion exchange resin (cation and anion exchange resins) to 

improve the adsorption performance for chromium removal from aqueous solution. A 

rough surface was observed on the surface of both magnetite-loaded cation resin 

(IRN77-Fe3O4) and anion resin (IRN78-Fe3O4), revealed by field-emission scanning 

electron microscope (FESEM). In addition, Fe-O bond was detected on Fourier 

transform infrared spectroscopy (FTIR) spectra on the surface of both magnetite-

embedded ion exchange resins (MIER). From energy-dispersive x-ray spectroscopy 

(EDX) analysis, 8.2 % and 5.2 % of iron elements was identified on the surface of 

IRN77-Fe3O4 and IRN78-Fe3O4, respectively. A larger surface area compared to the 

unmodified resin was detected for MIER by using a Brunauer–Emmett–Teller (BET) 

surface area analyzer. Batch adsorption tests with chromium ion were performed with 

both modified and unmodified resins at various conditions. The equilibrium study 

identified that optimum conditions for Cr(III) and Cr(VI) adsorption were at pH 3,  

1 hour reaction time, and 0.3 g of adsorbents. The adsorption capacity for Cr(III) using  

IRN77-Fe3O4 increased up to 17% with a faster removal rates than IRN 77. On the 

contrary, the IRN78-Fe3O4 was discovered to have a lower adsorption capacity of 

chromium (VI) than unmodified resin due to pH change during adsorption. The 

maximum adsorption capacity of Cr(III) and Cr(VI) removal using IRN77-Fe3O4 and 

IRN78-Fe3O4 was remarked at 69.2521 and 77.2798 mg/g, respectively. Furthermore, 

the adsorption kinetics for both resins fitted well to the pseudo-second-order model. 

Based on the experimental results, it was found that ion exchange and electrostatic 

attraction were dominant mechanisms for chromium removal. Lastly, sorption-

desorption studies were performed to evaluate reusability for both modified resins. The 

adsorption capacity for both MIER can achieve maximum removal efficiency of more 

than 90% for five cycles of usage. Modified ion exchange resin with magnetite 

nanoparticles could be a promising adsorbent in the remediation of chromium and 

potentially used in actual field applications to remove other heavy metal contaminants.  
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ABSTRAK 

Bahan penjerap hibrid telah dibangunkan dengan menambah nanopartikel 

magnetit (Fe3O4) di permukaan resin pertukaran ion (resin pertukaran kation dan 

anion) bagi menambah baik prestasi penjerapan kromium dalam larutan akueus. 

Permukaan resin yang kasar telah dikenal pasti pada permukaan resin kation 

(IRN77-Fe3O4) dan resin anion (IRN78-Fe3O4) melalui analisa mikroskop elektron 

pengimbas pelepasan medan (FESEM). Selain itu, ikatan Fe-O juga telah dikenal pasti 

menggunakan spektroskopi transformasi inframerah Fourier (FTIR) bagi kedua-dua 

resin pertukaran ion yang telah tertanam dengan magnetit (MIER). Daripada analisis 

spektrometer penyebaran tenaga sinar-X (EDX), 8.2 % dan 5.2 % unsur ferum telah 

didapati ada pada permukaan IRN77-Fe3O4 dan IRN78-Fe3O4. MIER juga didapati 

mempunyai luas permukaan yang lebih besar berbanding resin sebelum diubah suai 

melalui analisa permukaan Brunauer–Emmett–Teller (BET). Ujian penjerapan 

kromium secara berkelompok telah dijalankan dalam pelbagai keadaan dengan 

menggunakan kedua-dua resin yang telah dan belum diubahsuai. Kajian keseimbangan 

mengenal pasti bahawa keadaan optimum untuk penjerapan Cr(III) dan Cr(VI) adalah 

pada pH 3, 1 jam tempoh proses penjerapan, serta 0.3 g dos bahan penjerap. Kapasiti 

penjerapan Cr(III) dengan menggunakan IRN77-Fe3O4 telah meningkat dengan kadar 

17 % dan bahan ini mempunyai kadar penyingkiran yang lebih pantas berbanding  

IRN 77. Manakala, kapasiti penjerapan Cr(VI) menggunakan IRN78-Fe3O4 adalah 

lebih rendah berbanding resin yang tidak diubah suai kerana pH larutan meningkat 

semasa proses penjerapan berlangsung. Kapasiti penjerapan maksimum bagi Cr(III) 

dan Cr(VI) menggunakan IRN77-Fe3O4 dan IRN78-Fe3O4 masing-masing telah 

dikenal pasti pada 69.2521 dan 77.2798 mg/g. Selain itu, penjerapan kinetik bagi 

kedua-dua resin telah didapati menepati model tertib-kedua-pseudo. Berdasarkan 

keputusan eksperimen, telah didapati bahawa proses pertukaran ion dan daya tarikan 

elektrostatik adalah mekanisma yang dominan bagi menjerap kromium dari larutan. 

Akhir sekali, analisa penjerap dan nyahjerap telah dijalankan menggunakan kedua-dua 

bahan penjerap ini untuk menilai kadar kebolehgunaan semula. Kedua-dua MIER 

mempunyai kecekapan penjerapan yang melebihi 90 % dengan kitaran penjerapan dan 

nyahjerap sebanyak 5 kali. Pengubahsuaian pada permukaan resin pertukaran ion 

menggunakan nanopartikel magnetit berpotensi sebagai bahan penjerap yang baik 

untuk menjerap ion kromium dan bahan ini juga boleh digunakan untuk menjerap 

bahan cemar logam berat yang lain. 
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CHAPTER 1  

 

 

INTRODUCTION 

 Problem Background 

Water is an essential substance that humans are using for drinking and other 

daily routines. Rapid growth in human population, industrialization, urbanization and 

agricultural activities contribute to water pollution. The world population is expected 

to increase to an average of 9.8 billion by 2050, leading to increasing global demand 

for agricultural and energy production (UNESCO, 2018).  This global water demand 

will significantly increase over the next two decades, and some countries are already 

facing water secrecy due to limited surface water resources. Increasing wastewater 

generation due to rapid industrialization and dwindling of water resources can cause 

catastrophe to human and other living organisms if not resolved. According to IWA 

(2018), around 80% of all wastewater discharged into waterbodies can cause a 

detrimental effect on human health and environmental hazard. To overcome this 

problem, wastewater treatment and water recycling become global issue. Various toxic 

contaminants such as oil, dyes, inorganics ions, synthetic organic material and heavy 

metals have been released into the aquatic environments through various human 

activities. Among this pollutants, release of heavy metal such as chromium (Cr), 

cadmium (Cd), mercury (Hg), lead (Pb), nickel (Ni), and thallium (Tl) are potentially 

hazardous in combined or elemental forms.  

Chromium is one of many heavy metals detected in waterbodies from natural 

and anthropogenic sources. This element can be present in various oxidation states 

from 0 to VI, in which three stable forms of chromium (Cr(0), Cr(III) and Cr(VI)) are 

commonly found in the environment. Metal processing, tannery, chromate production, 

stainless steel welding, dye production are industries with a massive contribution to 

chromium wastewater production (ASTDR, 2012).  The toxicological effects of 

chromium on human health were studied among various researchers. Cr(VI) is a well-
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known carcinogen and high solubility in water that can penetrate through the biological 

cell membrane, which can cause an allergic reaction and increasing the risk of cancer 

(Zhitkovich, 2011). Over the years, numerous conventional methods have been used 

for chromium removal from wastewater, such as chemical precipitation, ion exchange, 

electrolytic recovery, membrane separation, floatation and adsorption. These methods 

have their pros and cons.  Among these methods, adsorption is reported to be more 

promising for chromium removal due to this method provides high adsorption 

efficiency, some adsorbent materials are low cost,  and ease in availability and 

operation (Samuel et al., 2019; Dubey and Gopal, 2007; Panda et al., 2017; Lal et al., 

2020).  

Magnetic nanoparticles, such as magnetite (Fe3O4), nano zero-valent iron 

(nZVI), and maghemite (γ-Fe2O3)  have been widely used in various fields, including 

medical, industry and engineering application (Tahar et al., 2018; Hu et al., 2011; 

Chowdhury and Yanful, 2010; Mejia-Santillan et al., 2018). The magnetic 

nanoparticles have sparked an immense interest as an adsorbent to remove heavy 

metals and contaminants in wastewater, such as arsenic, lead, and chromium 

(Chowdhury and Yanful, 2010; Hu et al., 2011; Tahar et al., 2018). The magnetic 

nanoparticles have unique properties such as high surface area-to-volume ratio, easy 

to synthesize, comparatively low cost, easily separated from wastewater using external 

magnet, and can regenerate by desorption with HCl or NaOH (Ilankoon, 2014). To 

ensure stability and prevent aggregation of this adsorbent, magnetite nanoparticles can 

be integrated with functionalized polymer, surface coating with novel molecules or 

inorganic materials (Shuang et al., 2013; Chen et al., 2011; Hu et al., 2010). 

Among heavy metal removal frameworks, ion exchange resins (IER) are 

important synthetic organic adsorbents. These resins can provide good thermal 

stability, good mechanical strength and stability when exposed to radiation, low-level 

sludge generation and can be regenerated (Darmograi et al., 2016; Wang and Wan, 

2015). Ion exchange resin has been used in the solid-phase extraction for 

radionuclides, heavy metals, pharmaceutical pollutants and anion removal from 

ground water, wastewater and other sources (Laili et al., 2010; Kang et al., 2004; de 

Heredia et al., 2006; Taleb et al., 2017; Li et al., 2012). However, this synthetic 
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adsorbent suffers from inherent drawbacks such as low selectivity with other 

competing anions, resin fouling due to organic matter, a considerable cost for 

regeneration procedure on an industrial scale (Tandorn et al., 2017; Shuang et al., 

2013).  

Many studies have focused on enhancing the physical properties and 

adsorption performance of IER by introducing rare earth, metal oxide, and nano-

adsorbent on the surface of the resin (He et al., 2012; Tandorn et al., 2017; Sadeek et 

al., 2017). In recent years, polymeric-based iron oxide adsorbents gained more 

attention for wastewater treatment. Combination of these materials can provide an 

excellent mechanical property, improves adsorption efficiency, and specific affinity 

towards the removal of particular pollutant (Shuang et al., 2013; Li et al., 2017; Erdem 

Yayayürük and Yayayürük, 2019). This study aims to evaluate the potential use of 

magnetite incorporated with ion exchange resins (MIER) for chromium adsorption in 

an aqueous solution. In addition, the efficiency of adsorption and desorption of 

chromium was also studied using this adsorbent. 

 Problem Statement 

The surface modification of ion exchange resin with magnetic nanoparticles is 

essential to improve adsorption performance for heavy metal removal. A previous 

study demonstrated that anion exchange resin incorporated with Fe3O4 enhanced the 

adsorption of humic acid and improved the antifouling performance of the adsorbent 

(Shuang et al., 2013). They also determined that the reusability of anion resin also 

improved after modification with magnetite.  There have been several studies on the 

adsorption of heavy metals from water by magnetic nanoparticles loaded resin. Li et 

al. (2017) developed a novel magnetic cation exchange resin for copper and nickel 

removal from an aqueous solution. The adsorption capacity for this adsorbent was 

high, but somehow it was difficult to develop this adsorbent since it was synthesized 

using suspension polymerization and hydrolysis reaction. A surface-modified IRA 420 

with magnetite nanoparticles was designed to improve uranium extraction  (Sadeek et 

al., 2017). However, there was not enough information about the isotherm, kinetic and 
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regeneration study. Despite all these studies, a minimum effort has been made to study 

the combination of magnetite with commercialized ion exchange resin for chromium 

removal.  

In this study, the chromium ion was selected as a model pollutant for 

magnetite-loaded ion exchange resin (MIER). The MIER was produced by in-situ co-

precipitation synthesis of magnetite with commercialized nuclear grade ion exchange 

resin. Therefore, loading magnetite on the surface of IER should improve the 

adsorption performance for chromium removal.  

 Research Objectives 

This research aims to provide a methodology for developing modified ion 

exchange resin with magnetite, which can serve as a chromium ion removal from an 

aqueous solution. Thus, the objectives of this research are: 

(a) To evaluate the surface morphology and elemental composition of cation and 

anion exchange resin incorporated with magnetite nanoparticles (Fe3O4). 

(b) To investigate the adsorption performance of modified ion exchange resins for 

chromium removal at various conditions (pH, contact time, and adsorbent 

dosage), adsorption isotherm, adsorption kinetics, and regeneration.  

 

 Scopes of Study 

To achieve the objectives, the scopes of study in this research are: 

(a) The ion exchange resins used in this study was the Amberlite IRN 77 (strong 

acidic cation exchange resin) and Amberlite IRN 78 (strong basic anion 

exchange resin) 
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(b) The concentration of iron precursors was fixed at 0.1 M for the modification 

IER with magnetic nanoparticles by in-situ co-precipitation method in nitrogen 

condition at 25oC.  

(c) To evaluate the interaction between magnetite nanoparticles and IER, the field-

emission scanning electron microscope (FESEM) was used to undergo 

morphological analysis of adsorbents. Surface functional groups on the surface 

of the adsorbent were determined by using FTIR analysis. Moreover, the EDX 

analysis was carried out to examine the elemental composition of adsorbents 

before and after loading with magnetite. Further analysis of modified resin was 

performed by Brunauer-Emmett-Teller (BET) surface area analyzer to 

compare surface area before and after modification. These elemental and 

surface area analyses were performed to clarify whether the magnetite 

nanoparticles were successfully immobilized on the resin's surface.  

(d) Batch adsorption experiments of cation and anion adsorbents were performed 

with Cr(III) and Cr(VI), respectively. Adsorption equilibrium of chromium ion 

was determined by adsorption experiments at various pH (2-10), time (10-300 

minutes), and adsorbent dosage (0.05 – 1 g). 

(e) Langmuir and the Freundlich isotherms evaluated the maximum adsorption 

capacity of both unmodified and modified resin. The adsorption isotherm was 

investigated by adsorption of chromium ions at various concentrations with a 

fixed adsorbent mass, reaction time, and solution temperature. 

(f) Adsorption kinetics was performed with chromium at 50, 100, and 150 mg/L 

using modified IER. Kinetic data were evaluated using pseudo-first-order and 

pseudo-second-order kinetic models.  

(g) The desorption of chromium was using HCl as a stripping solution for 

magnetite-loaded cation resin (IRN77-Fe3O4) or NaOH for magnetite-loaded 

anion resin (IRN78-Fe3O4). Desorption-regeneration cycles were performed 

five times to evaluate the removal efficiency of MIER.  
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 Significance of Study 

This study explains the interaction between magnetite nanoparticles and ion 

exchange resin from the characterization analysis. This study also highlights the 

effective removal of chromium in an aqueous solution. The modification of IER with 

magnetite nanoparticles is one of many ways to improve the adsorption performance 

of the ion exchange resin. The magnetic nanoparticle increases the surface area and 

provides a lot more adsorption active sites for chromium removal. As the adsorption 

capacity of resin increases, the number of reaction cycles also increases, reducing the 

number of resins needed for industrial-scale water treatment applications. The 

equilibrium, isotherm, kinetic studies performed in this study provide sufficient 

information for the adsorption efficiency. The desorption and regeneration of modified 

IER represent the sustainability of adsorbent for heavy metal removal. 

It can be suggested that both IRN77-Fe3O4 and IRN78-Fe3O4 would serve as a 

potential adsorbent for the removal of chromium and other heavy metals from an 

aqueous solution. In addition, these adsorbents also can be utilized in various 

applications, including radionuclides or heavy metal extraction and water purification 

systems.  
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