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ABSTRACT 

Rainfall data consist of zero and real rain values. In many rainfall models, the 

zero values are not seriously considered in the analysis, which may lead to the loss of 

some important information. Therefore, to preserve sufficient information, the effect 

of zero values needs to be examined before its omission from the analysis. In this 

study, a bivariate mixed model that consists of continuous and discrete distribution is 

employed to disclose the portion of zero values in the analysis where the possibility 

of no rain phenomenon characteristics in the data can be included.  The rainfall data 

used are taken from two rainfall stations that are classified into three cases: data with 

only positive values (non-zero values) recorded at both stations, data with positive 

values recorded in either one of the stations and all data values including zeroes 

recorded at both rainfall stations.  The interstation correlation coefficients of the 

bivariate mixed distribution under these three cases are then used to detect the 

importance of the zero values. Results show that the case, data with only positive 

values recorded at both stations is the best. In addition, the rainfall characteristics of 

two stations that are nearby and located in the same river basin can be different due 

to their different spatial conditions. However, one of the limitations of bivariate 

distribution is that all its univariate marginal distributions are assumed to be the same 

type of distribution, yet there are neighbouring stations that have different types of 

distributions. Hence, the Copula model is then proposed to describe the dependency 

between two stations without considering the effect of the marginal distributions. 

Based on the rainfall data that contain only non-zero values for both stations, 

Galambos distribution is found as the best Copula model in describing the 

dependencies between the two stations in Johor area. Lastly, the dependencies 

parameters of bivariate mixed distribution and Copula distribution are proposed as 

spatial weighting methods in estimating the rainfall values at unsampled location. 
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ABSTRAK 

Data hujan mengandungi nilai sifar dan nilai hujan. Terdapat banyak kajian 

pemodelan hujan mengecualikan nilai sifar dari analisis dan menyebabkan kehilangan 

maklumat penting. Oleh itu, untuk menjamin maklumat yang cukup diperolehi, 

kepentingan nilai sifar perlu diselidiki sebelum dikecualikan dari analisis. Dalam kajian 

ini, model taburan campuran dwi pembolehubah yang terdiri daripada taburan selanjar 

dan diskret digunakan untuk merangkumi nilai sifar dalam analisis supaya ciri fenomena 

tidak ada hujan dapat dimasukkan. Data hujan yang digunakan telah diambil daripada 

dua stesen hujan yang diklasifikasikan kepada tiga kes: data dengan nilai positif (nilai 

bukan sifar) sahaja yang direkodkan di kedua-dua stesen hujan, data dengan nilai positif 

yang direkodkan di salah satu stesen, dan semua nilai data termasuk sifar yang 

direkodkan di kedua-dua stesen hujan. Pekali korelasi antara stesen dari model taburan 

campuran dwi-pembolehubah diperoleh di bawah tiga kes ini digunakan untuk 

memeriksa kepentingan nilai sifar.  Keputusan menunjukkan bahawa kes data dengan 

nilai positif sahaja yang direkodkan di kedua-dua stesen hujan adalah terbaik. Selain itu, 

ciri-ciri hujan di dua stesen yang berhampiran dan berlokasi di lembangan sungai yang 

sama boleh berbeza kerana keadaan reruang yang berbeza. Tetapi salah satu kelemahan 

model taburan dwi-pembolehubah adalah taburan marginal univariatnya mesti daripada 

taburan yang sama, namun terdapat stesen hujan berhampiran mempunyai taburan yang 

berbeza. Oleh itu, Copula model telah dicadangkan untuk menghuraikan perhubungan 

taburan kebarangkalian antara dua stesen hujan tanpa mempertimbangkan kesan taburan 

marginal. Berdasarkan data hujan yang hanya mengandungi nilai positif untuk kedua-dua 

stesen hujan, taburan Galambos telah didapati sebagai model Copula terbaik untuk 

menggambarkan kebergantungan antara kedua-dua stesen di kawasan Johor. Akhir 

sekali, parameter kebergantungan dari model taburan campuran dwi-pembolehubah dan 

taburan Copula dicadangkan sebagai kaedah pemberat reruang untuk menganggar nilai 

hujan di lokasi yang tiada rekod. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Rainfall is the most important variable in any kind of study such as climate, 

agriculture, hydrology, and water resource management which could provide 

essential information and its input is very beneficial to these studies (Srikanthan and 

McMahan, 2001; Serinaldi, 2009b).  In analysing and modelling rainfall data, the 

characteristics of rainfall, such as amount, intensity, frequency, duration and seasonal 

distributions of rainfall are indispensable. Hence, a suitable model that can be 

proposed to describe rainfall patterns, while preserving most of the rainfall 

characteristics, is essential for related hydrological researches.  

 

For instance, the rainfall pattern during dry and wet spells is vital to 

agriculture to obtain the maximum harvest.  A long dry spell may occur when the 

plant is specifically sensitive, such as just after germination, in the season of 

flowering, or even the growing seasons. Thus, this provides enough supportive 

information for decision making in planning the plantation of the crops. Being able 

to estimate the probability of prolonged dry spell during these periods will be useful.  

Besides dry spells, the time at the end of the wet season is also prominent.  Crops 

may not have adequate water to reach maturity if the wet season ends too soon.  Not 

only that, immoderate wet weather may impede ripening or harvesting.  Thus, 

understanding the characteristics of rainfall at the studied location is very important 

for providing information to the authorities, particularly those who are related to the 

water system management (Hoogmoed and Klaij, 1990; Adiku et al., 1997; Yemenu 

and Chemeda, 2013; Myers et al., 1998).  

 

Modelling an appropriate distribution to a rain gauge station is one of the 

most critical parts in studying the characteristics of rainfall.  Rainfall modelling can 

be separated into two categories: rainfall amount and occurrence.  Rainfall amount 
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takes into account the amount of rainfall on rainy days while the analysis of rainfall 

occurrence deals with the sequences of wet and dry days.  Gamma distribution is the 

most popular option in fitting the rainfall amount.  On top of that, Weibull, mixed 

Exponential and Lognormal are also used as the alternative distributions to model 

skewed rainfall data.  On the other hand, rainfall occurrence is often analysed by 

applying Markov chain (Stern and Coe, 1984; Deni et al., 2009; Sadiq, 2014; 

Chowdhury et al., 2017).  

 

Rainfall data is characterized by zero and non-zero values, where zero values 

indicate non-rainy days while non-zero values indicate rainy days.  These values are 

represented by a combination of discrete (zero values) and continuous (non-zero 

values) parts in distribution fitting.  Zero values, or non-rainy days, are important to 

explain the characteristics of drought and climate changes (Ha and Yoo, 2007; 

Pakoksung and Takagi, 2017).   However, the importance of zero values is not 

evident and is often ignored by many researchers due to the difficulty in combining 

the zero values with continuous rainfall values.  In rainfall amount analyses, mostly 

the rainfalls with zero values were excluded.  Nevertheless, studies of rainfall 

occurrence using the Markov chain method takes into consideration the order of zero 

and non-zero values, but the model fit the zero and non-zero values separately.  

 

 The exclusion of zero values from the rainfall data might affect the 

modelling of rainfall distribution.  Some vital rainfall information and characteristics 

may be neglected or lost if zero values are not taken into account in the analysis.  

Hence, researchers put an effort to combine the discrete and continuous part of 

rainfall data in fitting rainfall distribution (Dzupire, Ngare and Odongo, 2018); yet, 

the distributions created are complicated. Therefore, to preserve sufficient 

information for analysis, the effect of zero values toward rainfall data needs to be 

checked before being omitted.   

 

An alternative way to perform the analysis which consists of continuous 

(non-zero values) and discrete (zero values) distribution is by using a mixed 

distribution.  Generally, a probability distribution is either discrete or continuous.  A 

mixed distribution is a distribution that is neither discrete nor continuous but rather 

combines the discrete and continuous elements in the distribution (Kedem, Chiu and 
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North, 1990).  By applying a mixed distribution, the possibility of no rain and the 

skewness of real rain can be included in a probability distribution.  

 

Mixed distribution can be applied to univariate and bivariate cases (Shimizu, 

1993; Ha and Yoo, 2007; Yoo and Ha, 2007).  A univariate mixed distribution model 

the rainfall data for one station, while bivariate mixed distribution describes the 

relation of rainfall between two stations.  To apply the mixed bivariate case into an 

analysis, the data has to be restructured into three cases, which are: (a) considers only 

non-zero values for both locations, (b) taking data when either one of the locations 

recorded non-zero values, and (c) taking all values including zero values for both 

locations.  By examining these three cases, the effect of zero measurements can be 

determined using the interstation correlation coefficients.  

 

The rainfall characteristics of two stations that are close to each other are 

expected to show a degree of spatial association in terms of their rainfall behaviour 

since they tend to be wet or dry at the same time.  However, the rainfall data of the 

two stations can be different due to different spatial conditions.   One station may 

detect rain while the other nearby station may not receive rain at the same time.  For 

the cases which involve two variables such as two rainfall stations with different 

marginal, a bivariate distribution cannot be used to find the joint distribution of the 

two variables, which is one of the limitations in applying bivariate distribution     

 

Bivariate distribution requires all univariate marginal distributions to belong 

to the same type of distribution (Favre et al., 2004; Poulin et al., 2007).  Given that 

some of the rainfall characteristics of two rain gauge stations are different, a bivariate 

distribution may not be appropriate in the modelling of rainfall data and may cause 

bias in the analysis. Therefore, the Copula method is proposed against such situations 

(Quinn, 2007). 

 

A Copula model is designed to describe the dependency between two 

variables without considering the effect of the marginal distributions.  The joint 

distribution can be modelled using one Copula function regardless of the univariate 

marginal distribution.   Previous studies have shown that modelling based on 

Copulas could overcome the limitation of bivariate distribution (De Michele and 
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Salvadori, 2003; Favre et al., 2004; Grimaldi and Serinaldi, 2006; Zhang, Singh and 

Asce, 2006).  Many Copula families are available, but the Copula that best describes 

the joint relation of rain gauge stations in Johor, Malaysia is yet to be determined.  

Therefore, several Copulas will be analysed to determine the best model for the joint 

relation of rain gauge stations in Johor area.  

 

The study in detecting the importance of zero values has been proposed for 

quite some time, however, no attention has been placed by the researchers. The 

importance of zero values in rainfall data should be taken into account before being 

excluded from the analysis, especially in research regarding drought analysis and 

climate change.  For the time being, no systematic study has been done in 

determining the importance of the zero value in the rainfall analysis before 

implementing the Copula to represent the joint relationship between the rain gauge 

stations in Johor.  The best bivariate Copula model will be determined and can be 

further applied in performing spatial interpolation method.  

1.2 Problem Statement 

Rainfall data consists of two parts in distribution; continuous and discrete. 

Continuous rainfall distribution represents non-zero (rainy days) while discrete 

distribution represents zero values (non-rainy days).  Researchers often model 

continuous and discrete rainfall amounts separately by ignoring the existence of zero 

values in their analysis.  The removal of the zero values may cause the restructured 

data to be unable to describe the actual characteristics of the rainfall.  Zero values are 

essential in specific analyses such as drought modelling, estimating the period of a 

dry spell as well as modelling of rainfall occurrences.  Hence, there is a need to study 

the importance of zero rainfall values before deciding whether they need to be 

included or not in any univariate or bivariate rainfall analysis. 

 

Rainfall data at two neighbouring stations are expected to have a high 

correlation and the rainfall behaviours of the two stations are assumed to be the 

same.  However, if a location receives rainfall on a given day, there might be a 
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possibility that nearby locations do not record any rain on that particular day.  Hence, 

there might exist differences in rainfall distribution between two nearby stations.  

Without a suitable model to describe these relationships, a random field model would 

likely be missing some of the crucial details.  Every event that occurs during the 

observation period (rain or no rain) is important, no matter at which geographic 

region because there is a possibility that these events can affect the study, especially 

in drought and climate change analysis.  To model the rainfall data at two rainfall 

stations, a bivariate distribution is a possible option.  Since zero and non-zero values 

are involved, a bivariate mixed distribution is employed for rainfall data at two 

rainfall stations.  A bivariate mixed model has potential in describing the intermittent 

nature of rainfall and analysing the dependence structure of the rainfalls at two 

stations. 

 

A bivariate model, which represents a joint distribution of rainfall data at two 

different stations, can be useful in spatial rainfall analysis.  In conducting a bivariate 

model, two marginal distributions are assumed to be the same. In reality, the 

marginal distributions are not necessarily the same. Therefore, the Copula model is 

one of the alternative models that can handle this assumption. Besides, the 

mathematical formulations of bivariate distribution become complicated when the 

number of parameters increases, while the Copula model could be extended into 

multivariate analysis easily. For research that intends to add in more variables for 

further study, the Copula model is more suitable than a bivariate distribution. Not 

only that, bivariate distribution can't distinguish the marginal and joint behaviour of 

the variables used. The Copula function can investigate the marginal properties and 

dependence structure of variables separately and then can be further applied in 

estimating data at an unsampled location. 

1.3 Research Objectives 

This study embarks on the following objectives: 
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i. To carry out the preliminary analysis on the structure of bivariate rainfall data 

over rainfall stations in JohorTo determine the importance of zero values in 

rainfall analysis by using the bivariate mixed distribution. 

ii. To estimate the parameters of Copula model families and determine the best 

fitted Copula. 

To apply the estimated parameters derived from bivariate mixed distribution and 

Copula distribution for estimating the rainfall data at an unsampled location. 

1.4 Scope of the Study 

Daily rainfall for 28 rain gauge stations in Johor, Malaysia was obtained from 

the Malaysian Meteorological Department and the Malaysian Drainage and Irrigation 

Department.  The period of rainfall data obtained is from the year 1980 to 2011.  A 

homogeneity test had been applied to ensure the quality of the rainfall data.  Standard 

normal homogeneity test, Buishand range test, Pettitt test and the Von Neumann ratio 

test proposed by Wijngaard, Klein Tank and Konnen, (2003) were among the test 

conducted in this study. 

 

Mapping and kriging interpolation were generated using ArcGIS software, 

whereas the rainfall modelling was programmed and run under Microsoft Visual 

C++.  On the other hand, for Copula analysis, R software programming was applied. 

1.5 Significance of the Study  

Rainfall data is frequently used in the study of hydrology and climate change, 

such as researches on rainfall-runoff, drought, spatial interpolation, and flood.  In 

modelling the rainfall data, rainfall distribution comprised of discrete and continuous 

parts.   However, researchers tend to exclude zero values in finding the best 

distribution. This problem can be solved by applying a mixed distribution that 
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combines both discrete and continuous parts.  Similarly, when dealing with the 

spatial correlation of rainfall, the importance of zero values of the rainfall data from 

two rain gauge stations also needs to be addressed. By detecting the significance of 

the zero values, researchers in hydrology and climate change can decide whether it is 

essential or not to include the zero values in their researches. 

 

Two neighbouring rain gauge stations can have different rainfall patterns and 

characteristics on the same day.  The situation such that one station may have rain 

recorded while another station has no rain recorded can occur.  In this case, different 

marginal distributions of the joint relations between two stations might exist.  When 

applying bivariate distribution to examine the joint relationship between the two 

stations, one of the limitations is that the univariate marginal distributions have to be 

of the same type.  Biased estimation may occur if the bivariate approach does not 

follow the well-specified marginal distribution.   

 

Copula function is introduced to avoid bias estimation for rainfall analysis of 

the relations between rain gauge stations in Johor, Malaysia.  Copula function allows 

different marginal distributions to form a joint function.  Besides, certain limitations 

of bivariate distribution can be overcome by using Copula distribution.  Copula 

distribution is simpler compared to general bivariate distribution. By analysing 

rainfall at different rain gauge stations and their joint relationship using Copula 

function, their usage for further research can be extended in the study related to 

agriculture, hydrology, climate change or water resource management.  

 

Issues of missing data in rainfall often happen due to unexpected human 

errors or instrument errors. The weighting method is one of the popular techniques in 

finding the missing data in rainfall. By using the estimated parameters in a bivariate 

mixed distribution and Copula distribution into the weighting method, the missing 

data for a rain gauge station could be estimated.     
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1.6 Organization of the Thesis 

There are seven chapters comprised in this thesis as follows: 

i. Chapter 1 provides a brief discussion on the background of the research 

questions and problem statements.  This chapter also outlines the objectives of 

this study, together with the research scopes. The significance of this study is also 

highlighted at the end of the chapter.  

ii. Chapter 2 discusses the literature review on mixed distribution and Copula 

function development in various fields.  

iii. Chapter 3 explains the research methodology, which interprets the fitting mixed 

univariate distribution, effect of zero measurements for two rain gauge stations 

and bivariate Copula modelling. 

iv. Chapter 4 presents the study area, data descriptive and discussion on the best 

fitted mixed univariate distribution. 

v. Chapter 5 presents the effect of zero measurements by using bivariate mixed 

Lognormal distribution. 

vi. Chapter 6 presents the best fitted bivariate Copula distribution. 

vii. Chapter 7 concludes the findings of this study.  The contributions and 

limitations of this study are also discussed.  Lastly, suggestions and 

recommendations for future research work are proposed. 

1.7 Conclusion 

Rainfall data may be formed by zero and non-zero values, where zero values 

indicate no rain, while non-zero values indicate the rainy days. However, in many 
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rainfall amount analyses, the zero values are exempted from the analyses; otherwise, 

in rainfall occurrence analyses, the zero and non-zero values are fitted separately 

under different distributions. Mixed distribution can be applied to analyse the rainfall 

data without excluding or separating the zero values from the rainfall data. Due to the 

characteristic of bivariate mixed distribution, the importance of zero values for 

rainfall data of two rain gauge stations can be examined. Bivariate distribution 

requires the marginal to be of the same distribution, but the rainfall behaviour of two 

stations can be different due to spatial conditions. The requirements of using a 

bivariate Copula distribution are more flexible than traditional bivariate distribution. 

Therefore, Copula distribution is the best alternative model in finding the fitted 

model between two rain gauge stations. By using the estimated parameters, the 

missing rainfall data could be estimated under the spatial weighting method. The 

method suggested in this thesis can be applied in hydrology, climate change, and 

water resource management. 
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