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ABSTRACT 

Financial risk control depends on the assumptions made about the distribution 

of share returns. A study on the behaviour of share market returns provides a practical 

solution for identifying the adequate statistical distribution assumption and accurate 

predictive interpretation. Most studies on modelling extreme returns only focus on 

traditional stationary sequences technique. In many cases, however, the interpretation 

of the extremes in return series clearly shows the existence of non-stationarity in the 

series. As an alternative, a non-stationarity algorithm is proposed to produce a more 

efficient model using a much simpler approach. In this study, a new statistical 

procedure based on the state of the time series namely a two-stage (TS) method are 

formed to classify the best extreme distribution fitting. In general, the extreme returns 

are illustrated by a parametric model which is driven by the asymptotic theory of 

extreme values of independent and identically distributed (i.i.d) random variables. The 

TS method is applied to several common distribution models typically used in 

modelling extreme share returns namely Generalized Lambda Distribution (GLD), 

Generalized Extreme Value Distribution (GEV), Generalized Pareto Distribution 

(GPA), Generalized Logistic Distribution (GLO) and Laplace Distribution (LAP). 

Monte Carlo simulations from known and unknown samples are carried out to appraise 

the performance of the non-stationary and the stationary techniques. The simulation 

results reveals that the TS method yields relatively more accurate parameter estimates 

than the stationary method, especially when estimating positive and monotonous cases 

trend sequences. The extreme quantile measures using the TS method are found to be 

more efficient than the conventional approach. This is because the TS method takes 

into consideration of the information in the time series when evaluating extreme 

quantile periods. The TS method also has the benefit of being computationally simpler 

since the transformed process is closer to the actual process. In this respect, the data 

appear to be more closely meet the assumptions of a statistical inference procedure 

that is to be applied. The overall results in this study conclude that the proposed TS 

method could improve the estimation of extreme returns and is a useful instrument for 

financial risk management.  
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ABSTRAK 

Pengendalian risiko kewangan bergantung kepada andaian yang dibuat 

mengenai taburan pulangan saham. Kajian mengenai tingkah laku pulangan pasaran 

saham mampu memberikan kaedah praktikal dalam mengenalpasti taburan statistik 

pulangan saham dan ramalan yang tepat. Kebanyakan kajian dalam pemodelan 

pulangan ekstrem hanya tertumpu pada teknik jujukan pegun yang tradisional. Walau 

bagaimanapun, dalam banyak kes, tafsiran mengenai siri ekstrem jelas menunjukkan 

wujudnya ketidak pegunan dalam siri. Sebagai alternatif, satu algoritma tidak pegun 

telah dicadangkan untuk menghasilkan model yang lebih efisien dengan cara yang 

lebih mudah. Dalam kajian ini, prosedur statistik baharu berdasarkan bentuk keadaan 

siri masa iaitu kaedah dua-peringkat (TS) telah dicadangkan dalam mengklasifikasikan 

penyesuaian taburan ekstrem yang terbaik. Secara amnya, pulangan ekstrem 

diwakilkan dengan model parametrik yang menggunakan teori nilai ekstrem (EVT) 

asimptotik bebas dan pembolehubah rawak tersebar sama (i.i.d). Kaedah TS telah 

dihasilkan bagi beberapa model yang biasa digunakan untuk pemodelan pulangan 

ekstrem iaitu taburan Lambda teritlak (GLD), taburan nilai ekstrim teritlak (GEV), 

taburan pareto teritlak (GPA), taburan logistik teritlak (GLO) dan taburan Laplace 

(LAP). Simulasi Monte Carlo daripada sampel yang diketahui dan tidak diketahui telah 

dijalankan untuk menilai prestasi teknik tidak pegun dan kaedah pegun. Hasil simulasi 

mendapati bahawa kaedah TS memberikan anggaran parameter yang secara relatifnya 

lebih tepat berbanding kaedah pegun, terutamanya apabila menganggar jujukan tren 

kes positif dan monoton. Analisis ukuran kuantil ekstrem menggunakan kaedah TS 

didapati lebih berkesan berbanding pendekatan konvensional. Ini kerana kaedah TS 

mengambil kira maklumat tingkah laku siri masa apabila menilai jangka masa kuantil 

yang ekstrem. Kaedah TS didapati mempunyai kelebihan pengiraan yang lebih mudah 

memandangkan proses transformasi yang dilakukan lebih dekat dengan proses asal. 

Dalam hal ini, data menjadi lebih sesuai dengan andaian prosedur inferensi statistik 

yang diterapkan. Hasil dapatan yang diperoleh di dalam kajian ini menyimpulkan 

bahawa kaedah TS yang dicadangkan mampu memperbaiki anggaran kuantiti 

pulangan yang ekstrem dan berguna sebagai alat dalam pengurusan risiko kewangan. 
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INTRODUCTION 

1.1 Introduction 

The statistical distribution of share returns plays an essential role in financial 

modelling. Among the benefits of understanding the statistical distribution 

assumptions for extreme return behavior is that it can manage financial risk, evaluates 

derivatives that determine hedging strategies over time, tests asset pricing theory, and 

builds an efficient portfolio. However, it is not easy to find the correct economic theory 

for share return distribution. The assumption on empirical data distribution is a 

generally accepted principle to assess the exact distribution of returns. (Longin, 2017). 

According to Longin (1996), the share return is a measure of company 

profitability on investment over some period of time. In its simplest terms, share return 

is the money made or lost on an investment. Extreme Value Theory (EVT) theory is a 

useful application to model the risk in share return in financial risk management. EVT 

is concerned with the extremal behaviour of random variables and its role is to develop 

scientific procedures able to describe their behaviour. Extreme share return can be 

defined as the lowest daily returns (the minimum) or the highest daily returns (the 

maximum) of the share market index over a given period (selection interval). 

The modelling of extreme share returns distribution has become a prominent 

research topic and could contribute immensely to the improvement of risk 

management (Hussain and Li, 2015). The motivation behind this research is the need 

to develop a model that can accurately explain the share returns data. Thus, this study 

aims to construct a model that has the capability to capture the extreme movement of 

data series. There is growing evidence that inappropriate estimation assumptions can 

lead to the miscalculation of the load of the disproportionate share returns restrained 

at the tail distribution. The invalid assumption on a single distribution could be 
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attributed to the non-stationary behaviour in the series as the data samples possessing 

uncertainty effects due to unusual events. For example, political news, natural 

disasters, etc., such that the share returns become more volatile and non-stationary. 

(Tolikas, 2014; Ribeiro-Oliveira et al., 2018; Kupiec and Güntay, 2016; Karoglou, 

2010; Blattberg and Gonedes, 2010). Previous studies have failed to consider the 

contexts in which the non-stationarity of share return could provide biased and 

inaccurate return estimates. Therefore, new models should be proposed to capture the 

dynamic evolution of extreme returns properties over time. 

Our primary interest in this research is the presentation of the extreme value 

theory (EVT) to investigating the behaviour of non-stationary in financial share 

returns. Hence, this chapter introduces the share market background and highlights the 

problem arising in the analysis. This section also includes the objectives, scope, and 

significance of the research and organization of the thesis. 

1.2 Background of the Study 

The share market is an institution that brings together buyers and sellers of a 

business where the share is traded privately. Each share sold by the seller represents a 

claim of ownership from the buyer, which benefits both parties. The equity 

crowdfunding platform enables businesses to raise money by offering shares and 

corporate bonds to buyers. Meanwhile, participating buyers gain money by receiving 

dividends from the company's capital. However, buyers or shareholders are exposed 

to financial loss when they sell shares at a price lower than the purchased price; this 

situation is known as market risk. 

Market risk is defined as the probability of incurring loss or lower financial 

return from the share market. Investors tend to manage market risk actively because 

they want profitable returns. However, volatility in the share market is difficult to 

predict and is influenced by economic events (Suleman, 2012; Oseni and Nwosa, 2011; 

Tsai, 2017). Value-at-risk (VaR) is a measurement of the maximum possible loss of a 

portfolio over a specific time horizon at a certain confidence level. VaR is known as 
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the minimum capital requirement (MCR) for every firm. A good VaR estimation 

suggests an accurate explanation of extreme events of share returns at the tails of the 

distribution. Lately, the VaR has become the standard measurement for every company 

in determining capital adequacy so as to prepare for the possibility of extreme financial 

events. 

Extreme events can be defined as events that rarely happen but can have 

devastating consequences when they do arise. From the share market viewpoint, 

extreme return movement can be the result of market adjustments that occur during 

standard settings or may be due to economics, political, speculative and social factors. 

They may even ascend due to the pandemic outbreak such as Coronavirus disease 

(COVID-19), which has affected the share industry worldwide (Baker et al., 2020). 

According to Longin (1996), extreme return movement entail the lowest daily 

return and the highest daily return of the share market index observed over a given 

period. In maintaining extreme price switches with sensible clarification, a branch of 

statistics called the extreme value theory (EVT) is used to study the extremal behaviour 

of random variables. It focuses exclusively on these extremes and their associated 

probabilities by directly studying the tails of probability distributions. In the extreme 

value theory, there are two fundamental approaches namely the block maxima (BM) 

method and the peaks over threshold (POT) method (Ferreira and De Haan, 2015). 

EVT is also the basis for the development of analytical procedures for describing 

extreme behaviours and for calculating the probability of future extreme events 

(Tolikas, 2008; Tolikas, 2014). 

In this research, the study highlights the significance of the non-stationary 

procedure through the two-stage (TS) method in estimating the extreme return that 

incorporates volatility persistence in the modelling process. At the end of the study, 

the implementation of this design will be applied to the Malaysian economic share 

sector. This chapter subsequently presents the problem statement, the research 

objective, the scope of the study, the significance of the research, and finally, the 

organization of the thesis.  
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1.3 Problem Statement 

Despite the importance of managing market risk, there remains a paucity of 

evidence on the effect of non-stationarity when explaining extreme share returns. 

According to Ang and Timmermann (2012), the fundamental features of the share 

return in financial markets are continuously and significantly changing. Notably, share 

return variability is significantly influenced by economic news and subsequently 

causes extreme price movements (Broadstock and Filis, 2014; Sun, Najand and Shen, 

2016; Elder, Miao and Ramchander, 2013; Kang and Ratti, 2013). In this case, the 

probabilities of losses or gains would be much higher than the actual observation 

implied by inaccurate estimation technique. Moreover, financial models tend to be 

inadequate with catastrophic consequences. For example, a risk model that fails to 

capture the probabilities of extreme events could mishandle future risk predictions. 

Analysis of extreme share market returns using the non-stationary framework is still 

incomprehensive and should receive more attention. Proposing a non-stationary 

procedure is subject to tackling the limitations of the previous research.  

Large data series are often non-stationary or have means, variances and 

covariance that change over time. Non-stationary behaviours can be trends, cycles, 

random walks or combinations of the three. Non-stationary modelling in share returns 

has long been practiced in econometric literature that focuses on modelling financial 

returns as a stationary conditional paradigm (Granger et al., 2005). A critical aspect of 

the analysis of share market returns is the assurance that the series is stationary as non-

stationary data series are unpredictable and cannot be modelled or forecasted. Among 

the necessary assumptions of stationarity is that firstly, the results of the classical 

econometric theory are derived under the assumption that the variables of concern are 

stationary. Secondly, estimation process are mainly inadequate when the data is non-

stationary. Thirdly, non-stationary time-series regressions often lead to the problem of 

spurious regressions. One such case is when the regression equation shows a 

significant relationship between two variables when such relation should not even 

exist. Moreover, autocorrelation may occur because the time series is non-stationary. 

Therefore, analysing non-stationary time series data in risk management produces 

unreliable results and leads to poor understanding and estimation. 
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The theory of economic forecasting is applicable to time-dependent models, 

which can be transformed into stationarity by differencing and co-integration (Lal et 

al., 2010; Kuwornu, 2012; Engle and Granger, 2015). This theory allows the 

econometric model to misquantify the mechanism generating the data, with parameters 

estimated from data evidence. In such a situation, many useful results can be proven 

about the statistical properties of forecasting procedures. Although studies have 

acknowledged the significance of stationarity in time-dependent models (ARIMA, 

ARCH and GARCH), little is known about the effect of non-stationary in time-

independent models (e.g. GLD, GEV, GPA, GLO and LAP) where there is uncertainty 

in returns distributions (Kang and Ratti, 2015). This thesis support the notion that past 

return series are not always stationary and non-stationarity behaviour should be treated 

as a source of risk, which should be helpful in predicting extreme returns. Hence, our 

study take into account the non-stationary panel count data to reduce the risk premiums 

of share returns. 

In the analysis of extreme share markets return distribution, a conventional 

approach is to map the components of the portfolio without considering whether the 

series is stationary or not. Hence, the uncertainty and non-stationarity of data series to 

estimate risks are ly ignored in both theoretical works and practice. By far the most 

comprehensive account of non-stationarity in distribution modelling is to be found in 

the work of Strupczewski et al. (2001a). The authors developed a two-stage (TS) 

method for solving modelling problems involving the non-stationary in the flood 

frequency analysis. The idea of relaxing the stationarity assumption in flood frequency 

modelling (FFM) is implemented by the identification of distribution and trend (IDT) 

method. This idea was presented as a way of overcoming some of the limitations 

associated with trends. These techniques enable an optimum non-stationary share 

return model to be identified through the probability distribution function and a time 

pattern in the first two statistical moments. Although TS models have been applied in 

hydrology fields, there has been no detailed investigation for extreme share returns 

modelling. Therefore, this study is concentrating on the application of TS method to 

improve the fitting performance of extreme returns. 
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 In this research, the conceptual framework and an appropriate algorithm using 

the two-stage (TS) method will be investigated to measure the non-stationarity of share 

returns in a time-independent distribution model. The L-moment method is used for 

parameter estimation and a class of competing models is selected through the 

minimisation of the error measurement. From a market risk perspective, the 

identification of distribution and trend investigation procedure from the different 

conditions of share returns data appear to be principally essential in exploring the non-

stationary and scale trend effect. 

The study on the importance of the stationarity share return series by Kheradyar 

et al. (2011) and Granger (2005) stated that market efficiency studies that rely on a 

model that does not account for non-stationary returns might be biased. This matter 

has led us to propose a new standard procedure in modelling the non-stationarity in 

share returns. The stationary assumption needs to be investigated in order to improve 

prediction accuracy. It is necessary to have a model that covers the features of 

asymmetry, high peak, and fat tails.  

Investing in the share market without proper preparation and planning will 

merely create unwanted costs for the investor. From this research, these share market 

apprehensions should be addressed to reduce the risk of loss. Firstly, what is the effect 

of non-stationarity on the inference concerning share? Secondly, what are the criteria 

of the non-stationary series when monitoring the risk premium? Lastly, how can the 

different economic circumstances affect the share returns inference? Hence, precise 

knowledge related to the magnitude and frequencies of the market risk fundamentally 

deals with all the problem statement above is needed. 

1.3.1 Research Questions 

The procedure for the current and previous non-stationary time series in share 

returns has not been well established. Hence, this study proposed a new standard in the 

procedure of non-stationary time series that includes the interval length of weekly and 

monthly returns. These components need to be investigated to improve the forecasted 
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values and to achieve forecasting accuracy. The primary goal of this research is to 

analyse the behaviour of extremely volatile returns on the share market. To solve this 

research problem, several research questions need to be addressed: 

i. Is there any presence of non-stationary and trend in the extreme share returns? 

ii. Do the shapes of the different share return distributions show similar kinds of 

anomalies? 

iii. How to assign the appropriate procedure for the non-stationary extreme 

returns? 

iv. How to evaluate the probability of extreme values using statistical 

distributions? 

v. Is there any relation between economic circumstance and the shape of the share 

return distribution? 

1.4 Research Objectives 

This study aims to identify the best distribution in share returns. The specific 

objectives of this study are as follows: 

(a) To identify the presence of non-stationarity in share market returns. 

(b) To assess the sampling properties of the non-stationary (NS) two-stage method 

model in comparison to the classic stationary (S) model in characterizing 

uncertain events in the sample using the Monte Carlo simulation data generated 

from the known and unknown parent distribution function.  

(c) To evaluate the performance of the non-stationary (NS) two-stage method 

model in comparison to the classic stationary (S) distribution model in 

analysing financial market risks using the permutation simulation analysis. 
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(d) To assess the performance of the developed model in (b) by considering the 

different economic time frames. 

1.5 Scope of the Study 

In this research, two aspects need to be made clear such as: 

1. Data scope 

Two types of data are used in this study: 

i. The Kuala Lumpur Composite Index (KLCI) daily share market data 

for 22 years, starting from 1994 until 2016. Record of the daily share 

price was obtained from Yahoo Finance and classified as ratio scales. 

ii. Data simulation attained from the Monte Carlo method. This simulation 

can generate artificial share returns from various background 

distributions of the time-independent model. 

 

2. Forecasting scope 

This study focuses on the unconditional distribution model of equity returns 

that is the fundamental distribution assumption for the homoscedastic and 

heteroscedastic forecasting models. For example, the residuals in the ARMA, 

ARCH and GARCH models will follow the distributions assumption 

considered in this study. 

1.6 Research Significance and Contribution 

In this research, the non-stationary procedure is proposed to model the extreme 

returns. Although many studies have been conducted to model extreme share returns, 

previous studies have failed to demonstrate significant advantages of using non-

stationary two-stage (TS) technique to estimate the risk in share returns. This study 

attempts to use the TS method as a tool to evaluate extreme share returns. The expected 

study contributions of this study are four.  
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i. The provision of non-stationary solutions using TS approach to model daily, 

weekly and monthly share returns by revisiting the popular time-independent 

share returns models. 

ii. The derivation of a parameter estimation for each of the TS models for GLD, 

GEV, GPA, GLO and LAP distributions. 

iii. Highlighting the importance of non-stationarity procedure in reducing the 

forecast error in various levels of censoring quantile 

iv. Investigating the characteristics of the distribution present in the financial data 

for different economic timeframes.  

 

The proposed technique for extreme share return modelling is the combination of 

TS method with four types of transfer functions namely linear in location (LM), 

quadratic in location (QM), linear in location and scale (LMS), and quadratic in 

location and linear in scale (QMLS). Previously, only conventional stationary (S) 

approach was used to model the extreme share return. Hence, the modifications to the 

available technique are made by addressing the non-stationarity behaviour to improve 

estimation accuracy. The procedure for the TS method is presented in Chapter 3. 

This study proposes the TS method to reduce the complexity when modelling the 

extreme share return using probability density function (PDF). The analysis of the 

complexity in modelling extreme share returns is grouped into two categories namely 

known and unknown parental distribution. The details of the simulation study in 

measuring the complexity of the extreme share returns can be found in Chapter 5. The 

simulation study shows that the TS method had successfully reduced the complexity 

of the extreme share returns in some cases. 

This research is expected to contribute to the application of risk measures such as 

Value at Risk (VaR) and Expected Shortfall (ES) in accessing the financial risk. The 

results obtained from the demonstration of the proposed model displays higher 

estimation accuracy in comparison to previous models available in literature. 
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1.7 Organization of the Thesis 

This thesis consists of seven chapters as described below: 

Chapter 1 presents the background, introduction, objectives and scope of this 

research.  

Chapter 2 provides an overview and literature review on stationary and non-stationary 

share return analysis and the development of the two-staged model in a different 

distribution. It also describes the conventional non-stationary share return analysis and 

opportunities to explore the two-staged model method for risk management problems. 

The advantages of the two-staged model method in modelling the non-stationary share 

return series are also highlighted.  

Chapter 3 presents the research methodology which describes the related theories to 

the extreme value theory (EVT), the L-moment estimation method, the probability 

distribution function (PDF) and the cumulative distribution function (CDF) of each 

distribution. The parameter estimation using the methods of L-moments is revisited 

for each distribution, namely GLD, GEV, GLO, GPA and LAP. 

Chapter 4 discusses the non-stationary design procedure used in this study. The Two-

Stage (TS) method of the proposed models namely LM, QM, LMS and QMLS for 

each distribution is shown in detail. 

Chapter 5 describes the implementation of the proposed design that is used to evaluate 

the sampling properties of the non-stationary two-stage (TS) method model. The 

justification of each model is verified using known and unknown parent distribution 

function. 

 

Chapter 6 presents the analysis of the non-stationary two-stage method using real data 

namely, daily, weekly maximum, weekly minimum, monthly maximum and monthly 

minimum returns. The data properties are explained based on the box plot, 

homogeneity test and locally weighted scatterplot smoothing as a preliminary study. 
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The non-stationary models are also implemented to the market risk measurement 

analysis. 

 

Chapter 7 concludes the discussion on the procedures and analysis of the research. 

Recommendations for areas related to the findings and possible directions for future 

studies are also presented. 
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