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ABSTRACT

In finance, the portfolio is the set of investment in the assets. Meanwhile,

its optimization leads towards the best selection and diversification of investments.

Portfolio optimization involves the objectives (mean, variance or Sharp Ratio (SR)) and

constraints (budget, short sell, outliers, cardinality, lot and transaction cost, liquidity),

as well as some others which makes it more complex, dynamic and intractable.

The SR function is considered to be the measuring tool for best portfolio selection

and optimization. At present, the area of portfolio optimization lacks in having

multiple constraints with the SR as the objective function. This research focuses

on a two-stage portfolio selection, diversification, and optimization. The normality

tests have been performed from the data considered and it is found that the data is

nonlinear and stochastic. The two selection criterion (mean and variance) have been

introduced in this research. Furthermore, several constraints have been considered for

the problem of Multiple Constraints Portfolio Optimization (MCPO). A metaheuristic

technique needs to be developedwith the financial toolbox inMATLAB and the Particle

SwarmOptimization (PSO) for portfolio construction, diversification, and optimization,

namely, the Modified PSO (MPSO). The simulation on the benchmark model for

restriction on the short sale was performed. Also, the diversification phenomenon for

having the 10, 50 and 150 assets collection has been observed. The obtained results for

the benchmark model are 42.51% and 84.20% increment in Maximum of Maximum

Sharp Ratio (MMSR), whereas 39.88% and 84.30% increment in Average ofMaximum

Sharp Ratio (AMSR). The results of the models having mean of return selection criteria

have increments of 2.58%, 21.10%, 16.41%, 11.67%, and 6.42%; whereas, models M3

and M4 for MMSR values have decrement of 3.52% in comparison with the model

having the variance of return selection criteria. This research will be beneficial for

those involved such as in mathematical finance modeling, asset portfolio optimization

and financial model optimization using metaheuristic techniques.
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ABSTRAK

Dalam kewangan, portfolio adalah set pelaburan dalam aset. Sementara itu,

pengoptimumannyamengarah kepada pilihan yang terbaik dan kepelbagaian pelaburan.

Pengoptimuman portfolio melibatkan objektif (min, varians atau Nisbah Tepat (SR))

dan kekangan (belanjawan, jualan pendek, data terpencil, kardinaliti, lot dan transaksi

kos, kecairan), serta lain-lain yang menjadikan ia lebih kompleks, dinamik dan sukar

dikawal. Fungsi SR dipertimbangkan sebagai alat pengukur untuk pemilihan portfolio

terbaik dan pengoptimuman. Pada masa ini, bidang pengoptimuman portfolio kurang

dalam mempunyai pelbagai kekangan dengan SR sebagai fungsi objektif. Kajian

ini memberi tumpuan kepada dua peringkat pemilihan portfolio, kepelbagaian, dan

pengoptimuman. Ujian kenormalan telah dijalankan dari data yang dipertimbangkan

dan didapati bahawa data adalah tak linear dan stokastik. Kedua-dua kriteria

pemilihan (min dan varians) telah diperkenalkan di dalam kajian ini. Tambahan

pula, beberapa kekangan telah dipertimbangkan untuk masalah Kekangan Pelbagai

Portfolio Pengoptimuman (MCPO). Satu teknik metaheuristik perlu dibangunkan

dengan kotak alat kewangan dalamMATLAB dan Particle Swarm Optimization (PSO)

bagi pembinaan portfolio, kepelbagaian, dan pengoptimuman, iaitu PSO terubah suai

(MPSO). Simulasi model penanda aras untuk sekatan ke atas jualan singkat dijalankan.

Juga, fenomena kepelbagaian yang mempunyai aset koleksi 10, 50 dan 150 telah

diperhatikan. Keputusan yang diperolehi untuk model penanda aras adalah 42.51% dan

84.20% kenaikan dalamMaksimum bagi Nisbah TepatMaksimum (MMSR), manakala

39.88% dan 84.30% kenaikan dalam Purata bagi Nisbah Tepat Maksimum (AMSR).

Keputusan model yang mempunyai min kriteria pemilihan pulangan mempunyai

kenaikan 2.58%, 21.10%, 16.41%, 11.67%, dan 6.42%; manakala, model M3 dan M4

untuk nilaiMMSRmempunyai pengurangan sebanyak 3.52%berbanding denganmodel

yang mempunyai varians kriteria pemilihan pemulangan. Kajian ini akan memberi

manfaat kepada mereka yang terlibat seperti dalam pemodelan matematik kewangan,

pengoptimuman portfolio aset dan pengoptimuman model kewangan menggunakan

teknik metaheuristik.
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CHAPTER 1

INTRODUCTION

1.1 Background

Financial markets are around since the inception of mankind. Early men trade

their crops to barter the commodity with their need. In modern times, they are found

at every corner of the world, creating an open and regulated system for companies.

A financial market is actually a place comprises of entities that can be exchanged on

the basis of different commodities. People trade commodities, financial securities and

other similar assets at prices that are determined by pure supply and demand principles.

These principles are dynamic, and take different values over the course of time. These

changes are event driven and mainly reflect upon the seasonal variation and nature of

commodity. A financial market can be highly organized, or may serve some basic

functions like purchase and sale of commodities.

In general, a financial market can be thought of an organization that serves

setting and maintaining of prices, allocation of assets, providing opportunities to

gaining profit, and setting up a feasible environment for transaction while managing

the risk in above mentioned functions. Financial markets are of different types and

facilitate various types of investors, furnishing upon their interests. Some of the most

commonly markets are physical asset markets, financial asset markets, spot markets,

futures markets, money markets, capital markets, primary markets, secondary markets,

private markets and public markets; to mention a few. The investors mainly fall into

two categories, individual investor and institutional investor. Their role corresponds to

building up a portfolio by investing for themselves versus an organization. In general,

an investor needs to gain profit with their investment by having minimum loss. That’s

why it is important to investigate the behaviour of portfolio and its association with

profit optimization and risk aversion. In particular, portfolios that are related to stock

and money market, that corresponds to the narrower spectrum of the financial market.
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A portfolio is defined as a group of financial assets such as shares, stocks, bonds, mutual

funds, also the collection of currencies as foreign exchange at a particular time.

The stock and money market is governed by certain norms used to regulate the

behaviour of market, considering various constraints in to account. These norms are

classified as:

• Restriction on short sale, whether the stockmarket allows it or not. It is basically

a controlling component of market, most of the times it is not allowed in stock

market where as in money market it is allowed.

• Limit on minimum and maximum number of assets/stock in the stock market

known as the lot.

• Brokerage fee as transaction cost fixed and variable, also the fixed overnight

charges.

• Liquidity of the assets, due to the regulations of the stock market.

On the other hand, constraints of the stock and money market can be determined as:

• Limitation of the budget for an individual and institutional investor as budget

constraint.

• Restriction on investment in the area, sector, stock and currency, from an

individual and institutional investor as cardinality constraint.

• Market uncertain behaviour as outlier constraint.

On the basis of aforementioned norms and constraints, a portfolio is dictated by a

number of factors. Therefore, optimization of such portfolio asks to include multiple

constraints in single portfolio. As such, optimization is performed on a multivariable

parameter space, keeping into account the effect of covariance among the parameters.

This area in the field of Financial Mathematics is relatively less studied due to inherent

complexity in the optimization problem. However, optimizing multiple constraints in

a portfolio is significant area of study because of the following reasons, viz, (i) as a

multivariate and dynamic mathematical problem; it is an interesting region to explore
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in its own right, (ii) the continuing variant nature of the stock market, conjoining with a

large amount of available data makes the optimization problems demanding the generic

statistical distribution of the assets. This distribution helps us finding the optimal values

of the assets which, in turn, would encourage the investor by minimizing risks, (iii) the

parameters implemented through regulatory bodies draw the interest of both investor

and the market. Assessing their effect as constraints in a portfolio could lead us pose

research questions to yield better insights in portfolio optimization.

1.2 Modelling of Multiple Constraints Portfolio Optimization

On the basis of the issues that pertain to the intractability and complexity of the

systemdiscussed above, there ismuch need tomodel amultiple constraints portfolio that

has efficient selection and optimization algorithm. For portfolio selection, we consider

the mean or variance of the portfolio as criteria for portfolio selection. For efficient

portfolio optimization, an objective function for optimization needs to be selected. This

objective function may be mean or variance; both as single objective, or sharp ratio or

any other ratio. In addition, the inclusion of the norms and constraints of the stocks and

money markets acts as multiple constraints. Historically, the Modern Portfolio Theory

(MPT) has been established through the benchmark in 1952 namely, Mean-Variance

(MV) model for portfolio optimization. In this model the author has considered the

variance of the portfolio as an objective function, whereas the mean of the portfolio

and two more basic parameters are taken as constraints. Later on, the researchers have

developed different relationships between the mean and variance as single objective

function, naming them as efficient frontier, treynor ratio and sharp ratio; to name a few.

However, they still lack the ability to capture the market reality in terms of multiple

market constraints taken simultaneously.

The realistic market constraints are budget, short sale, cardinality, outlier, tax,

transaction cost, overnight holding charge, lot and liquidity. It could be rather simple

to incorporate the behaviour of them taken one at a time than a combination of them.

The nature of data available to portfolio optimization using multiple constraints mostly

leads to misleading results, setting another barrier in addition to the complex nature
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of the problem. This makes mathematical modelling becomes intractable, especially

for the large amount of the data available from the financial market. It could be worth

mentioning that the criteria for selection of portfolio at several levels play a vital role

in portfolio optimization. Also, considering sharp ratio as an objective function leads

better results in multiple constraints portfolio optimization. Here, modelling of such

multiple constraints portfolio optimization can be classified into two stage, viz, (i) initial

selection criteria having mean or variance of the portfolio, and (ii) the later selection

and optimization having the constraints and objective function. This two stage portfolio

optimization gives the better control in obtaining the solution of mathematical models.

1.3 Metaheuristic Techniques

One way to obtain the solution for mathematical models of multiple constraints

portfolio optimization is to apply metaheuristic techniques. Here, meta stands for

beyond or an upper level, heuristic stands for to find, nowmetaheuristic are the strategies

that guide the search process or the goal to efficiently explore the search space in order

to find optimal/near solution. Metaheuristic algorithms are approximate and usually

non-deterministic. These techniques are of nature-inspired phenomena and have the

capability to capture the inherent stochastic nature of the problem. These kind of

techniques have been developed by observing the behaviour and characteristics of

natural phenomena like the birds flocking, fish schooling, and the movement of ant, bee

and cuckoo in search of food. These techniques use insects, fish and birds as agents or

particles. Many metaheuristic techniques, like Genetic Algorithms (GA), tabu search,

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee

Colony (ABC) optimization, cuckoo search optimization and simulated annealing etc.

have been developed for the complex optimization problems.

Despite excellent modelling and prediction power, some metaheuristic

techniques have a drawback of sticking in the local optimum, hence unable to reach

the global optimum solution of the problem. For choosing the best technique for

optimization, there is a need to select technique which is robust and doesn’t stick in the

in the local optima. The Particle Swarm Optimization (PSO) is an excellent candidate
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to serve this purpose. To control the robustness of the technique while creation and

presentation of the portfolio, it requires modification in the algorithm for multiple

constraints two-stage portfolio selection and optimization problems.

1.4 Problem Statement

The basic constraint model for portfolio optimization in the financial market

is available with the single objective of mean and variance of return which covers

only the budget and short sale (allowed and not allowed) as constraints. Since the

real world is more complexed and holds several constraints, also the initial selection

criteria for portfolio optimization play a vital role for the individual and institutional

investor. Few of the constraints and criterion are presented here, (i) it is found that

there is a lack of initial criteria for portfolio selection. It could be the return or risk of

the stock/asset, considering the stocks/assets of maximum return or minimum risk. (ii)

The extraordinary events and fluctuation of the financial market should be considered

as a constraint namely outlier. (iii) The investorâĂŹs inclination towards the inclusion

or not inclusion of the stock/asset should be taken into account as constraint namely

cardinality. (iv) Making a transaction in the financial market needs some fee charged

by the regulator of the market. This charged fee is called the transaction cost, which

affects the overall profit gain or loss. This transaction cost should be considered as a

constraint. (v) The restriction imposed by the company or firm on the trade of single

share. The minimum number of shares should be traded in the form of a lot, which

could be 100 or more share per lot. This lot should be taken into account as a constraint.

The involvement of all the aforementioned constraints at the same time in the

financialmarket of the realworldmake themodeling of the portfolio and its optimization

more difficult and complex. There is a need to construct the multiple constraints

portfolio optimization model. The lack of having the capable and compact algorithm

leads towards the development of an efficient algorithm. After having the multiple

constraints portfolio optimization models, there is a need to develop an algorithm for

the construction, visualization and obtaining the solution of an efficient portfoliomodel.
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1.5 Objectives of the Thesis

The main objective of the thesis is to construct the multiple constraints portfolio

optimization models. The purpose of the modeling of such models is to incorporate

the real world complexity for stock portfolio optimization in the financial market. In

addition, such models should provide the optimal way of investment with regulations

imposed by the financial market, the incorporation of robustness and behaviour of the

financial market. To achieve the aim, the specific objectives include;

1. To design a multiple constraints model with six real world constraints namely;

budget, short sale, outlier, cardinality, lot and transaction cost .

2. To measure the performance of the designed models, considered the sharp ratio

as optimal function.

3. To improve the efficiency measure, considered the mean and variance of returns

as initial selection criterion.

4. To construct, visualize and obtain the optimal solution of theMultiple Constraints

Portfolio Optimization (MCPO)models, modify the PSO as the modified particle

swarm optimization technique namely; Modified PSO (MPSO).

In this work, the performance of MCPO depends on the mean and variance as an

initial selection criterion, efficient budgeting, restriction on a short sale, an outlier,

cardinality, transaction cost and lot as constraints. The comparison of the two different

initial selection criterion with two different transaction cost is presented.

1.6 Scope of the Thesis

In this thesis, modeling of the multiple constraints portfolio optimization is

restricted to the stock market which is one of the well defined financial markets.

Also in terms of multiple constraints, there are few like the basic budget and short

sale constraints with outlier, cardinality, lot and transaction cost (fixed and variable)

constraints moreover, the regulations of the financial market. The financial market

6



considered here is the Shanghai Stock Exchange 50 index (SSE50 index) for the period

of November 13th, 2017 to January 7th, 2011 on daily basis (1665 days) also considered

here the various 172 stocks from different areas and sectors.

Since the data considered form the stock market is for the adjusted closed

prices. It is robust in nature. Modeling and optimization of such complex and robust

natured data require the special kind of solution technique. An algorithm for the

modified metaheuristic technique has been developed. It is specially designed for

the optimization in the field of the financial market, namely modified particle swarm

optimization (MPSO). Also, the stochasticity of the particle swarm optimization has

been controlled in this MPSO. In this, algorithm and modeling an approach of the

selection criteria at the initial stage has been introduced using the mean and variance of

the return as initial selection criteria. This thesis doesn’t cover the liquidity and short

sale allowance as constraints.

1.7 Contribution and Significance of the Research

The main contributions of the work are the modelling of multiple constraints

portfolio optimization. This MCPO model allows the incorporation of the several

financial market complex constraints in the model at the same time. Also, it takes

into account the inclination and behaviour of the investor towards the area, sector and

stock. It captures the uncertainty and stochasticity of the financial market. Moreover,

it controls the robustness and uncertainty of the system. Here, the better visualization

and selection of the initial and final portfolio has been made easier. The specific

contribution includes.

1. Initial selection criterion with mean and variance have been introduced.

2. Multiple constraints portfolio optimization models have been constructed,

depending upon the initial selection criterion.

3. Algorithm for modified metaheuristic technique has been developed, namely

Modified PSO (MPSO).
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The broader significances for this study are to model the multiple constraints

portfolio optimization by incorporation of the real financial world complex constraints

in the models. The comparison of the significance of the proposed multiple constraints

portfolio optimizationmodels with the existingmodel has beenmade. The visualization

and uncertainty control of the portfolio have been made. This study shows the priority

for the initial selection criterion, on the basis of the result reported. Also, the importance

of the constraint selection has been proposed.

This study shows the significance by expending the knowledge in the field of

MCPO. It will enable the researchers, institutions, and investors to see the effects and

behaviors of the selection criterion and multiple constraints. Also, it will provide

an effective and simple mathematical formulation for optimization. Moreover, it will

increase a new dimension to the mathematics of finance especially in the field of

portfolio optimization. This study will also contribute to the area of intractable and

complex problems of the real world. It is hoped that the knowledge can be translated

into practical application in the world of financial mathematics.

1.8 Thesis Outline

This thesis is consists of five chapters. Chapter 1 comprises of a background,

modelling of multiple constraints portfolio optimization, metaheuristic techniques,

problem statement, objectives of the thesis, scope of the thesis, research contributions

and significance of the research. The contents of remaining five chapters are outlined

as follows:

Chapter 2 studies the literature review as introduction; portfolio selection,

diversification and optimization; portfolio optimization with cardinality constraint;

portfolio optimization with transaction cost constraint; portfolio optimization with lot

and liquidity constraints; heuristic and metahuristic techniques in optimization and

conclusion.

8



Chapter 3 studies the introduction; portfolio structure; mean and variance of

daily return; portfolio mean and variance of return; budget constraint; short sale

constraint; Markowitz mean-variance model; models as single objective function;

the efficient frontier model; the sharp ratio model; model using sharp ratio without

initial selection criteria; nonlinear representation of data; outlier constraint; cardinality

constraint; lot constraint; transaction costs constraint; standard PSO with linear

functions; modified PSO; initial selection criteria; two-stage portfolio selection and

optimization models; sharp ratio models with initial selection criteria; multiple

constraint model with fixed transaction cost; multiple constraint model with variable

transaction cost and conclusion.

Chapter 4 studies the introduction to simulation results and their discussion

under the benchmark model without and with initial selection criteria. Finally, the

chapter concludes having a conclusion.

Chapter 5 studies the introduction to simulation results and their discussion

under the multiple constraints models with the initial selection criteria having the fixed

and variable transaction cost as constraints. Finally, the chapter concludes having a

conclusion.

Chapter 6 studies the conclusion, significant achievements and directions for

future work.
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