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ABSTRACT

Energy system optimization is the first step to address global warming, even 

for renewable sources like biogas. Optimization is necessary for efficient yet economic 

resource utilization, which has been a wide study area. However, no comprehensive 

general framework is proposed for optimization, mainly resolving the optimal point 

selection issue. This study aimed to provide a framework for exerting economic 

optimization of biogas fed systems and applying it to specific gas turbines. The 

proposed model in this research includes all steps from problem setup to final optimal 

point selection. A genetic algorithm was applied to obtain the Pareto front, and 

objective functions were evaluated by thermodynamic modeling of the system. A set 

of dimensionless parameters were introduced that smoothly defined the correlation 

between all design variables (decision variables) and optimal objectives (total cost and 

exergy efficiency). Then correlations between design parameters and optimal design 

variables were evaluated using meta functions of fourth-order. In this study, the design 

variables were compressor pressure ratio, gas turbine and compressor isentropic 

efficiencies, turbine inlet temperature, and preheater outlet temperature. Design 

parameters were cost of fuel, net power, and fuel methane content. To achieve a 

general optimal solution, a fuel costing approach based on the fuel exergy was 

proposed. The new costing approach allows disintegration and elimination of the fuel 

processing while accounting for the effect of the processing on the cost of fuel which 

allowed a general solution for the optimal gas turbine. A design problem was solved 

using the developed framework. Results of the design problem showed that the 

minimum cost ratio (cr) of 3.0 with minimum specific emission of 0.4962 kg/kWh. If 

cr increases to 3.5, the minimum specific emission will reduce to 0.4534 kg/kWh. The 

results demonstrate that the proposed framework is able to provide an optimal solution 

for a variety of CO2 emission levels, cost, and financing considerations where this 

optimization was not possible to determine by the previous approach.
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ABSTRAK

Pengoptimuman sistem tenaga ialah langkah pertama untuk menangani 

pemanasan global, walaupun untuk sumber boleh diperbaharui seperti biogas. 

Pengoptimuman adalah perlu untuk penggunaan sumber yang cekap lagi ekonomi, 

yang telah menjadi bidang pengajian yang luas. Walau bagaimanapun, tiada rangka 

kerja umum yang komprehensif dicadangkan untuk pengoptimuman, terutamanya 

menyelesaikan isu pemilihan titik optimum. Kajian ini bertujuan untuk menyediakan 

rangka kerja untuk melaksanakan pengoptimuman ekonomi bagi sistem suapan biogas 

dan mengaplikasikannya pada turbin gas tertentu. Model yang dicadangkan dalam 

penyelidikan ini merangkumi semua langkah dari persediaan masalah hingga 

pemilihan titik optimum akhir. Algoritma genetik telah digunakan untuk mendapatkan 

lengkung Pareto, dan fungsi objektif dinilai dengan pemodelan termodinamik bagi 

sistem. Satu set parameter tanpa dimensi telah diperkenalkan yang mentakrifkan 

dengan lancar korelasi antara semua pembolehubah reka bentuk (pembolehubah 

keputusan) dan objektif optimum (kos jumlah dan kecekapan eksergi). Kemudian 

korelasi antara parameter reka bentuk dan pembolehubah reka bentuk optimum dinilai 

menggunakan metafungsi tertib keempat. Dalam kajian ini, pembolehubah reka bentuk 

adalah nisbah tekanan pemampat, turbin gas dan kecekapan isentropik pemampat, 

suhu salur masuk turbin, dan suhu alur keluar prapemanas. Parameter reka bentuk 

adalah kos bahan api, kuasa bersih dan kandungan metana bahan api. Untuk mencapai 

penyelesaian optimum umum, pendekatan kos bahan api berdasarkan eksergi bahan 

api telah dicadangkan. Pendekatan kos baharu membolehkan pengasingan dan 

penyingkiran pemprosesan bahan api dengan mengambil kira kesan pemprosesan ke 

atas kos bahan api yang mana membolehkan penyelesaian umum untuk turbin gas 

optimum. Masalah reka bentuk telah diselesaikan menggunakan rangka kerja yang 

dibangunkan. Keputusan masalah reka bentuk menunjukkan nisbah kos minimum (cr) 

adalah 3.0 dengan pelepasan spesifik minimum 0.4962 kg/kWj. Jika cr meningkat 

kepada 3.5, pelepasan spesifik minimum akan berkurangan kepada 0.4534 kg/kWj. 

Keputusan menunjukkan bahawa rangka kerja yang dicadangkan mampu 

menyediakan penyelesaian yang optimum untuk pelbagai aras pelepasan CO2, kos dan 

pertimbangan kewangan yang mana pengoptimuman ini tidak dapat ditentukan dengan 

pendekatan terdahulu.
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CHAPTER 1

INTRODUCTION

1.1 Problem background

“At today’s Climate Ambition Summit, I appealed to leaders worldwide to

declare a State of Climate Emergency in their countries until carbon neutrality is 

reached”. UN secretary general, Antonio Guterres 12 December 2020.

Long-time debuted global warming is the state of emergency now and carbon 

neutrality is not a classy dream but a must.

Despite astonishing advances in renewable energy and carbon emission control 

technologies, there are still issues, including but not limited to, economic concerns of 

renewable and carbon neutrality projects. Either the energy source or the technology 

is expensive. In fact, the economic consideration is a huge issue in marketing and 

globalising the green energy solutions and to achieve carbon neutrality and these 

concerns must be addressed. Methods like exergoeconomic optimization and analysis 

are developed to address this issue by considering the cost as well as efficiency to 

reach a feasible solution.

In addition to optimization, the price of energy source is affecting the cost of 

produced energy. Biogas is one of the interesting energy sources which is reasonably 

priced and carbon neutral. In fact, biogas from wastes is a source of methane which is 

ten time more dangerous than carbon dioxide and it is naturally produced from organic 

wastes. So, implementing biogas with exergoeconomic optimization delivers a feasible 

green solution.

However, when it comes to implement the exergoeconomic method on biogas 

fuelled systems, some issues are witnessed which must be addressed. The biogas
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comes from variety of sources and production methods which results in large variation 

of its composition and price. The pricing based on LHV, which is the common method, 

does not account the resource quality and fuel costing based on LHV is not a suitable 

approach.

The second problem which is faced after optimization is that the approach to 

find the optimal solution is not systematic and lacks generality. To the author’s

knowledge, there is no established framework for optimization which leads to a 

general solution on literatures.

The lack of suitable fuel pricing method, and a systematic approach to 

optimization especially in result interpretation are two problems which are observed, 

and this research is focused to address them.

1.2 Problem statement

Biogas is vastly diverse in source and composition. Though mainly consists of 

two components, carbon dioxide and methane, the mole fraction of the components is 

largely affected by the production method and source of biowaste which makes the 

pricing sophisticated. The LHV of the fuel is common method for pricing. However, 

when the LHV is reducing significantly, the physical condition of delivered fuel 

including its pressure become important as well. In this case, using LHV based fuel 

costing ignores other possible sources of physical exergy and results in inappropriate 

fuel costing method which affects the estimated cost of final product of the system.

The current fuel costing is not appropriate to achieve a general optimal 

solution. Firstly, the fuel costing is based on LHV which is inconsistent with the 

exergoeconomic evaluation. Secondly there are plenty of the biogas production and 

fuel processing units, which results in different costs of fuel. The change to fuel costing 

based on exergy allows to treat the fuel as a product of a topping process, and lead to 

a general solution. For all the processing types and units, the economic effect can be 

summarized in the fuel exergy cost.
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1.2.1 Need for an optimization framework

The second problem is lack of systematic optimization framework. While there 

are many optimization studies, no framework is developed which delivers general and 

extendable optimization results as functions of design parameters. For example, if 

design parameters like fuel cost, system size (power demand) and fuel composition 

change, the optimization should be conducted again to obtain the optimal design and 

product cost.

A framework is a structured procedure. The optimization framework is the 

structured methodology of the optimization, which can be applied step by step to 

achieve the goal of optimization. On the exergo-economic optimization, that means 

the steps from the modeling to final optimal point evaluation.

The framework must include the step-by-step structured method to achieve the 

goal of optimization. However, there are some key points in considering the goal of 

optimization:

1- When considering the economy of the plan, the goal of optimization is not 

always the cost minimization. The investment cost, cost of emission and 

other factors are involved in making the final decision on what is the 

optimal cost.

2- The design parameters are susceptible to change that affects the optimal 

point.

3- For each optimal point, one set of design variables exists. If optimal point 

selection and design parameters change, optimal design variables also 

change.

The point expressed above affects the optimization outcome. Currently the 

optimization carried out in following steps in most of cases.
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1- System model development.

2- Setting objectives and design variable.

3- Optimization is conducted.

4- The optimal point is selected. Most used method is equilibrium point which 

is a mathematical concept.

5- The optimal design variables are values for corresponding optimal point 

(objectives).

The main drawback of the mentioned approach is the optimal point selection. 

In most of the cases, the optimal point is selected using a method called equilibrium 

point which is a purely mathematical idea and does not represent any significant 

physical meaning.

In addition, the methods of the optimal point selection normally dismiss the 

fact that all points on pareto frontier are optimal [1]. Points on the pareto frontier are 

optimal costs at given efficiencies or optimal efficiencies at given costs [2&3]. Hence, 

any point on pareto frontier can be the candid of optimal design for certain criteria and 

selecting the point is not simply a mathematical procedure. So, optimization outcome 

should contain all points on pareto and point selection should be excluded.

1.3 Research goal

The goal of this research is to improve the exergoeconomic optimization 

technique in a way that it can be applied on a biogas system with fuel composition and 

cost variations. Also, the improved method should result in general solution which is 

interpretable by different teams involved in decision making.
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1.4 Research objectives

The objectives of the research are:

1. To propose a new fuel costing method based on its’ total exergy and 

analysis its’ effects and compare it with LHV costing method to ensure

its superiority.

2. To introduce new non-dimensional variables for emission, performance 

and decision variables that solve the scattered data issue. This is a 

critical objective that must be achieved, and it is the fundamental block 

of the framework.

3. To develop a new framework for optimization which correlates 

objectives and design parameters to achieve general solutions.

1.5 Scope of study

This study aims to develop an optimization framework for energy systems. 

However, the focus of the current work is on the exergo-economic optimization of 

biogas fueled gas turbine. The system under study is a gas turbine with net power 

output of 1 to 10 MW. This is an industrial range which is suitable for large biogas 

production plants. The focus is on the biogas fuel with main components of CO2 and 

CH4 .

Though the fuel is biogas, emission factor is introduced to extend the generality 

of the framework to the cases which pure methane is added or, the carbon emission 

per unit of product is important even for biogas fuels.

Though the obtained framework is applicable in any optimization problem, but 

the obtained numeric data in this research is only applicable to gas turbines with biogas 

which is mainly consists of carbon dioxide and methane.
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In the economic analysis of the current study, purchase cost of components, the 

O&M and fuel cost is considered. The target is to produce the most work with 

minimal cost of equipment and fuel. There is no carbon mitigation plan, tax intensives 

or other supportive green measures involve in the analysis. This research does not 

deal with any benefit or investment return measures like rate of return or net present 

value. It solely focused on the cost minimization. However, the obtained data is the 

foundation for the desired financial analysis.

The thermodynamic model of the system is carried out at design point. There 

is no off-design calculation as well as operation strategy optimization. The output is 

the best system design for given interest rate and biogas composition.

The scope of this study is not, the optimization of a single case study, but to 

develop a framework and methodology for optimization of energy systems. the 

implementation of the method is presented for a gas turbine optimal design.

In addition, it worth emphasizing that, the scope of the current work is limited 

to design point. Off design calculations and operation strategy optimization is not a 

part of the current work.

1.6 Significance of study

With increasing concerns over the carbon reduction and system optimization, 

a framework for exergo-economic optimization is a necessity. There should be an 

approach which provides general and extendable solutions with a systematic method 

to present and select the optimal point according to quantified and justified cost of 

product, emission, and investment cost.

In addition, the methods of data presentation which are proposed in this 

research solves the issue of scattered pattern in obtained optimal decision variables. 

The dimensionless form of variables defined in this study, provides a clear and smooth 

functionality between the design variables, objectives, and design parameters.
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In addition, the fuel costing method proposed here is based on exergy and is a 

unified resource costing method which allows us to cost all resources on a basic merit 

of exergy delivered. This method of costing solves the issue of case-dependent 

optimization result. This makes the analysis more realistic, generic, and comprehend 

since it involves all the exergy flows and types which enter the system and produce 

the output.
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