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ABSTRACT

Nanofluid is known as an intelligent engineered fluid which consists of 
nanometer-sized particles suspended in a conventional base fluid. The development of 
nanofluid is to enhance the heat transfer capability due to their high thermal 
conductivity which has attracted numerous researchers’ interest. Moreover, the 
implementation of nanofluid in rotating systems has been applied in various fields such 
as engineering field in designing advanced cooling and heating systems and medical 
field in developing the drug delivery in the human body. This thesis presents four 
problems of boundary layer flow with heat transfer in a rotating non-coaxial carbon 
nanofluids. The fluid is considered to be an electrically conducting fluid that flows 
unsteadily through a porous medium over a moving vertical disk. Hence, the effects of 
magnetohydrodynamic and porosity are taken into account. The first and second 
problems are discussed on Newtonian fluid model without and with radiation and mass 
transfer effects. Meanwhile, the third and fourth problems are discussed on Casson 
fluid model without and with radiation and mass transfer effects. In this research, water 
as the Newtonian base fluid and human blood as the Casson base fluid are chosen to 
suspend nanoparticles of single-wall carbon nanotubes (SWCNTs) and multi-wall 
carbon nanotubes (MWCNTs). The dimensional governing equations associated with 
the initial and boundary conditions are converted to the dimensionless form by using 
appropriate dimensionless variables. By using Laplace transform method, the exact 
solutions of velocity, temperature, and concentration profiles are obtained. The impact 
of pertinent parameters such as Casson parameter, Grashof number, modified Grashof 
number, nanoparticle volume fraction, magnetic field, porosity, radiation, the 
amplitude of disk, and time on the nanofluid flow, heat and mass transfer are discussed 
and illustrated graphically. Meanwhile, the skin friction, Nusselt number, and 
Sherwood number are tabulated in tables. The results show that the fluid with radiation 
and mass transfer effects has a higher velocity than the fluid without radiation and 
mass transfer effects. The velocity of Casson nanofluid is higher than Newtonian 
nanofluid. The flow with a radiation effect has a higher temperature than the flow 
without radiation. SWCNTs exhibit a lower velocity profile and a higher temperature 
profile compared to MWCNTs. All the present results are compared to the published 
results, and the validity of the obtained solutions is confirmed when an excellent 
agreement is observed. The exactness of the obtained solutions is verified when the 
comparison of the right-hand side and the left-hand side of the system of equations 
show an identical value.

vi



ABSTRAK

Bendalir nano dikenali sebagai bendalir pintar yang terdiri daripada zarah- 
zarah bersaiz nanometer yang terendam dalam bendalir asas konvensional. 
Pembangunan bendalir nano adalah untuk meningkatkan keupayaan pemindahan haba 
kerana mempunyai tahap kekonduksian yang tinggi yang telah menarik minat ramai 
penyelidik. Selain itu, pelaksanaan bendalir nano di dalam sistem yang berputar telah 
diterapkan dalam pelbagai bidang seperti bidang kejuruteraan dalam membina sistem 
penyejukan dan pemanasan yang canggih dan bidang perubatan dalam mencipta sistem 
penghantaran ubat di dalam tubuh manusia. Tesis ini membentangkan empat 
permasalahan aliran lapisan sempadan dengan pemindahan haba dalam bedalir nano 
yang berputar secara bukan sepaksi. Bendalir ini dianggap sebagai bendalir pengalir 
elektrik yang mengalir secara tidak mantap melalui medium yang berliang di atas 
cakera menegak yang bergerak. Oleh itu, kesan hidrodinamik magnet dan keliangan 
diambil kira. Permasalahan pertama dan kedua membincangkan model bendalir 
Newtonan tanpa dan dengan kesan radiasi dan pemindahan jisim. Manakala, 
permasalahan ketiga dan keempat membincangkan model bendalir Casson tanpa dan 
dengan kesan radiasi dan pemindahan jisim. Dalam kajian ini, air sebagai bendalir asas 
Newtonan dan darah manusia sebagai bendalir asas Casson telah dipilih untuk 
merendam nanopartikel jenis tiub nano karbon dinding tunggal (SWCNTs) dan tiub 
nano karbon dinding pelbagai (MWCNTs). Persamaan menakluk berdimensi yang 
dikaitan dengan syarat awal dan sempadan ditukar kepada bentuk tak berdimensi 
dengan menggunakan pemboleh ubah tak berdimensi yang sesuai. Dengan 
menggunakan kaedah penjelmaan Laplace, penyelesaian tepat bagi profil halaju, suhu, 
dan kepekatan diperoleh. Kesan parameter yang berkaitan seperti parameter Casson, 
nombor Grashof, nombor Grashof yang diubah, pecahan isipadu nanopartikel, medan 
magnet, keliangan, radiasi, amplitud cakera, dan masa terhadap aliran bendalir nano, 
pemindahan haba dan jisim dibincangkan dan digambarkan secara bergraf. Geseran 
kulit, nombor Nusselt, dan nombor Sherwood dijadualkan dalam jadual. Hasil kajian 
menunjukkan bahawa bendalir dengan kesan radiasi dan pemindahan jisim 
mempunyai halaju yang lebih tinggi berbanding dengan bendalir tanpa radiasi dan 
pemindahan jisim. Halaju bendalir nano Casson lebih tinggi daripada bendalir nano 
Newtonan. Aliran dengan kesan radiasi mempunyai suhu yang lebih tinggi berbanding 
dengan aliran tanpa radiasi. SWCNT menunjukkan profil halaju rendah dan profil suhu 
tinggi berbanding MWCNT. Semua keputusan yang ada dibandingkan dengan 
keputusan yang diterbitkan dan kesahan penyelesaian yang diperoleh adalah disahkan 
apabila penyesuaian yang sangat baik diperhatikan. Ketepatan penyelesaian yang 
diperoleh adalah disahkan apabila perbandingan pada sebelah kanan dan kiri sistem 
persamaan menunjukkan nilai yang sama.
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CHAPTER 1

INTRODUCTION

1.1 Preface

This introductory chapter discusses the overview of the study. Section 1.2 

explains some remarks for the background of the research topic on heat and mass 

transfer, nanofluids, carbon nanotubes, fluids, boundary layer theory, rotating flow, 

types of effect, dimensionless parameters and the method of Laplace transform 

involved in the research. In Section 1.3, the research problems in conducting this study 

are highlighted and this study is guided by the given objectives in Section 1.4. The 

scope of research is presented in Section 1.5 and the significance of study is pointed 

out in Section 1.6. Lastly, thesis organization are discussed in Section 1.7.

1.2 Research Background

1.2.1 Heat and Mass Transfer

Heat energy transfer has become a significant process in industry applications 

due to rising demand in manufacturing. Due to that, an essential knowledge subjected 

to heat transfer is required to understand well in heat transfer performance for many 

applications. The knowledge of heat energy transfer includes the methods to enhance 

heating and cooling processes. Enhancing the heating and cooling processes in 

industries will save energy, reduce the processing time, increase the thermal rate, and 

increase the equipment’s lifespan. Heat transfer, also known as flow of heat, is a 

process by which the thermal energy is transferred from one region to another region 

because of the difference of temperature occurred. Truly of heat flow phenomenon, all 

are worked in pervasive way where it can be taken placed between any materials or 

substances that own the unbalance of temperature and the flow is driven from higher
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temperature to a lower temperature. The heat flow results from the cooling of the sun 

become the greatest instance of the process and we have naturally experienced it. Even, 

the earth’s surface is warmed by the cooling of its core and also by the radiation from 

the distant stars. Furthermore, the heat transfer can be classified into three types of 

mode as shown in Figure 1.1 which are conduction, convection and radiation. 

Conduction is defined as transferring of heat exist due to direct contact without 

molecular motion of the substances and the temperature gradient causes the heat to 

flow from a hot to a cold region until thermal equilibrium is achieved. Meanwhile, 

convection is the movement of heat due to the molecular motion of non-uniform 

temperature fluid. This convection heat transfer can only take place between the fluids 

or within a fluid and solid but not between the solids. Another mode of heat transfer is 

radiation by which the heat is transferred through electromagnetic waves without the 

presence of any matter. The temperature gradient is unrequired when the heat is 

transmitted through radiation. Similar concept is adopted in mass transfer where it 

defines as the transportation of mass from one place to another place due to the 

concentration gradients appeared. Just as the heat transfer, the movement of mass also 

diffuses from high concentration region to low concentration region. The significance 

of heat transfer is seemed to be widely explored especially among the emergence 

industries where it can be imposed in producing various heat transfer equipment such 

as heat exchanger, fin fan cooler, cooling towers and radiators.

Basically, the heat and mass can be transferred from one region to another 

region by utilizing different types of convective mechanism which are free, forced and
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mixed convection. In this study, free convection is the main focus, and heat and mass 

are transmitted by this type of mechanism. As we know, free convection also known 

as natural convection, refers to the fluid motion which induced by natural means, 

buoyancy forces and gravity without any external forces like a suction device, fan or 

pump. The arising of buoyancy force in a fluid is driven by the existence of density 

gradients which usually caused by difference of temperature in the fluid. Moreover, 

the velocity of fluid by natural convection is relatively slow compared to another two 

types of convection and thus cause a low heat transfer. However, the transport 

mechanism is called as forced convection when the fluid flow is maintained by 

imposing the external forces due to the friction between the surfaces. The alternate 

situation occurs when the fluid motion is affected by free and forced convections 

simultaneously and thus called as mixed convection.

1.2.2 Nanofluids

Recently, the advancement of heat transfer system among emergence 

industries has created a significant demand for having a new technology, which able 

to improve their heat transfer process. The implementation of nanofluid is an 

alternative for industries to have an efficient heat transfer system. The development on 

nanofluid as a smart heat transfer fluid by dispersing nanoparticles in conventional 

base fluid was initiated by Choi and Eastman (1995). It is good to know that nanofluid 

is a fluid that containing suspended nanoparticles in a base fluid, and it experiences 

two-phase system of a colloidal dispersion which occurs between nanoparticles (solid 

phase) and conventional base fluid (liquid phase). Normally, the conventional base 

fluid such as water, ethylene glycol, kerosene and engine oil have relatively low 

thermal conductivity compared to thermal conductivity of solids, making this fluid to 

has a limited capability of heat transfer. Motivated from this fluid deficiency, the 

nanoparticles, nano-sized material with unique chemical and physical properties like 

metals, metal oxides or carbon, are immersed in this fluid so that the nanofluid thermal 

conductivity enhances, and thus, the process of conduction and convection be more 

effective in transferring heat (Sivashanmugam, 2012; Feng and Kleinstreuer, 2010; 

Khan et al., 2012). The schematic diagram represented the production of nanofluid is 

given in Figure 1.2. The nanofluid is realized to has great properties and play a vital
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role to improve system in transferring heat from one place to another place. In many 

industries, having a low thermal conductivity of fluid become a primary limitation. 

Therefore, nanoparticles are added into the base fluid and this is the most recent 

techniques applied in various areas of industry. As a result, the high thermal 

conductivity of fluid is exhibited and lead to the enhancement of heat transfer.

Water 
Oils 

Ethylene glycol

Metal 
Metal oxide 

Carbcn

C o n ven tio n al base flu id N anop articles | = N an oflu id

Low thermal 
c onductivity fluid

High thermal 
conductivity solid

High thermal 
conductivity fluid

Figure 1.2 Production of nanofluids

1.2.3 Carbon Nanotubes

One of the greatest discoveries in material science history is carbon nanotubes 

(CNTs), which was discovered by a Japanese researcher in the beginning of the 1990s. 

Since the discovery, due to the unique electronic structural and mechanical 

characteristics, CNTs are found as valuable nanoparticles, especially in 

nanotechnology field. CNTs are great conductance which is highly sought in medical 

applications. They have been used as drug carriers, biomedical imaging, and have 

benefited cancer therapy treatments. Mainly, carbon nanotubes can be found in two 

types, which are single-wall carbon nanotubes (SWCNTs) and multi-wall carbon 

nanotubes (MWCNTs). Specifically, SWCNTs is known as the cylindrical tubes that 

made up by a single layer of 0.4-3nm diameter of graphene sheet, while MWCNTs are 

structured by a group of nested tubes with multi-layer of graphene sheet and have 

diameter in range of 0.4 to 30nm (Ellahi etal., 2015; Nasir et a l, 2019). The overview 

of their structure is depicted in Figure 1.3. The most interesting part of CNTs is that 

they have an extremely strong form of molecular interaction, which chemically bonded 

each other. This unique feature comes with the van der Waals forces roping them 

together and providing the opportunity to develop ultra-high strength, low-weight 

materials that have highly conductive electrical and thermal properties. All these 

properties make carbon nanotubes as the most suitable materials for electronic devices

4



like sensor, transistor, lithium-ion batteries, electrostatic discharge (ESD) and 

el ectri cal - shi el ding appli cati ons.

graphene MWCNT

Figure 1.3 Structure of single-wall carbon nanotubes (SWCNTs) and multi-wall 
carbon nanotubes (MWCNTs) (Vidu et al., 2014)

1.2.4 Fluids

Fluid is the most crucial phase that brings a huge responsibility in convective 

heat transfer and also where the motion of flow will be affected on. This fluid can be 

found in two types of fluid which are Newtonian and non-Newtonian fluids. 

Newtonian fluid is known as fluid that follows the Newton’s Law of viscosity. The 

equivalent saying to this fact is that its flow behavior can be described with a simple 

linear relation between shear stress and shear rates. Some examples of Newtonian 

fluids are water, benzene, hexane and organic solvents. Normally, the viscosity of this 

fluid only depends on the temperature and pressure where it can be seen that its 

proportionality constant is being the coefficient of viscosity. This directly implies that 

the viscosity of Newtonian fluid remains unchanged and does not influence by the 

amount of the force applied on the fluid. However, the opposite fact is found in non- 

Newtonian fluid where its viscosity is an applied stress and force dependent variable. 

The non-Newtonian fluid viscosity can change either to be more liquids or more solids 

which all depend on the amount of force applied. This kind of physical behavior is 

commonly exhibited by substances that have an unfixed coefficient of viscosity such 

as cornstarch, paint, honey, tomato sauces, blood and polymer solution.
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Casson fluid is one of the fluid models for non-Newtonian fluid and it behaves 

as viscoplastic fluid as shown in Figure 1.4. The flow behavior of this fluid is 

characterized by the effect of shear thinning and the existence of a yield stress. The 

shear thinning fluid is described by a non-uniform of viscosity (the slope of shear stress 

versus shear rate curve) where the slope (viscosity) is seemed to decrease when the 

shear rates increase as in Figure 1.5. A clear illustration of viscosity versus shear rates 

for different types of fluid is also demonstrated in Figure 1.6. The yield stress in Figure

1.4 is defined as the minimum shear stress for a solid to undergo the permanent 

deformation or plastic flow. Many researchers have viewed the yield stress for a 

viscoplastic fluid as the marking point for the transition from solid to plastic behavior 

(the reaction does not return to their original when the applied forces are removed). 

More precisely, the viscoplastic fluid tends to exhibit both solid and plastic properties 

which are greatly depend on the applied shear stress. The fluid behaves as a likely solid 

phase (high viscosity) when the yield stress is greater than applied shear stress. 

Meanwhile, the fluid starts to flow when the applied shear stress is greater than yield 

stress (Irgens, 2014). It is more exciting when Casson fluid is found as the most 

relevant model to describe the characteristics of human blood. Due to its unique 

characteristic, it becomes the most interesting part of our nature to be explored. When 

the human blood flows through a large diameter of arteries with a high shear rate, this 

phenomenon indicates that the blood exhibits the non-Newtonian fluid’s properties. 

Sometimes, the blood also behaves as the Newtonian fluid and this happened when it 

flows through small diameter of arteries with low shear rates. In addition to the 

characteristics of human blood, the composition of high volume (91%) of water 

together with the protein, hormones and glucose in human body has caused the blood 

to behave like Newtonian properties at the certain human body temperature (Earl and 

Mohammadi, 2018). Due to the incredibly high-water content, the viscosity of the 

blood is highly affected by the hydration level in human body. Once the body 

dehydrated, the blood becomes more viscous and the non-Newtonian properties is 

almost exhibited.
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Figure 1.6  The viscosity of Newtonian, Shear thickening and Shear thinning fluids
as a function of shear rate
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1.2.5 Boundary Layer Theory

The mathematical problems associated with the solutions of the equations of 

motions, energy and concentration have promoted researchers to develop concepts that 

lead to the simplification of these equations. Hence, the boundary layer concept is most 

successful in achieving simplification of the equation of motion, energy and 

concentration and has been applied to large variety of practical situations. In boundary 

layer concept, the flow over a body is divided into two regions: i) a very thin layer in 

the neighborhood of the body, called the boundary layer, where the velocity and 

temperature gradients are steep; and ii) the region outside the boundary layer, called 

external flow region, where the velocity, temperature and concentration gradients are 

small. In general, the boundary layer concept provides a good description of the 

velocity, temperature and concentration fields.

1.2.6 Rotating Flow

Apart from that, when discussing the subject of fluid flow and heat transfer, a 

rotating fluid is an attractive phenomenon that can affect the fluid motion in 

transferring heat. Basically, the theory on rotating fluid is adapted critically on 

understanding and predicting the flow of phenomena on earth surface, especially at 

large scale atmospheric and oceanic flows. Rotating fluid theory is important to 

explain and describe the mathematical models of rotating flow which are used to study 

the fluid motion. Even, this model can be widely explored in various field of science 

and engineering, providing model in rotating geophysical flow which usually depend 

on the earth rotation and also producing an axial flow of turbo fan jet engine. 

Moreover, it is very useful to study on fluid motion of rotating fluids as they have 

numerous physical features in common, and the understanding of this features can 

often be aided by the use of a common set of mathematical techniques. For instances, 

the vortices produced in a flow along the channel, the secondary flows induced for 

flow around a bend and wing-tip vortices caused the downstream of a wing. When 

discussing on rotating fluid models, the Coriolis force arises when equations of motion 

are written in rotating system and it is certainly important in comparison of inertial and 

viscous forces. Besides that, Coriolis force in fluid also plays a significant role in



determining the differences between dynamics of non-rotating and rotating fluids. An 

apparent deflection of moving objects within an opposite direction of rotating frame is 

called as the effect of the Coriolis force and the objects are seem to deviate from its 

path due to the motion of frame. Results from literature review, the rotation of fluid 

can be found in two types which are coaxial rotation and non-coaxial rotation. Coaxial 

rotation is defined as the fluid that sharing the same axis of rotation on a straight line. 

Meanwhile, non-coaxial rotation is known as the two fluid flows which rotating on 

their respective axes separated by a distance noted as length.

1.2.7 Types of Effect

1.2.7.1 Porosity

In addition to the flow regimes of a fluid and heat transfer, the fluid motion is 

also highly affected by the condition of the passed medium. In this study, the porous 

condition of a medium is considered. A porous medium is defined as the medium that 

containing pores and its skeleton is usually be in a solid phase. The characteristic of a 

porous medium varies, depend on the size of the pores, the porosity and the 

compositions of medium itself. The porosity is known as the ratio of the volume 

occupied by the effective voids to the total volume of the medium. Moreover, the 

porous medium is also influenced by its permeability, whereby it will affect the ability 

of a fluid to flow passing through the pores. In other words, the more permeable of the 

porous medium, then the flow of fluid passing through its pores be easier. The study 

of fluid flow subjected to porous medium has received significant attention from 

number of researchers due to its broad applications in scientific and engineering fields. 

The model of flow in porous medium plays an important role in petroleum engineering 

to study the motion of natural gas, water and oil through the oil reservoirs as well as 

in chemical engineering for the purpose of filtration and water purification process. In 

light of its importance, a cluster of studies subjected to this field has been done, 

including Ali et al. (2016), Chaudhary and Jain (2010), Shah et al. (2019), Krishna et 

al. (2020) and Krishna and Chamkha (2019).
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1.2.7.2 Magnetohydrodynamics (MHD)

The other factor influencing the movement of fluid flow is magnetic fields. 

They are commonly found in many natural and man-made flows. Their applications 

also encountered in many industries for the purpose of heating, pumping, stirring and 

levitating liquid metals. There is the terrestrial magnetic field which is maintained by 

fluid motion in the earth's core, the solar magnetic field which generates sunspots and 

solar flares, and the galactic magnetic field which is thought to influence the formation 

of stars from interstellar clouds. The study of these flow is called as 

magnetohydrodynamics (MHD) (Davidson, 2002). Specifically, the word 

magnetohydrodynamics is actually come from the combination of three terms, which 

are magneto means magnetic field, hydro means water and dynamics means 

movements. The MHD flow is the magnetic fields which can induce currents in a 

moving conductive fluid. Liquid metals, plasmas and electrolytes are all important 

examples of MHD fluids. In MHD flows, there exists Lorentz force which has been 

used to regulate the variety of flow regimes. The applications of MHD flow can be 

found in propulsion systems, energy generators, smart spacecraft landing gear systems, 

hydrogen production with solar MHD plants, plasma fusion technology, nuclear 

thermal control systems, MHD chemical reactor processing and biomagnetic reactors 

(Das and Jana, 2014).

1.2.8 Dimensionless Parameters

1.2.8.1 Prandtl number

Prandtl number (Pr) is a dimensionless number, named after its inventor, a

German engineer Ludwig Prandtl, who also identified the boundary layer. The Prandtl 

number is defined as the ratio of momentum diffusivity to thermal diffusivity. The 

momentum diffusivity, or as it is normally called, kinematic viscosity, denoted the 

material’s resistance to shear-flows in relation to density. The Prandtl number is given 

as

10
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where vf  is the kinematic viscosity (momentum diffusivity) and af  is the thermal 

diffusivity of the fluid. Meanwhile, /if , p , , kf  and ( p i ^ ) ^  are the dynamic 

viscosity, density, thermal conductivity and heat capacitance of the fluid.

1.2.8.2 Schmidt number

Schmidt number (Sc)  is a dimensionless number, named after the German

engineer Ernst Heinrich Wilhelm Schmidt (1892-1975). The Schmidt number is 

defined as the ratio of momentum diffusivity (kinematic viscosity) and mass 

diffusivity, and is used to characterize the fluid flows in which there are simultaneous 

momentum and mass diffusion convection processes. The Schmidt number describes 

the mass momentum transfer and the equation is given as

Sc = JT  (1-2)
u f

where D f is mass diffusivity of the fluid.

1.2.8.3 Grashof number and modified Grashof number

Grashof number (Gr) is a dimensionless number, named after Franz Grashof

and it is defined as the ratio of the buoyancy force to viscous force acting on a fluid in 

the velocity boundary layer. Its role in natural convection is the same as that of the 

Reynold number in forced convection. In heat and mass transfer, natural convection is 

caused by a change in density of a fluid due to a temperature and concentration change 

or gradient. The Grashof number (Gr) and modified Grashof number (Gm)  are 

respectively defined as

11



(1.3)

(1.4)

where is (PT)f  thermal coefficient expansion, gx is gravitational due to an

acceleration, Q angular velocity, £ distance, Tw and I , are wall and free stream 

temperature, (Pc )f  is concentration coefficient expansion, Cw and Cw are wall and 

free stream concentration.

1.2.8.4 Magnetic field parameter

The magnetic field parameter (ov j is investigated in this study due to 

consideration of MHD effect and it can be mathematically defined as

where a f  is electrically conductivity of fluid, B02 is the strength of the magnetic field, 

Q is uniform angular velocity and p f  density of fluid.

1.2.8.5 Porosity parameter

The porosity parameter (K ) is investigated due to the consideration of porous 

medium and can be defined as

1 v f
K  L Q ,’

( 1.6)
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where vf  is the kinematic viscosity of fluid, kx is the permeability of porous medium

and Q is uniform angular velocity.

1.2.8.6 Radiation parameter

In this study, the transportation of heat is also induced by the thermal radiation 

and this leads to the investigation of radiation parameter. Its mathematical expression 

is defined as

the mean absorption coefficient and kf  the thermal conductivity of fluid.

1.2.9 Laplace Transform Method

Various analytical methods are available for the exact solutions. Amongst 

them, the Laplace transform method is beneficial for linear differential equations with 

constant coefficient subject to given conditions called initial and boundary conditions. 

Exact solutions are considerably important as this could be a verification and 

benchmark for other solution obtained by numerical and approximate methods. The 

Laplace transform is a powerful tool in applied mathematics and engineering which 

particularly useful in solving linear ordinary differential equations that involve the 

functions with respect to time. Since the present problems will be involved this 

function, therefore the Laplace transform method (A French mathematician namely 

Pierre-Simon de Laplace was the inventor of this method) is chosen to solve these 

problems. This method transforms a given problem to one that easier to be solved by 

converting the ordinary differential equations in time t domain into algebraic 

equations in the q domain. Mathematically,

(1.7)

where is cr* the Stefan-Boltzmann constant, 7 /  is the free stream temperature, k* is

co

£  {/(<)! = \ e q' f ( t )dt ,
( 1.8)0

= F ( q \
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where is Laplace transform parameter. After that, the solutions are transformed back 

to the function of t by using the inverse Laplace transform as F(t) = £  1 { / '(q ) \ .

Furthermore, in some cases, it is difficult to find the inverse Laplace transform for a 

complicated transformed function. In such situation, the formulae used to inverse back 

the Laplace solution is presented in the Appendix A.

1.3 Problem Statement

The main work of this research is to study the behavior of heat and mass 

transfer in free convection flow of carbon nanotubes on nanofluid induced by non­

coaxial rotation of moving vertical disk. Focus of the research is to investigate the 

impact of carbon nanotubes on the nanofluid motion and heat transfer, where have 

been specifically conducted on two types of base fluid which are Newtonian and 

Casson fluids. Conducting this research will explore the following questions.

(i) How does the mathematical model behave in the problem of unsteady free 

convection flow of carbon nanotubes on Newtonian and Casson nanofluids in 

non-coaxial rotation?

(ii) How can the exact solutions for complicated free convection flow for the 

proposed nanofluid model be obtained?

(iii)How do the physical parameters embedded in the nanofluid flow models 

affect the behaviors of velocity, temperature and concentration profiles as 

well as skin friction, Nusselt and Sherwood numbers?

14



1.4 Objectives of the Research

The main objectives of this study are:

(i) To construct the mathematical model by extending appropriate governing 

momentum, energy and mass equations of non-coaxial rotation nanofluid 

subjected to the suitable initial and boundary conditions,

(ii) To obtain the exact solutions for the velocity, temperature and concentration 

profiles by using Laplace transform method,

(iii)To analyze graphically the impact of difference physical parameters on the 

behavior of the velocity, temperature and concentration profiles,

(iv)To compute Nusselt number, skin friction and Sherwood number for the 
problem,

(v) To compare the obtained solutions with published results and numerical 

coding in order to verify the validity of results.

for the following problems

1. Non-coaxial rotation of MHD Newtonian nanofluid flow in a porous medium 

past a moving vertical disk with heat transfer effect.

2. Radiative non-coaxial rotation of MHD Newtonian nanofluid flow in a porous 

medium past a moving vertical disk with heat and mass transfer effects.

3. Non-coaxial rotation of MHD Casson nanofluid flow in a porous medium past 

a moving vertical disk with heat transfer effect.

4. Radiative non-coaxial rotation of MHD Casson nanofluid flow in a porous 

medium past a moving vertical disk with heat and mass transfer effects.
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1.5 Scopes of the Research

This research focusses on the heat and mass transfer effect of non-coaxial 

rotation in unsteady free convection flow for nanofluid which specifically synthesize 

in two different types of based fluid. In this problem, carbon nanotubes are going to 

be the nanoparticles that suspended in Newtonian and Casson fluids as the base fluid. 

The first two problems of Newtonian carbon nanotubes are focused on fluid motion 

induced by the heat transfer as well as heat and mass transfer together with the 

radiation, magnetic and porosity effects. While, the next two problems tackle the same 

focus as the first two problems but considering of Casson carbon nanotubes. The model 

of this problem is modelled by governing non-coaxial momentum, energy and mass 

equations for nanofluid with associated initial and boundary conditions based on 

proposed model. This system of equations is transformed into a set of dimensionless 

partial differential equation by introducing suitable dimensionless variables. The 

resulted dimensionless system of equations is then solved by using Laplace transform 

method. The skin friction, Nusselt number and Sherwood number are also evaluated. 

The exact solutions of temperature, velocity and concentration profiles are graphically 

plotted by using Mathcad coupled with comprehensive discussion. In order to check 

for accuracy, the present results will be compared with the published work in the 

literature.

1.6 Significance of the Research

The results obtained from this project are significant because of the following 
reasons.

(i) To build a better understanding on the rheological behavior of non-coaxial 

rotation of fluid flows in carbon nanotubes,

(ii) To enhance the knowledge on the heat and mass transfers characteristics in 

rotating nanofluid,
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(iii)To give insight on the physical behavior of non-coaxial rotation of fluid flows 

affected by free convection phenomenon,

(iv)To introduce new knowledge of theoretical study that can be a good reference 

to researchers, engineering applications and education,

(v) These exact solutions can be used as a check of correctness for the solutions of 

more complex mathematical models obtained through numerical schemes.

1.7 Thesis Organization

This thesis consists of eight chapters which begins with the introductory 

chapter, Chapter 1. This chapter highlights some definitions for the terms related to 

the research topic and followed by the problem statements, objectives of the research, 

scopes of the research, significance of the research and thesis organization. Chapter 2 

discusses on the literature reviews that related to the research topic. The following 

Chapter 3 provides the research methodology and derivation of governing momentum, 

energy and concentration equation for the non-coaxial rotation of unsteady Casson 

nanofluid flow with heat and mass transfer phenomenon. A boundary condition for 

moving disk together with the effects of radiation, magnetic field and porosity are 

taken into consideration in deriving the formulation.

Chapter 4 presents on the non-coaxial rotation of MHD Newtonian nanofluid 

flow in a porous medium past a moving vertical disk with heat transfer effect. Water 

is considered as the Newtonian base fluid and both types of carbon nanotubes 

(SWCNTs and MWCNTs) are chosen as the dispersing nanoparticles. The 

dimensional governing equations with their initial and boundary conditions are 

transformed to the dimensionless form by using suitable dimensionless variables. The 

exact solutions for this problem are solved analytically using the Laplace transform 

method. The impacts of embedded parameters on the velocity and temperature profiles 

are illustrated graphically using Mathcad software. The skin friction and Nusselt 

number are computed. Two ways of validation are conducted by which the previous
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study published by Mohamad et al. (2016) and numerical Gaver-Stehfest algorithm 

are used as the benchmarks to check the accuracy of the obtained solutions.

Chapter 5 provides an extension to the previous problem in Chapter 4, where 

the effects of radiation, heat and mass transfer are included. Following the similar 

procedure, new velocity, temperature and concentration profiles are obtained and 

plotted graphically in order to investigate the effects of related parameters. The skin 

friction, Nusselt number and Sherwood number are evaluated based on the resulting 

solution. The similar validation is also carried out. After that, Chapter 6  presents the 

similar problem as in Chapter 4 but different in the type of fluid model. This chapter 

has considered Casson fluid model and uses human blood as the base fluid. 

Meanwhile, the involved nanoparticles and the method use to solve the problem 

remain the same. A new expression of skin friction for Casson nanofluid is defined. 

Chapter 7 discusses on the similar problem in Chapter 5 but replacing the Newtonian 

nanofluid model to Casson nanofluid model. The last chapter is Chapter 8  where the 

summary of the research together with the future research suggestions are presented. 

References and appendixes are listed at end of this thesis.
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