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ABSTRACT 

Selection of potential bacteria and identification of their type of oil recovery 

mechanisms are keys to in-situ Microbial Enhanced Oil Recovery (MEOR) process. 

However, bacterial survivability, adaptability and functionality under oil reservoir 

environment has never been evaluated as a complete set for this process. As a 

consequence, mechanism of the potential bacteria to assist oil recovery became 

unpredictable and their performance are inconsistent under oil reservoir condition. 

Therefore, this study aimed to evaluate selected bacteria as MEOR agents based on 

their survivability, adaptability and functionality in hydrocarbon-rich conditions. The 

study was executed in the hydrocarbon-rich conditions to emulate the hydrocarbon 

contents of oil reservoir. Conducted analyses in batch experiments involved: 1) 

analysis of bacterial growth; 2) bacterial cell physiology and behaviour 

characterization; 3) in-situ monitoring of biofilm/ biofloc/ biosurfactant formation and 

4) substrate utilization. The substrates were selected from different types of polycyclic 

aromatic hydrocarbons (PAHs: naphthalene and pyrene) with different concentrations 

(0.1 and 10 g/L). In addition, flow experiments utilising paraffin oil in porous media 

(micromodel and glass-bead packed column) were conducted with the purpose of 

validating the function of potential bacteria as MEOR agent in bacterial flooding test. 

Results from the experiments were statistically examined with single factorial, general 

and two-level (2k) factorial design. Three strains of Bacillus licheniformis coded M1, 

Ta62bi and P6 were selected as potential MEOR agents. Results from batch 

experiments showed that strains M1 and Ta62bi acted as plugging agent whereas strain 

P6 functioned as emulsification-like agent in pyrene-rich medium. However, the flow 

experiments revealed only strains M1 and P6 consistently showed features similar to 

findings from batch experiments. The plugging effects of strain Ta62bi was most 

probably due to production of gas and not formation of biofilm. Nevertheless, these 

strains exhibited average oil recovery efficiency (%) of 31.2 ± 7.0 (Ta62bi), 34.8 ± 3.4 

(M1) and 36.0 ± 5.7 (P6) from the remaining oil in column study. In conclusion, these 

selected bacteria were able to recover residual oil, but through different types of oil 

recovery mechanisms. Findings from this study have contributed to better 

understanding of bacterial application and to improving the evaluation strategy of 

potential bacteria selection for in-situ MEOR process.  
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ABSTRAK 

Pemilihan bakteria berpotensi dan pengenalpastian mekanisma pungutan 

minyak pada skala makmal adalah kunci kepada proses Pungutan Minyak Berasaskan 

Mikrob (MEOR) secara in-situ. Walau bagaimanapun, daya hidup, penyesuaian dan 

kefungsian bakteria dalam keadaan telaga minyak tidak pernah dinilai sepenuhnya 

untuk proses ini. Akibatnya, mekanisma bakteria berpotensi dalam membantu 

pungutan minyak masih sukar dijangka dan prestasi mereka tidak tekal pada keadaan 

telaga minyak. Oleh itu, kajian ini bertujuan untuk menilai potensi bakteria sebagai 

agen MEOR berdasarkan kebolehan untuk terus hidup, menyesuaikan diri dan fungsi 

mereka pada keadaan hidrokarbon tinggi. Kajian ini dijalankan dalam keadaan 

hidrokarbon tinggi untuk meniru kandungan hidrokarbon telaga minyak. Analisis yang 

dijalankan dalam eksperimen sesekelompok melibatkan: 1) analisa pertumbuhan 

bakteria: 2) ciri-ciri fisiologi dan perilaku sel bakteria: 3) pemantauan pembentukkan 

biofilm/ bioflok/ biosurfaktan secara in-situ dan 4) penggunaan substrat. Substrat 

dipilih daripada dua jenis polisiklik aromatik hidrokarbons (PAHs: naftalin dan 

pyrene) dan berkepekatan yang berbeza (0.1 dan 10 g/L (w/v)). Eksperimen aliran pula 

menggunakan minyak parafin dalam media berliang (mikromodel dan turus padat 

bermanik kaca) yang bertujuan untuk mengesahkan fungsi bakteria yang berpotensi 

sebagai agen MEOR dalam ujian pembanjiran bakteria. Hasil kajian daripada 

eksperimen-eksperimen tersebut dianalisa secara statistik menggunakan reka bentuk 

faktor tunggal, umum dan dua-aras. Tiga strain Bacillus licheniformis berkod M1, 

Ta62bi and P6 telah dipilih sebagai agen MEOR yang berpotensi. Dapatan daripada 

eksperimen sesekelompok menunjukkan strain M1 dan Ta62bi sebagai agen plak 

manakala strain P6 berfungsi seperti agen emulsifikasi dalam medium kaya pyrene. 

Walaubagaimanapun eksperimen aliran membuktikan hanya strain M1 dan P6 secara 

konsisten menunjukkan ciri-ciri yang sama dengan dapatan daripada eksperimen 

sesekelompok. Manakala, kesan plak pada strain Ta62bi kemungkinan besar 

disebabkan oleh penghasilan gas dan bukan pembentukan biofilm. Sekurang-

kurangnya, strain-strain ini menunjukkan purata kecekapan peningkatan (%) 31.2 ± 

7.0 (Ta62bi), 34.8 ± 3.4 (M1) dan 36.0 ± 5.7 (P6) baki minyak terperangkap dalam 

kajian turus. Kesimpulannya, bakteria yang terpilih ini berkebolehan untuk memungut 

baki minyak terperangkap, tetapi menggunakan jenis mekanisma pemungutan minyak 

yang berlainan. Hasil kajian telah menyumbang kepada pemahaman aplikasi bakteria 

yang lebih baik dan menambahbaikkan strategi penilaian untuk pemilihan bakteria 

yang berpotensi dalam proses MEOR secara in-situ. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research background 

Microbial Enhanced Oil Recovery (MEOR) is one of bioprocess technology in 

petroleum industry for oil exploration and production (Singh et al., 2012; Bachmann 

et al., 2014). The technology involves stimulating indigenous reservoir microbes or 

injecting specially selected consortia of natural bacteria into the reservoir to produce 

specific metabolic events that lead to improved oil recovery (Sen, 2008). There are 

two ways where bacteria can be applied for oil recovery known as ex-situ and in-situ 

processes. Both processes involve bacterial metabolites such as surfactants, 

polysaccharides and other products that facilitate oil recovery. However, the ex-situ 

MEOR process requires more intensive capital and labour compared to in-situ MEOR 

process due to the dependency of the former process to the conventional fermentation 

techniques for the production of bacterial metabolites that were then are injected into 

the reservoir (Sarkar et al., 1989; Volk and Hendry, 2010). 

Alternatively, in-situ MEOR process is less expensive and allows flexible 

production conditions. The process involves direct use of nutrients and/ or bacteria that 

are injected either sequentially or simultaneously into the reservoir (Lazar et al., 2007; 

Banat et al., 2010; Gudiña et al., 2012b). The application of in-situ MEOR is 

dependent on the certain activities of living microorganisms that gave effect to the 

reservoir environment and flow properties of oil, which facilitate the oil’s transport 

(Sarkar et al., 1989; Sen 2008; Halim et al., 2017).  

The physiological and behavioural properties of the bacteria play major role in 

affecting growth, metabolism and metabolite production within porous rock. 

Beneficial metabolites such as biofilms/ biosurfactants/ biopolymer could assist oil 

recovery particularly for problematic reservoir with heterogenous permeability issue. 
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Permeability of a reservoir relates the ability to transmit a particular fluid such as water 

though rock when other immiscible fluids such as oil are present in the reservoir. 

However, when the injected water is preferentially flows through high permeablity 

layers, residual oil remains unrecovered and trapped at the low permeablity layers, 

(Youssef et al., 2009; Karambeigi et al., 2013).  

Strategies used to remedy the rock permeability problems have included the 

use of biopolymer and bacterial biomass (Lazar et al., 2007). The biopolymer could 

increase the viscosity of flood water or act as biosurfactants which would decrease the 

interfacial tension between oil and water. As a result, it could increase the capillary 

number and improve oil recovery (Patel et al., 2015). On the other hand, bacterial 

biomass (bacterial cells) able to form plugs, that would potentially aid in diversion of 

fluids into low permeable zones (Karambeigi et al., 2013). This type of oil recovery 

mechanism is known as selective plugging mechanism or bacterial profile 

modification (Jeong et al., 2018). 

However, the current state of knowledge provides limited proofs and details on 

the parameters that affect the in-situ MEOR processes. Thus, it is impossible to 

elucidate clearly the function of bacteria and their mechanism in enhancing oil 

recovery (Maudgalya et al., 2007; Brown, 2010; Rassenfoss, 2011; Head and Gray, 

2016). This limitation is contributed from the difficulties to study the microbiological, 

physical and chemical aspects of the oil reservoir (Kaster et al., 2012; Head and Gray, 

2016; Klueglein et al., 2016), thus, leading to the uncertainty and misinterpretation of 

data in describing the role of microbes in the system (Wolicka and Borkowski, 2012). 

As a result, the success of in-situ MEOR approach is not implicitly sustained and 

thoroughly studied (Brown, 2010; Head and Gray 2016). 

This present study aims to evaluate potential bacteria as MEOR agents under 

oil reservoir conditions. The evaluation is mainly in selection of potential bacteria and 

identification of their type of oil recovery mechanism. The gained knowledge may 

improve understanding of bacterial applications for in-situ MEOR process and 

improvise evaluation strategy particularly at the laboratory scale.  
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1.2 Problem statement 

The in-situ MEOR process starts from selection of potential bacteria at the 

laboratory scale (Gao, 2018). It was then followed by the proposal of bacterial 

dominant type of oil recovery mechanism based on batch and flow experiments 

(Gudiña et al., 2013; Halim et al., 2017; Couto et al., 2018). However, the 

survivability, adaptability and functionality of the potential bacteria have not been 

fully revealed and proven under oil reservoir environment.  

Several case studies have shown that the potential bacteria did survive under 

high temperature, wide range of pH, salinity concentrations and other extreme given 

conditions (Suthar et al, 2009; Nerurkar et al., 2012; Halim et al., 2017 and Coute et 

al., 2018). However, the bacterial functionality to assist oil recovery is not completely 

demonstrated. In fact, only column study is implemented to represent flow experiment. 

In contrast, other case study have successfully showed the potential of selected bacteria 

to function as MEOR agent in column and micromodel studies (Lappan and Fogler, 

1994; Steward and Fogler, 2001; Gandler et al., 2006; Khan et al., 2008) though the 

bacteria was not able to survive under extreme conditions.  

From the many case studies reported in literatures, it can be concluded that the 

evaluation of in-situ MEOR process is not emphasized on bacterial physiology and 

behaviour though these properties significantly contribute to the adaptation of bacteria 

in oil reservoir conditions (Gandler et al., 2006; Khan et al., 2008; Nerurkar et al., 

2012; Halim et al., 2017 and Coute et al., 2018). As a consequence, the behaviour of 

selected bacterial is known to be unpredictable and their performances are inconsistent 

in assisting oil recovery under oil reservoir condition (Maudgalya et al., 2007; Brown, 

2010; Singh et al., 2012). The situation is identified as one of the main reasons why 

MEOR method is not widely acceptable by the oil industry (Maudgalya et al., 2007; 

Sen, 2008; Brown, 2010; Al-Sulaimani et al., 2011). 

This study was designed as an initial step to develop an understanding for an 

elucidation of the role of single bacteria in enhance oil recovery. It is hypothesized that 

oil reservoir conditions would induce the survived cells to activate their adaptation 
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1.4 Research objectives 

Based on the research background and the problem statement, the research 

objectives for this study are: 

(1) To select potential bacteria as Microbial Enhanced Oil Recovery (MEOR) 

agents based on their survivability and physiological characterizations under 

hydrocarbon-rich conditions 

(2) To identify the dominant type of oil recovery mechanism by the selected 

bacteria in a chosen type and concentration of hydrocarbon-rich medium 

(3) To validate the selected bacterial performance and their dominant type of oil 

recovery mechanism in bacterial flooding test  

 

1.5 Research scope 

This research primarily covers interaction of fluid, geological and biological 

part of oil reservoir that contribute to the achievement of research objectives. This was 

an attempt to mimic some of important reservoir condition in order to evaluate 

potential bacterial growth, physiology and behaviour for in-situ MEOR process. The 

condition were mainly developed by establishing hydrocarbon-rich conditions in batch 

and flow experiments.  

Two phases of fluids used in this study: (1) Hydrocarbon (2) Aqueous phase. 

The aqueous phase was referring to type of medium used (Bushnell-Hass (BH) broth 

or brine solution). On the other hand, the hydrocarbon phase was referring to either 

polycyclic aromatic hydrocarbons (PAHs) or paraffin oil. The PAHs are parts of the 

aromatic chain in the paraffin oil. Both are constituent of hydrocarbons in oil reservoir 

(Wolicka et al., 2010).  
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In this study, the PAHs would represent hydrocarbon models in order to select 

potential bacteria and to reveal their type of adaptation strategy. The PAHs were varied 

in term of type (naphthalene and pyrene) and concentrations (0.1 and 10 g/L (w/v)), 

respectively. Bushnell-Hass broth medium was used as aqueous phase to accompany 

the given type and concentration of PAH, respectively.  

Another type of hydrocarbon was paraffin oil. It was combined with brine 

solution as aqueous phase for bacterial flooding test. In batch experiments, the brine 

solution was studied in two concentrations (2 % and 4 % (w/v)), respectively at 

different temperature (37 °C and 50 °C) in order to assess bacterial growth in paraffin 

oil. The batch experiments were carried out in flasks and simple flow cell at 37 °C 

under facultative aerobic condition, except that for the compatibility test in paraffin oil 

was carried out at 50 °C. The temperature of 37 °C and aeration condition was chosen 

according to the temperature commonly used in the study (Fareh, 2008 and Zulkefli, 

2014) for growth of the selected bacteria. The outcome eventually determine the 

related parameters for flow experiments.  

The flow experiments were carried out at room temperature (25 °C to 30 °C) 

except at shut-in phase, which was at 37 °C. The experiments were using paraffin oil 

and applying Cyclic Microbial Recovery (CMR) as a strategy for employed inocula 

injection in bacterial flooding test. No additional substrate was introduced in the 

inocula injection since the paraffin oil was acted as hydrocarbon phase as well as 

substrate. 

A few procedures were applied to highlight bacterial cells’ ability to taxis 

during the flow experiments. For instance, bacterial flooding phase and recovery phase 

was applied at low flow rate (0.33 ml/min). It was considered as approximately similar 

to liquid movement in oil reservoir (2 fts/day). Thus, the movements of bacterial cells 

were most probably due to their taxis ability, not by gravity force and given flow rate. 

Additionally, heterogeneous permeability condition as geological condition of 

problematic oil reservoir was established in the apparatus of the flow experiments. The 

condition was conveyed in the construction of two types of porous media: (1) Glass-
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research significance, research objectives and research scope. Finally it was concluded 

with thesis structure.  

Chapter Two aimed to review and analyse strength and weakness of potential 

bacterial evaluation as MEOR agent. The review was initiated with research 

background which covered three main recovery phases of oil production. One of the 

oil production phase was tertiary phase that also known as Enhanced Oil Recovery 

(EOR). The description of EOR methods led to the research area, which was the in-

situ MEOR process. Then, this chapter examined strength and weakness of theory, 

methodology and practice to evaluate potential MEOR agents at the laboratory scale. 

Besides, this chapter also assessed the impact of hydrocarbon-rich conditions to screen 

potential bacterial as MEOR agents. In the end, a theoretical framework and a related 

conceptual framework were constructed in order to formulate research operational 

framework.  

Chapter Three comprised of operational framework and described the overall 

materials and methods for this study. The proposed research operational framework 

described in Chapter Three was implemented and discussed comprehensively in 

Chapter Four until Chapter Six. These chapters started with introduction section of 

their contents which includes the objective of each chapter. Then, the section was 

followed by explanations of research methodology that supported by flow of research 

activities according to the aim of each chapters.  

Chapter Four presented selection phase of potential bacteria as MEOR agents 

under hydrocarbon-rich conditions. Chapter Five proposed dominant type of oil 

recovery mechanism by the selected bacterial agents in chosen hydrocarbon-rich 

medium. Chapter Six covered the validation phase of the selected bacterial 

performance and their dominant type of oil recovery in bacterial flooding test. Chapter 

Seven concluded the study and identifies the future work of research. The chapter drew 

the conclusions by describing the research outcomes in relation to the achievement of 

the research objectives. The chapter then examined the research limitation in term of 

theory, practice and methodology. Finally, the chapter presented the recommendations 

for future research. 
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