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ABSTRACT 

 Erbium doped fiber laser (EDFL) plays an important role in generating laser 

in the 1.5-micron region which contributes to many applications such as material 

processing, optical communication and biomedical. The main goal of this research is 

to improve the passive technique in generating mode-locked and Q-switched pulsed 

fiber laser. The passive technique uses a saturable absorber (SA) as a passive optical 

loss modulator for the creation of pulses inside the laser cavity. Three rare earth oxides 

(REO) are chosen to be utilised as the saturable absorbers that are Gadolinium Oxide 

(Gd2O3), Neodymium Oxide (Nd2O3) and Samarium Oxide (Sm2O3). The REO-based 

SA was fabricated in the form of thin film by mixing it into polyvinyl alcohol (PVA) 

aqueous solution to produce a free-standing polymer composite SA film. The 

characterisations of SA films include physical and optical properties. The physical 

properties were characterised using field emission electron microscopy (FESEM) and 

energy dispersive X-ray spectroscopy (EDX). The characterisations of optical 

properties include linear and nonlinear absorptions. The Q-switched pulses were 

generated by inserting the SA film into the laser cavity. The addition of 100 m single 

mode fiber (SMF) with group dispersion delay (GVD) of -21.7 ps2/km into the laser 

cavity increased its nonlinearity to balance the total cavity dispersion, consequently, 

promoted the mode-locking action. The performance of pulsed lasers were analysed 

and discussed in term of the pulsed laser parameters. The mode-locked pulsed laser 

with Sm2O3 SA had successfully generated stable pulses with the minimum pulse 

width of 3.4 ps. Gd2O3 and Nd2O3 SA films generated the mode-locked laser pulses 

with pulse widths of 3.82 ps and 4.62 ps respectively. The Q-switched laser 

performances acquired using the three SA films also show desirable laser outputs. 

Based on the performances of Q-switched and mode-locked pulsed lasers, this research 

was successfully done with less tedious SA preparation and simple laser cavity setup, 

thus it have a good potential for photonics applications.  
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ABSTRAK 

Laser gentian terdop erbium memainkan peranan penting dalam menjana laser 

pada rantau 1.5 mikron yang menyumbang dalam banyak aplikasi seperti pemprosesan 

bahan, komunikasi optik dan bioperubatan. Matlamat utama penyelidikan ini adalah 

untuk menambah baik teknik pasif dalam menjana laser gentian denyut selakan-mod 

dan suis-Q. Teknik pasif menggunakan penyerap boleh tepu sebagai pemodulat 

kehilangan optik pasif untuk penciptaan denyutan di dalam kaviti laser. Tiga nadir 

bumi oksida telah dipilih untuk digunakan sebagai penyerap boleh tepu iaitu 

Gadolinium Oksida (Gd2O3), Neodinium Oksida (Nd2O3) dan Samarium Oksida 

(Sm2O3). Penyerap boleh tepu berasaskan nadir bumi oksida telah difabrikkan dalam 

bentuk saput nipis dengan mencampurkannya ke dalam larutan berakua alkohol 

polivinil untuk menghasilkan saput penyerap boleh tepu yang arca bebas komposit 

polimer. Pencirian saput penyerap boleh tepu merangkumi sifat fizikal dan optikal. 

Sifat fizikal dicirikan dengan menggunakan mikroskop imbasan elektron pancaran 

medan dan spektroskopi sinar-X penyebaran tenaga. Pencirian sifat optikal 

merangkumi penyerapan linear dan tidak linear. Denyutan suis-Q telah dijana dengan 

memasukkan saput penyerap boleh tepu ke dalam kaviti laser. Penambahan 100 m 

gentian mod tunggal dengan lengah penyerakan kumpulan sebanyak -21.7 ps2/km ke 

dalam kaviti laser meningkatkan ketaklinearan untuk mengimbangi jumlah 

penyerakan kaviti seterusnya menggalakkan tindakan selakan-mod. Prestasi laser 

denyut dianalisis dan dibincangkan dari segi parameter-parameter laser denyut. Laser 

denyut selakan-mod dengan penyerap boleh tepu Sm2O3 berjaya menjana denyutan 

stabil pada lebar denyut minimum 3.4 ps. Gd2O3 dan Nd2O3 saput penyerap boleh tepu 

telah menjana laser selakan-mod dengan lebar denyut masing-masing 3.82 ps dan 4.62 

ps. Prestasi laser suis-Q diperolehi dengan menggunakan tiga saput penyerap boleh 

tepu juga menunjukkan keluaran laser yang diinginkan. Berdasarkan prestasi daripada 

laser denyut suis-Q dan selakan-mod, penyelidikan ini berjaya dilakukan dengan 

penyediaan penyerap boleh tepu yang kurang rumit dan penyediaan laser kaviti yang 

ringkas, dengan demikian ia mempunyai potensi yang bagus dalam aplikasi fotonik. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Study 

 

A fiber laser was firstly demonstrated by Elias Snitzer in 1963 using a 

Neodymium doped fiber as the gain medium [1]. It took almost another two decades 

of development before fiber lasers are ready for commercial production. The first fiber 

laser device was introduced to the market in the late 1980s and this laser was pumped 

by a single mode laser diode to produce output power at a few tens of milliwatts [2]. 

Since then, fiber lasers have garnered more interests whereas many developments have 

been carried out to further improve the laser performance. They have several physical 

attributes that differentiate them from other class of lasers in term of functionality, 

performance and practically [3].  

Presently, lasers are widely used in many applications for our daily lives. The 

advances in fiber-optics have revolutionized the laser technology especially in 

communication and medical fields. Optical fiber technology was conceived as a 

superior alternative to conventional copper cables in telecommunications applications. 

The operation and configuration of the laser is much more stable by utilizing a fiber 

laser. The revolution of fiber laser continued with the deployment of new rare earth 

elements such as erbium, ytterbium and thulium [6]. The rare earth elements in laser 

cavity act as an active ion to provide the energy level in the laser system. Erbium ion 

(𝐸𝐸𝐸𝐸3+) is one of the important rare earth elements that have attracted many interests 

from researchers to construct fiber laser operating at 1.5-micron region. Other famous 

rare earth elements that also attracted researchers are ytterbium and thulium ions which 

can be used to generate lasers operating at 1-micron and 2-micron region, respectively. 
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In general, pulse generation can be realized by two approaches: Q-switching 

and mode locking. Q-switched lasers are based on the modulation of the intracavity 

loss or Q-factor [7]. During pumping, the Q-factor is lowered to prevent the feedback 

of the light into the gain medium and thus can induce a population inversion build up. 

The Q-factor is then rapidly returned to its initial high value to trigger a very fast 

oscillation build up, which causes the emission of short pulse of light output from the 

laser. This process can generate high energy pulses. However due to limited photon 

lifetime within the laser cavity, the repetition rate of the generated pulses is limited to 

only tens of kHz. Mode-locking, on the other hand, locks the relative phases of the 

multiple lasing modes within the cavity to generate pulses with a shorter pulse width 

and higher repetition rate [8]. It is achieved by modulating the loss or gain of the cavity 

at an integer multiple of the fundamental intermodal frequency spacing to the force of 

longitudinal modes into a phase coherence. The coherent multiple lasing modes then 

manifest themselves into a well-defined temporal pulse form. 

Q-switched and mode-locked fiber lasers can be accomplished by two basic 

techniques which are active and passive. The most common used modulators for active 

technique are electro-optic modulator or rotating mirror by inserting them into a laser 

cavity. Particularly, the output pulse width from active technique is limited by the 

speed of the modulator. The pulse shortening in active technique is limited by the 

speed of externally driving force and become ineffective for very short pulses. This 

drawback can be overcome by using the passive technique. Passive technique utilized 

the wave inside the cavity itself instead of using the external driven force to cause a 

change in some factors through an element which in turn changes the pulse inside. The 

fundamental principle of passive is originally obtained by modulating the quality 

factor of laser cavity which can be realized by inserting a saturable absorber (SA). 

The SA is a nonlinear material, which is sandwiched in between two fiber 

ferrules inside an all-fiberized laser configuration. The ideal SA should exhibit wide 

bandwidth tunability, high optical damage threshold, strong optical properties, and 

excellent long-term stability. Most of the available materials utilized as SA matches 

those criteria. However, they may require a complicated synthesizing method to 

produce a functional SA device. In 2004, Yamashita et al. proposed carbon nanotubes 
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(CNTs) as SA to generate an ultrafast laser in hybrid erbium-doped fiber laser (EDFL) 

cavity [9]. The use of CNT as a passive SA revealed the advantages include versatile 

operational modes (transmission, reflection and bidirectional), ultrafast relaxation 

time, polarization-independent, and robust SA device. The main drawback of CNT is 

that is has a low operational bandwidth and thus less favourable for tuneable pulsed 

laser. Its geometry-dependent wavelength operation contributed to a complicated 

synthesizing procedure, which leads to the development of other carbon precursors as 

a SA. Besides CNTs, graphene [10][11], graphene oxide (GO) and reduced graphene 

oxide (r-GO) [12] were also widely investigated due to their saturable absorption 

ability and optical nonlinearity. Furthermore, graphene owns outstanding physical 

properties with ballistic electron mobility, which prevents lattice dislocation to the 

atom at high temperatures. As opposed to the CNT, graphene possesses faster 

relaxation time (~100 fs) and wider operational bandwidth, which was attributed to the 

zero bandgap nature of this semi-metal [12]. 

On the other hand, few other 2-dimensional (2D) materials were also used as a 

SA such as black phosphorus (BPs) [13][14], transition-metal dichalcogenides 

(TMDs) [15], topological insulators (TIs) [16], bismuthene [17], and MXene [18]. 

Those 2Ds’ mimic graphene in terms of physical and optical properties with ultrafast 

carrier dynamics, wideband saturable absorption, and high electron mobility. Due to 

the excellent second-order susceptibility, TMDs such as molybdenum disulfide [19] 

and tungsten disulfide [20], are widely used as a SA in a broad near-infrared region. 

They beat graphene, which possesses a very weak second-order nonlinearity that 

eventually limits the pulse performance in the laser cavity [21]. In 2015, Chen et al. 

[22] demonstrated mechanically exfoliated BPs as a functional SA device to generate 

Q-switched and mode-locked pulses in erbium-doped fiber laser (EDFL). BPs own a 

layer-dependent direct bandgap, which was from 0.3 eV (bulk) to 2 eV (monolayer), 

in contrast to the TMDs with an indirect bandgap, thus require bandgap alteration for 

the implementation as SA in the near-infrared laser generation. However, BPs are very 

sensitive to the environment causing the saturable absorption property to diminish after 

the exposure of BPs to air for a few hours.  
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Recently, bismuthene [23] and MXene [24] were introduced as a functional SA 

for pulses generation in 1.55 micron region. Bismuthene is believed to own a 

promising electronic-transport and enhanced long term-stability, huge improvement to 

BPs. The nontrivial bandgap (~0.55 eV) of this allotrope makes it efficient for photonic 

and optoelectronic applications in a broad electromagnetic spectrum from ultraviolet 

to near-infrared [25]. In the meantime, few works utilized MXene as a SA in a broad 

near-infrared region ranging from 1 micron meter to 2 micron meter region [26]. The 

2D-metal carbides/nitrides are attractive since they own a broad optical response, high 

electron mobility, and high optical transparency [27]. In addition, their optical 

properties were amazing, including high optical damage tolerance, strong switching 

capability, and effective absorption coefficient for ultrafast laser [28]. Despite their 

excellent optical and physical properties, those 2D-materials needed complex 

preparation methods to be implemented as a SA device in a near-infrared laser cavity. 

Therefore, newly prepared SA material with excellent optical properties and ease of 

preparation must be invented. 

In this research work, there are three new SAs were selected based on rare earth 

oxide materials which are Gadolinium Oxide (Gd2O3), Neodymium Oxide (Nd2O3) 

and Samarium Oxide (Sm2O3) to generate Q-switched and mode-locked pulses in 

erbium doped fiber laser (EDFL) cavities. All these materials are capable of operating 

in 1.55 μm wavelength regions based on their characterization. These materials have 

been embedded into polyvinyl alcohol (PVA) polymer so that they can easily 

integrated into a laser cavity to act as SA. Based on the research had been carried out, 

these three new materials have a good potential to work in the 1.55-micron region. 

1.2 Problem Statement 

Generation of Q-switched and mode-locked pulses have been widely explored 

and reported for the past few decades. Currently, fiber lasers are the most preferable 

alternative way to solid state lasers as they offer simpler and reliable. As stated in 

background of the study, there are two main approaches: active and passive method to 

achieve Q-switching and mode-locking. The latter is normally preferable as it utilized 
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an all-fiberized and compact laser cavity [29]. In contrast to active method, which uses 

an electrical signal to trigger the pulse, the passive approach is simpler with relatively 

compact, stable, and cheap setup. Therefore, it has been widely explored in Q-switched 

and mode-locked fiber lasers. Various type of nano material such as single-walled 

carbon nanotubes (SWCNTs)  [30][31] and graphene [32] have been largely explored 

for passively generating pulses. SWCNTs material is easier to be prepared but its 

absorption depends on its tube sizes thus limits its performance since the absorption 

determines the operation bandwidth. Graphene was widely used for pulse generation 

since it has wider absorption range. However, it has zero bandgap structure, which 

limits its optoelectronic applications. Other 2D materials such as black phosphorus 

[33], transition metal dichalcoganides [34][35] and topology insulator [36] have also 

engrossed many interest in recent years for pulse generation in infra-red region. More 

recently, lead sulphite (PbS) nano particles [37] and Antimonene [38] have also been 

employed as Q-switcher in mid infrared region. Nickel oxide (NiO) and titanium oxide 

(TiO2) which belongs to the transition metal oxide (TMO) family also were proposed 

as functional SA [39] [40]. 

Despite many efforts in exploring new materials, rare earth oxide (REO) 

materials-based SA for the generation of Q-switching and mode-locking pulses are 

rarely being investigated. Recently, lutetium oxide (Lu2O3) [41][42], Europium Oxide 

(Eu2O3) [43] and Scandium Oxide (Sc2O3) [44] which belongs to REO family were 

only proposed as functional SAs. Due to the rarely explored REO materials as SA, 

three new materials which are gadolinium oxide (Gd2O3), neodymium oxide (Nd2O3), 

and samarium oxide (Sm2O3) from REO family had been chosen to demonstrate as SA 

for generating Q-switched and mode-locked pulses. The research was carried out based 

on objectives discussed in the next topic due to this problem statement. 

1.3 Objective of Study 

The main goal for this research work is to fabricate new SAs and demonstrate 

Q-switched and mode-locked fiber lasers operating in 1.55-micron region using the 

newly proposed SAs, which were prepared using rare earth oxide (REO) materials. 
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Three new materials are being investigated in this research work which are gadolinium 

oxide (Gd2O3), neodymium oxide (Nd2O3), and samarium oxide (Sm2O3). The 

following objectives have been established to guide this research work towards 

achieving the main goal; 

1. To fabricate the passive SA based on Gd2O3, Nd2O3 and Sm2O3 by 

mixing with polyvinyl alcohol (PVA) polymer to produce as thin film. 

2. To characterize the physical and optical properties of the REO based 

SAs. 

3. To demonstrate the Q-switched and mode-locked erbium-doped fiber 

lasers (EDFL) utilizing the passive REO based SAs. 

4. To determine the performances of repetition rate, pulse width, output 

power, pulse energy, peak power, and slope efficiency of EDFL using 

REO based SAs. 

1.4 Scope of Study 

 

The research work aims to demonstrate Q-switched and mode-locked erbium 

doped fiber lasers utilizing the newly developed passive SAs. The research work 

begins with the characterization of pump laser, which was then used to excite Erbium 

ions to generate laser at 1550 nm wavelength region. This laser is based on InGaAs 

active material and operating in 980 nm wavelength. It is injected into an erbium doped 

fiber (EDF) to excite the active ions and create the condition of population inversion 

for generating laser in 1550 nm region via stimulated emission process. In this work, 

three passive SAs were fabricated based on rare earth oxide materials of neodymium 

oxide (Nd2O3), samarium oxide (Sm2O3), and gadolinium oxide (Gd2O3). The SAs 

were fabricated by dispersing the REO powder particles into polyvinyl alcohol (PVA) 

solution and the film forming was realized based on dry-casting technique. Then, 

several characterizations were made to examine the physical and optical properties of 

the fabricated SAs. First, Field Emission Scanning Electron Microscopy (FESEM) is 

used to characterize the surface morphology. The elemental analysis of SAs were 

observed by Energy-Dispersive X-ray spectroscopy (EDX) to confirm its elemental 

composition. Next, the linear absorption profile was measured by using white light 
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source (WLS) ranging from wavelength 700 to 1700 nm. Then, we designed a 

balanced twin-detector measurement system to investigate the non-linear absorption 

profile. Afterward, the demonstration of Q-switched and mode-locked EDFL were 

carried out by sandwiching the SA in between two fiber ferrules and integrated this 

device inside an all-fiberized laser cavity. Lastly, the performances of EDFL using 

REO based SAs were characterized in terms of repetition rate, pulse width, output 

power, pulse energy, peak power, and slope efficiency. 

1.5 Significance of Study 

Development of pulsed fiber laser utilizing passive saturable absorbers have 

given many contributions in occupying the demands of low-cost compact fiber laser 

with simple design of laser cavity, high repetition rate and narrow pulse width. This 

study would be beneficial to other researcher in understanding the construction of 

passively Q-switched and mode-locked fiber lasers based rare earth oxide SAs. Step 

by step with detailed explanations were briefly discussed in this whole thesis 

structured. Researcher may vary the type of material used in their research work by 

improvising the use of our techniques. The Q-switched and mode-locked laser sources 

have attracted considerable attention due to the versatile applications in widespread 

industry and scientific research areas, such as laser materials processing, remote 

sensing, range finding, medicine, telecommunications, and nonlinear optics. 

1.6 Thesis Structure and Organization 

This thesis is organized into five chapters which comprehensively demonstrate 

the development of passively Q-switched and mode-locked fiber lasers utilizing rare 

earth oxide based SAs. Chapter 1 briefs an overall introduction of this research work. 

The problem statement and objectives of this research is highlighted as a guide to the 

research work. The scope of the study is written in details and the contributions of this 

study are identified in the subtopic of significance of study. 
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 Chapter 2 briefs the theoretical and the literature review related to this study 

including the theoretical background of pulse propagation in fiber laser. Also, possible 

techniques of pulse generation including Q-switching and mode-locking technique. 

The literature review focuses more on passive Q-switched and mode-locked fiber laser 

generation since the objective of this research is the generation of pulse laser using this 

technique. This chapter will also briefly introduce the essential parameters of Q-

switched output characterization. 

 Chapter 3 introduces the methodology used in this research work including the 

optical component and optical instruments. The research frameworks are also 

graphically explained in this chapter for comprehensive development of pulse laser 

generation. The fabrication of saturable absorbers has been discussed in details to 

utilize in the laser cavity. Three type of saturable absorbers is chosen from rare earth 

oxide materials which are neodymium oxide (Nd2O3), samarium oxide (Sm2O3), and 

gadolinium oxide (Gd2O3) to have the optimization in output power. Subsequently, the 

Q-switched and mode-locked fiber lasers are demonstrated using passive saturable 

absorbers. 

 Chapter 4 covers all the analysis data for the whole work. This chapter begins 

with characterization of pump power for gain medium operating at 1.55-micron region. 

Then, the step by step of fabrication SAs were visualized and briefly explained in 

chapter. Afterward, the characterization of saturable absorbers is determined with 

several parameters such are surface morphology, elemental analysis, linear absorption 

profile and non-linear absorption profile. Then the output characterization and 

optimization of Q-switched and mode-locked fiber lasers utilizing using passive 

saturable absorbers will be discussed in detail in this chapter, 

 Chapter 5 will summarize all the results and discussions on the passive Q-

switched and mode-locked fiber lasers utilizing passive saturable absorbers. The 

problems and limitation occurred during this research work also are discussed as well 

as future work needed to overcome the suggested problem. 
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