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ABSTRACT

One of the more-than-Moore approaches is to use two-dimensional (2D) silicene 

as the channel in a transistor. Silicene shares outstanding electronic properties with 

graphene, yet provides an added advantage in terms of its compatibility with silicon 

(Si) wafer technology. However, pristine silicene has an almost zero bandgap at 

the Dirac point, which inhibits its potential as a field-effect transistor (FET). This 

study focused on the modelling and simulation of bandgap-engineered silicene FETs 

from material level to device level. Concerning material-level modelling, the nearest 

neighbour tight-binding (NNTB) model was used to obtain the dispersion (E-k) relation 

and density of states (DOS) of pristine silicene. A bandgap was then induced in 

silicene using aluminium (Al) substitutional doping at a uniform concentration to 

produce the AlSi3 nanosheet. Applying this uniform doping technique, the locations of 

dopants are not restricted, unlike selective substitutional doping where the electronic 

properties vary with the doping locations. Al is among the most promising dopants 

for silicene because it does not distort the honeycomb lattice arrangement. The E-k 

relation and DOS of AlSi3 were also obtained. Subsequently, the DOS and Fermi- 

Dirac probability distributions were used to compute the carrier transport properties 

of AlSi3. Regarding the device-level modelling, the top-of-the-barrier (TOB) ballistic 

nanotransistor model was employed to simulate the proposed AlSi3 FET model in terms 

of its output characteristics (Ids -  VDS) and transfer characteristics (Ids -  Vgs). The 

device performance of the AlSi3 FET was evaluated by benchmarking against published 

results in terms of device metrics such as threshold voltage (Vth), drain-induced barrier 

lowering (DIBL), subthreshold swing (SS) and on-off current (IonI h f f ) ratio. The 

AlSi3 FET exhibits SS as low as 67.8 m V/dec, which is close to the ideal SS at 

room temperature (approximately 60m V | dec), DIBL of 48.2 m V | V , and Ion/ I of f  

ratio up to an order of five (approximately 2.6 x 105). The proposed AlSi3 FET 

outperforms the Si FinFET (SS and DIBL reduction of approximately 46 % and 32 %, 

respectively, and Ion/ I of f  ratio improvement of approximately 102) and exhibits a 

device performance that is comparable to that of other low-dimensional materials. 

Subsequently, a SPICE model was created to facilitate further circuit-level simulation. 

This study demonstrates that AlSi3 is one of the most promising 2D materials for 

modern nanoelectronic applications.
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ABSTRAK

Salah satu pendekatan more-than-Moore adalah dengan menggunakan silicene 

dua dimensi (2D) sebagai saluran dalam transistor. Silicene berkongsi sifat 

elektronik yang luar biasa dengan grafin, malah terdapat kelebihan tambahan dari segi 

keserasiannya dengan teknologi wafer silikon (Si). Walau bagaimanapun, silicene 

asli mempunyai sela jalur yang hampir sifar pada titik Dirac, yang menghalang 

potensinya sebagai transistor kesan medan (FET). Penyelidikan ini memberi tumpuan 

kepada pemodelan dan simulasi untuk FET silicene yang mana sela jalurnya telah 

diubahsuai dari tahap bahan hingga tahap peranti. Pada pemodelan tahap bahan, model 

ikatan ketat terdekat (NNTB) digunakan untuk mendapatkan hubungan serakan (E- 

k) dan ketumpatan keadaan (DOS) silicene asli. Sela jalur kemudiannya diaruh ke 

dalam silicene menggunakan pengedopan gantian aluminium (Al) pada kepekatan 

seragam, untuk menghasilkan nanosheet AlSi3. Dengan menggunakan teknik 

pengedopan seragam ini, lokasi bahan dop adalah tidak terbatas, berbeza dengan 

pengedopan gantian selektif di mana sifat elektronik berubah mengikut lokasi bahan 

dop. Al adalah antara bahan dop yang paling sesuai untuk silicene kerana ia tidak 

memutarbelitkan susunan kekisi heksagon. Hubungan E-k dan DOS untuk AlSi3 juga 

diperoleh. Seterusnya, DOS dan taburan kebarangkalian Fermi-Dirac digunakan untuk 

menghitung sifat pengangkutan pembawa dalam AlSi3. Pada pemodelan tahap peranti, 

model nanotransistor sawar-teratas (TOB) balistik digunakan untuk mensimulasi model 

FET AlSi3 yang dicadangkan dari segi ciri keluaran (Ids -  VDS) dan ciri pemindahan 

(IDS -  VGS). Prestasi FET AlSi3 dibandingkan dengan hasil terbitan lain dari segi metrik 

peranti seperti voltan ambang (Vth), penurunan sawar aruhan-saliran (DIBL), ayunan 

subambang (SS) dan nisbah arus buka-tutup (Ion/ I of f ). FET AlSi3 menghasilkan SS 

serendah 67.8 m V/dec, yang hampir dengan SS ideal pada suhu bilik (lebih kurang 

60 m V | dec), DIBL pada 48.2 mV | V dan nisbah Ion/ I of f  hingga tertib ke-lima (lebih 

kurang 2.6 x 105). FET AlSi3 yang dicadangkan mengatasi Si FinFET (pengurangan 

SS dan DIBL lebih kurang 46% dan 32%, masing-masing, dan peningkatan nisbah 

IonIIof f  lebih kurang 102) dan menunjukkan prestasi peranti yang setanding dengan 

material dimensi rendah yang lain. Seterusnya, model SPICE dihasilkan untuk 

memudahkan simulasi tahap litar selanjutnya. Kajian ini menunjukkan bahawa AlSi3 

adalah antara bahan 2D yang berpotensi untuk aplikasi nanoelektronik moden.
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CHAPTER 1

INTRODUCTION

1.1 Research background

A field-effect transistor (FET) is a three-terminal electronic device, which 

commonly has the architecture of a conduction channel controlled by a gated 

insulating layer. FETs are known to be the core boosting the advancement of 

modern semiconductor industry [1]. In the past few decades, in particular since 

1960s, innovation in the semiconductor industry has been driven by Moore’s law 

[2] and Dennard’s scaling [3]. Gordon Moore projected that the packing density of 

transistors in a central processing unit (CPU) chip was going to be doubled every 

18 -  24 months as shown in Figure 1.1, owing to the maturity and cost effectiveness 

of the integrated circuit (IC) technology [4]. Notable inventions in the semiconductor 

industry include the IC, metal-oxide-semiconductor field-effect transistor (MOSFET) 

and complementary metal-oxide-semiconductor (CMOS) technology.

Year

Figure 1.1: Moore’s law [5].
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Figure 1.2: Schematic cross-section diagrams of enhancement mode MOSFETs. A 
conducting channel is induced between the source and drain when the gate voltage is 
above the so-called threshold voltage [6].

A CPU chip consists of a large number of CMOS circuits, that enables it to 

perform various calculations and logic functions. To date, the semiconductor industry 

has been able to integrate 39.54 billion transistors in a single CPU chip [7]. The 

CMOS technology was first demonstrated by Atalla and Kahng in Bell Labs in 1960 

[8]. A CMOS circuit combines n-channel and p-channel MOSFETs (depicted in Figure 

1.2) to build various logic gates for digital applications. In 1963, Wanlass and Sah, 

with Fairchild Semiconductor at the time, adapted Bell Labs’ ideas and refined CMOS 

circuits for them to be more power- and area-efficient [9]. The remarkable invention 

of CMOS and IC technologies drove the success of the semiconductor industry and 

improved the technology of the modern world. In fact, the computing power of a 

CPU increases when the chip makers are able to pack more transistors inside a single 

chip by reducing the transistor size. However, transistor scaling is approaching its 

fundamental limits owing to the shortcomings of materials and fabrication technology. 

The semiconductor industry has been facing difficulties in sustaining Moore’s law since 

the late 1990s [10].

As the semiconductor industry continued to grow, the semiconductor 

community decided to collaborate internationally to overcome major challenges in 

the industry. In 1998, a team of semiconductor industry experts from Europe, Japan, 

Korea, Taiwan, and the United States began to produce an annually updated roadmap,

2



namely the International Technology Roadmap for Semiconductors (ITRS) [11]. The 

primary objective of this roadmap was to provide the main reference for the research 

and development in both industry and academia. Following the introduction of mobile 

devices, such as smartphones and tablets, the ITRS was reorganised and renamed in 

2013 as ITRS 2.0 to address the new ecosystem for the semiconductor industry.

In 2016, the International Roadmap for Devices and Systems (IRDS) [12] 

was initiated to succeed the ITRS 2.0. The refined scope of IRDS is wider and 

extend beyond “More Moore” initiatives, which were particularly stressed in ITRS 

2.0. Interestingly, the emerging research material (ERM) focus team in IRDS 2017 

listed two-dimensional (2D) materials as one of the solutions for transistor scaling 

and integration, as summarised in Table 1.1. Although 2D materials are substantially 

advantageous over conventional bulk materials, several major challenges still exist 

for 2D materials. Bandgap engineering in 2D materials must also be developed and 

optimised for various applications [13]. Thus, researchers must aggressively seek to 

resolve these issues and meet practical industrial needs [14, 15].

Table 1.1: Potential advantages and challenges of 2D materials for transistor scaling 
and integration (extracted from IRDS 2017 [12]).

Emerging Material Potential Advantages Challenges
2D Materials

• High mobility • Techniques for

• Good channel control doping

• Possibility of • 
heterostructure and

Improvement of 
contact resistance

tunneling devices • Large area synthesis 
with low defect 
density

Recently, transistors have been scaled down to sub-10-nm regime, where they 

comprise from tens to a few atoms per device [5]. In this nanoscale regime, the 

modelling of semiconductor materials and electronic transport incorporating quantum- 

mechanical properties [16] has become an interesting research subject. The semi- 

classical transport model derived from Boltzmann’s transport equation (BTE) can no 

longer accurately describe the electronic properties of such devices. The BTE model
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must be modified by including the quantum-mechanical effects of carriers, which are 

described by Schrodinger equation in terms of wave functions [17]. Modelling of 

low-dimensional devices using this bottom-up approach under certain constraints can 

clearly describe and correctly predict the transport properties within the devices.
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Figure 1.3: Trend of recent publications resulting from the topic search function 
available in the WOS database by Clarivate Analytics; silicene (red bars) and silicene 
transistor (grey bars) were employed as search keywords (accessed in 2021).

Research studies involving 2D materials were pioneered by the discovery of 

stable single-layer graphene by Novoselov et al. [18]. As a result, many other 2D 

materials, such as transition metal dichalcogenides, hexagonal boron nitride (h-BN), 

phosphorene, germanene, and silicene, were also explored. Silicene is particularly 

interesting because it is a monolayer allotrope derived from silicon (Si). Although the 

properties of silicene was theoretically predicted in 1994 by Takeda and Shiraishi [19], 

it did not attract much research interest until recently due to the major challenges in the 

fabrication technology. The success of graphene since 2004 [18], has stimulated the 2D 

materials-based research domain, leading to the rise of silicene-based studies. In 2015, 

the first silicene-based FET was fabricated by Tao’s group [20]. Increasing research 

interest on silicene can be observed from the number of silicene-based publications

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year
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(indexed in the Web of Science by Clarivate Analytics), as depicted in Figure 1.3. 

However, less than 10 % of these studies were conducted on silicene-based transistors. 

Therefore, it is interesting to explore this topic further.

r  Transistors A Spintronics

/

S .

V

Biosensors

Figure 1.4: Potential applications of silicene nanosheets [21].

Similar to graphene [22,23], silicene [24,25] is a monolayer material consisting 

of Si atoms arranged in a honeycomb structure possessing a Dirac cone (with almost 

zero gap) in the bandstructure. This atomically thin property (the atomic radius of 

a silicon atom is approximately 0.12 nm [26]), could provide the ultimate channel 

thickness scaling for nanoelectronic devices [27]. In addition, the FETs based on 2D 

materials can be used to create high-performance and low-power device technologies 

[28, 29]. Hence, 2D materials are among the most suitable candidates for creating a 

new generation of nanoelectronic devices, such as wearable and flexible devices, owing 

to their stable and atomically thin structure [30, 31]. Figure 1.4 shows the potential 

applications of silicene nanosheets [21]. Silicene has been identified as a 2D material 

that can improve transistor [20], spintronics [32], energy storage [33], and biosensors 

[34] applications.
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Because of the fact that silicene is derived from Si, which is widely used in 

the fabrication of transistors, it has recently become a material of great interest [20]. 

In contrast to graphene, which requires redesigned fabrication equipment, silicene is 

potentially compatible with present Si-wafer fabrication processes. However, unlike 

graphene, which can be mechanically exfoliated from the bulk (i.e., graphite, which 

exists naturally) counterparts, the development of a technique that can synthesize high- 

quality free-standing silicene still constitutes a major challenge for researchers [35, 36]. 

This is why the majority of the silicene-based studies are still conducted through 

computational tools.

In short, computational studies to predict the electronic, carrier transport, and 

current transport properties of silicene-based nanoelectronic devices are very useful 

at the present stage. Moreover, it is important to tune the bandgap of silicene and 

explore the performance of bandgap-engineered silicene as a transistor. In this study, 

the modelling and simulation of a silicene-based transistor was conducted via nearest 

neighbour tight-binding (NNTB) and top-of-the-barrier (TOB) nanotransistor models to 

obtain its electronic and current transport properties. The performance of the transistor 

was also assessed by benchmarking against selected published models.

1.2 Problem statement

Silicene, as a potential 2D candidate for the future generation of electronic 

devices, has recently become an important research topic in the nanoelectronic research 

community. However, pristine silicene has an almost zero bandgap at the Dirac point, 

similar to graphene, which inhibits its potential as a FET. Hence, the essential physics 

behind bandgap engineering techniques to induce a bandgap in silicene should be 

extensively explored. Owing to the high cost and major challenges in the fabrication 

of silicene-based devices at this early stage, computational modelling and simulations 

could provide a fundamental understanding of the material before rigorous experimental 

efforts are invested. The issues that were bound to be addressed in this study include:
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Issue 1: Electronic properties of pristine silicene and aluminium (Al)-doped 

silicene.

The fundamental electronic properties, including the bandstructures and density 

of states (DOS), of nanoelectronic materials are requisites prior to extended studies at 

device level. There is still a lack of details regarding the DOS of Al-doped silicene 

(AlSi3) although Ding et al. [37] developed a density functional theory (DFT) model on 

AlSi3, confirming its semiconducting electronic properties. Moreover, obtaining simple 

closed-form solutions from computationally expensive DFT model [38] constitutes a 

remarkable challenge. Thus, it is interesting to explore NNTB models for AlSi3 for 

further insights into this promising semiconducting 2D material.

Issue 2: Carrier transport properties of Al-doped silicene.

Prior to applying AlSi3 as the channel of a transistor, it is crucial to investigate 

its intrinsic carrier transport properties through the bandstructure and DOS. However, 

previous models on AlSi3  were developed at material level; thus, the main findings of 

previous works were limited to information on the structural stability, bandstructures, 

and magnetic properties of the material.

Issue 3: Device performance of Al-doped silicene employed as the channel of an 

FET.

The commonly computed current-voltage (I-V) characteristics for a FET include 

the transfer and output characteristics curves. Nevertheless, it is difficult to justify and 

benchmark the performance of simulated I-V characteristics by merely analysing the 

transfer and output characteristics curves. In this study, the device performance of the 

AlSi3 FET was justified by using appropriate transistor device metrics from the transfer 

and output characteristics curves.
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1.3 Research Objectives

Unlike other 2D materials such as graphene and MoS2 monolayers which 

require entirely redesigned fabrication equipment and techniques, silicene is potentially 

compatible with the Si-dominant semiconductor industry due to its Si atoms nature 

[20]. The primary aim of this study was to model and simulate the bandgap-engineered 

silicene from the material (atomic) level up to the transistor (device) level. On the 

basis of a systematic review of the existing literature (as discussed in Chapter 2), the 

objectives of this study were outlined as:

1. To model and analyse the dispersion (E-k) relation and DOS of pristine silicene

and doped-silicene with Al at uniform concentration using the NNTB model 

and parabolic band assumptions.

2. To investigate the carrier transport properties of silicene doped with Al at

uniform concentration along the zigzag transport direction, including the 

intrinsic carrier concentrations, intrinsic velocity, and ideal ballistic current 

transport.

3. To explore the device performance of Al-doped silicene FET by assessing the 

I-V characteristics using the TOB transistor model and benchmarking the results 

against other published studies in terms of device performance metrics, namely 

the threshold voltage (Vth), subthreshold swing (SS), drain-induced barrier 

lowering (D IB L), and on-current to off-current (Ion/ I o/ / ) ratio. A SPICE- 

compatible model was also inspected to facilitate future work at circuit-level 

simulation.

1.4 Research Scopes

This study is done based on computational modelling and simulation, with a 

focus on silicene and doped-silicene at material and device levels. The computational 

tools employed include Mathematica and MATLAB, which are licensed by Universiti 

Teknologi Malaysia (UTM). Some of the models were derived, simplified and verified 

using Mathematica to ensure accuracy. The models were then simulated using
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MATLAB. The electronic properties that were computed include E-k relations and 

the DOS of pristine and Al-doped silicene; the NNTB model was used. The bandgap 

engineering technique used in this study to induce the bandgap in silicene was uniform 

substitutional doping of Al. The bandgap was obtained by computing the difference 

between the minimum point of the conduction band and the maximum point of the 

valence band. In this study, within the NNTB model, the Fermi energy levels for the 

bandstructures were always set to zero.

Figure 1.5: Proposed AlSi3 transistor model with its device parameters.

Subsequently, the electronic and carrier transport properties of AlSi3 were 

applied to the TOB nanotransistor model to obtain the I-V characteristics within the 

ballistic transport regime. In this regime, the electrons within the FET can travel 

without undergoing any scattering mechanism. Figure 1.5 shows the proposed FET 

and its parameters. This dual-gated (DG) structure was successfully fabricated by 

Tanaka et al. using a silicon-on-insulator (SOI) thin film [39]. Compared to single

gated (SG) SOI MOSFETs, DG structures offer excellent immunity to short-channel 

effects [39], especially in the subthreshold conduction region, because any current 

transport paths drawn between the source and drain terminals (including the leakage 

paths) are closer to one of the gates [40]. In the proposed device structure, the gates 

are built such that they do not overlap with the drain and source terminals to suppress 

switching performance penalties owing to parasitic capacitances [41, 42].
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Figure 1.6: Design abstraction levels in modern digital circuits, adopted from [43].

In this study, the current flows in the transistor along the direction parallel to 

the direction from the drain terminal to the source terminal, with the gates controlling 

the potential barrier within the semiconductor channel. Three assumptions were made 

to simplify the modelling and simulation processes: (1) the AlSi3 sheet was assumed 

to be stable in its planar form (without any buckling parameter); (2) the current in the 

channel flows in direction parallel to the zigzag edges of the AlSi3 sheet; and (3) ideal 

metal contacts were used in the AlSi3 FET. The proposed gate length for the FET 

in this study was 10 nm in order to benchmark the AlSi3 FET model against recently 

published results in a fair manner.
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Subsequently, the I-V characteristics of the proposed AlSi3 FET were 

benchmarked against published 2D transistor models. By using a graphical extraction 

method on the simulated I-V characteristics, the performance of the silicene FET was 

evaluated in terms of device performance metrics extracted from the I-V characteristics, 

including Vth, SS, D IB L , and Ion/Io f f  ratio. The benchmark of the results was based 

on results extracted from the closest possible published theoretical models owing to 

the unavailability of experimental data. Finally, a non-iterative analytical model for the 

proposed AlSi3 FET was developed to enable cross-platform simulation. In summary, 

this study focuses on the modelling and simulation at the material and device levels 

according to the design abstraction levels in modern digital circuits as shown in Figure 

1.6.

1.5 Research contributions

The scaling of CMOS technology is the dominant driving force for achieving 

high-performance computing power. Owing to the fundamental limitations of bulk 

materials, researchers are actively seeking potential 2D materials for next-generation 

nanoelectronic devices. Silicene is envisaged as one of the most promising 2D materials 

that could potentially leverage with the mature Si fabrication technology. In addition to 

its atomically thin structure, silicene exhibits a very high carrier mobility. Furthermore, 

these outstanding properties of silicene hold great promise for the “more than Moore” 

nanoelectronic era. Therefore, the exploration of silicene-based devices are important 

and creditable to the nanoelectronic research community.

Throughout this study, literature reviews were rigorously conducted to explore 

the big picture of the theoretical advances in bandgap engineered silicene and silicene- 

based FETs. These reviews were summarised and discussed systematically to construct 

the research framework and shape the main motivations of this study. Furthermore, 

theoretical models must be extended to predict the electronic properties of 2D materials 

for appropriate selection of dopants [28]. Hence, a model of the material resulting from 

the promising bandgap engineering technique, namely Al-doped silicene, was derived 

in this study. This technique was chosen to tune the semi-metallic bandgap of silicene

11



to a semiconducting bandgap, such that it becomes suitable for transistor applications. 

Subsequently, the ballistic current transport performance of the proposed device (AlSi3 

FET) was simulated using the TOB nanotransistor model and assessed based on its 

device performance metrics. The results of this study are significant for understanding 

the essential physics behind silicene-based devices before proceeding to address the 

practical digital circuit applications.
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Figure 1.7: Contribution diagram of this thesis. Blue boxes highlight the outputs of 
this study.

Interestingly, a simulation program with integrated circuit emphasis (SPICE) 

model can also be created using the results from the proposed TOB nanotransistor 

model. Compact SPICE models are important in the IC design industry to predict, 

in mathematical form, the electronic performance of nanoelectronic devices before 

mass production [40]. Therefore, the results of the present study are useful for further 

circuit-level modelling and simulation. The main contributions of this study have 

been published in the form of articles in indexed journals and papers in conference
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proceedings (attached in the List of Publications on page 195). Figure 1.7 summarises 

the research contributions of this thesis.

1.6 Thesis organisation

This thesis is composed of six chapters, where it begins in this chapter, with a 

brief introduction of the problem background, research objectives, scopes and research 

contributions. Chapter 2 reviews the relevant theories, general information of silicene 

and related previous works which are available in the literature, laying out the overall 

theoretical dimensions of the research, and looking at how the topic has progressed 

in the recent years. The particular interest of the literature review is to investigate 

and understand the theoretical advancement of the bandgap engineering techniques 

of silicene and silicene-based transistors. As a result, the overview of the topic and 

research motivation of this work are identified.

Chapter 3 presents the overall research framework and the expected outcome 

for each phase in this research. The systematic flowcharts in Chapter 3 act as the 

guideline throughout the research. Subsequently, Chapter 4 and 5 describe the details 

of the models and simulation results at the material (atomic) and device (transistor) 

levels, respectively. The electronic properties including the bandstructure, bandgap, 

and density of states for silicene and bandgap engineered silicene are presented at 

the material level. Using these electronic properties, the research proceeds with the 

modelling and simulation of transistor at the device level. Then, the SPICE model of 

the proposed device is also created. After benchmarking and discussing the results of 

this work, Chapter 6 concludes the key findings in this research and suggests potential 

further investigations on this research topic.
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