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ABSTRACT 

Climate change, increased carbon regulations, globalized supply chains, 
volatile energy and material prices, and competitive marketing pressures are driving 
industry practitioners and supply chain decision makers to implement various carbon 
regulatory mechanisms to curb carbon emissions. One of the effective approaches to 
reduce carbon emissions is the adoption of closed-loop supply chain (CLSC). Optimal 
supply chain network design (SCND) is crucial to the success of industrial concerns 
nowadays because design decisions should be viable enough to function well under 
complex and uncertain business environments. Also, it plays a vital role in determining 
the total carbon footprint across the supply chain and the total cost. Therefore, it is 
essential to make decisions such a way that it could not only configure optimal network 
but also reduce supply chain total cost and carbon footprint in the presence of 
uncertainty. In this context, this research proposes optimization models for design and 
planning of a multi-period, multi-product CLSC network considering carbon footprint 
under uncertainty to quantify and compare both economic and environmental impacts 
of carbon emission policies, namely carbon cap, carbon tax, and carbon trade on SCND 
and planning decisions. This study involves extensive mathematical modelling where 
SCND considerations are formulated into mixed-integer linear programming (MILP). 
The proposed models address uncertainty in products demand, returned products, and 
processing costs. To overcome complexity in scenario-based stochastic programming 
approach for dealing uncertainty, robust optimization model is developed and 
validated using two test scenarios of different sizes. The proposed models capture 
trade-offs between supply chain total cost and carbon emissions. The results suggest 
that carbon cap policy is only favourable to certain carbon amount. Beyond this limit, 
there is no economic benefit. The number of opening various facilities is significantly 
reduced as carbon tax rate increases. The results indicate that carbon trade policy is 
the most flexible and efficient policy as compared to the other two policies. Moreover, 
this policy motivates firms to emit less carbon units even when the carbon allowance 
is available more than needed. Further, the results show that the stochastic model is 
constantly outperformed the deterministic model in terms of total cost. However, when 
considering robust optimization to deal with uncertainty, the total cost incurred by the 
robust models are greater than the values obtained from deterministic model. The 
additional costs are due to larger solution space to accommodate possible realization 
of uncertainties in a given uncertainty set. The findings of this study provide evidence 
that the decision makers are not only able to configure optimal SCND but also reduce 
carbon emissions without significantly increasing the total cost. Moreover, this study 
guides decision makers to decide which policy to be chosen well in advance to 
minimize the total cost and carbon emissions. Finally, the proposed optimization 
models with different carbon policies can be valuable to manufacturers, researchers, 
and decision makers to predict the impact of these policies on SCND, overall supply 
chain costs, and carbon emissions. 
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ABSTRAK 

Perubahan iklim, peraturan karbon yang meningkat, rantaian bekalan global, 
tenaga dan harga bahan yang tidak menentu, dan tekanan pemasaran yang kompetitif 
mendorong pengamal industri dan pembuat keputusan rantaian bekalan untuk 
melaksanakan pelbagai mekanisme pengawalseliaan karbon untuk membendung 
pelepasan karbon. Salah satu pendekatan berkesan untuk mengurangkan pelepasan karbon 
adalah penggunaan rantai bekalan gelung tertutup (CLSC). Reka bentuk rangkaian 
rantaian bekalan yang optimum (SCND) adalah penting untuk kejayaan industri pada masa 
kini kerana keputusan reka bentuk harus cukup berdaya untuk berfungsi dengan baik di 
dalam lingkungan perniagaan yang rumit dan tidak menentu. Ia juga memainkan peranan 
penting dalam menentukan jejak karbon secara keseluruhan merentasi rantaian bekalan, 
dan juga jumlah keseluruhan kos. Oleh itu, adalah penting untuk membuat keputusan yang 
bukan sahaja boleh mengkonfigurasi rangkaian yang optimum tetapi juga mengurangkan 
kos keseluruhan dan kos karbon dalam suasana ketidakpastian. Dalam konteks ini, 
penyelidikan ini mencadangkan satu model pengoptimuman bersepadu bagi reka bentuk 
dan perancangan rangkaian pelbagai tempoh, pelbagai produk CLSC yang 
mempertimbangkan jejak karbon di bawah ketidakpastian untuk mengukur dan 
membandingkan kedua-dua kesan ekonomi dan polisi pelepasan karbon, iaitu had karbon, 
cukai karbon dan perdagangan karbon dalam rekabentuk SCND dan keputusan 
perancangan. Kajian ini melibatkan pemodelan metamatik yang mendalam di mana 
pertimbangan-pertimbangan SCND diformulasikan menjadi pengaturcara integer linear 
campuran (MILP). Model yang dicadangkan menangani ketidakpastian dalam permintaan 
produk, produk yang dipulangkan, dan kos pemprosesan. Untuk mengatasi kerumitan 
dalam pendekatan pengaturcaraan stokastik berasaskan senario dalam menangani 
ketidakpastian, model pengoptimuman yang mantap dibangunkan dan ditentu sahkan 
menggunakan dua senario ujian yang berlainan saiz. Keputusan menunjukkan bahawa 
dasar had karbon hanya menguntungkan sehingga batas jumlah karbon tertentu sahaja. Di 
luar batas ini, tiada manfaat ekonomi diperolehi. Bilangan pembukaan pelbagai 
kemudahan dikurangkan dengan ketara apabila kenaikan kadar cukai karbon. Hasilnya 
menunjukkan bahawa dasar perdagangan karbon adalah dasar yang paling fleksibel dan 
cekap berbanding dengan dua lagi dasar. Tambahan pula, dasar ini mendorong syarikat 
mengeluarkan lebih sedikit unit karbon walaupun peruntukan karbon tersedia lebih banyak 
daripada yang diperlukan. Selanjutnya, hasil kajian menunjukkan bahawa model stokastik 
sentiasa lebih baik daripada model deterministik dari segi jumlah kos. Walau 
bagaimanapun, apabila senario ketidakpastian diambilkira, jumlah kos yang ditanggung 
oleh model yang mantap adalah lebih besar daripada nilai yang diperoleh daripada model 
deterministik. Kos tambahan disebabkan oleh ruang penyelesaian yang lebih besar untuk 
menampung sebarang kemungkinan ketidakpastian. Penemuan kajian ini membuktikan 
bahawa pembuat keputusan bukan sahaja dapat mengkonfigurasi SCND yang optimum 
tetapi juga mengurangkan pelepasan karbon tanpa meningkatkan jumlah kos yang ketara. 
Tambahan pula, kajian ini membimbing para pembuat keputusan untuk memutuskan dasar 
mana yang harus dipilih lebih awal untuk meminimumkan jumlah kos dan pelepasan 
karbon. Akhir sekali, model pengoptimuman yang dicadangkan dengan dasar karbon yang 
berbeza boleh menjadi rujukan bernilai kepada pengilang, penyelidik, dan pembuat 
keputusan untuk meramalkan impak dasar-dasar ini pada SCND, kos rantaian bekalan 
keseluruhan, dan pelepasan karbon. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of the Research 

Climate change, global warming, environmental issues and energy crisis led to 

introduction of more restrictive environmental regulations by policy makers around 

the globe. Greenhouse gas (GHG) emissions have risen to unprecedented levels. 

According to the 2014 report by the panel on climate change, it has increased by 10 

billion metric tons during the period 2000-2010 though an increase in governmental 

legislations and carbon emission regulations to mitigate climate change (COP21). A 

wide range of carbon regulations such as strict carbon cap (allowable carbon 

emission), carbon tax (price per unit of carbon emission), carbon trade (buy and sell 

unused carbon amount) have been introduced by many industrialized countries around 

the globe to reduce carbon emissions.  For example, the UK government has 

committed to lessen carbon emission by 60 % below of 1990 levels by 2050. By 2020, 

China aims to decrease carbon levels by 40–45 % of 2005 levels (COP21). In the recent 

Paris summit on climate change, one of the largest fossil fuels producers, Saudi Arabia 

has announced its pledge to reduce greenhouse gas (GHG) emissions and said up to 

130 million tonnes of carbon dioxide equivalent annually would be avoided by 2030 

through contributions to economic diversification and adaptation. In Malaysia, the 

government has pledged to cut 45% of its carbon emissions intensity by the year 2030 

(COP21). Reducing and mitigating carbon emission proportion and in the meantime 

improving the energy usage efficiency are significant and necessary. In addition, due 

to customer awareness of environmental issues and the desire to have low carbon 

products, firms worldwide are undertaking carbon emission reduction initiatives to 

curb carbon footprint. The adoption of a closed-loop supply chain (CLSC) is one of 

the effective methods to minimize industries' environmental footprint. 
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Governments strive to mitigate GHG emissions by passing legislation and 

developing market-based environmental strategies. These strategies not only help in 

emission reduction but also provide economic benefits to firms. Examples of these 

strategies are the “Kyoto Protocol, 1997”, the “European Union Emission Trading 

System, 2009”, “New Zealand Emissions Trading Scheme, 2009”, and “Japan carbon 

tax scheme, 2012” etc. Kyoto Protocol was signed in by 181 countries under the 

“United Nations Framework Convention on Climate Change” to control GHG 

emissions (Ramudhin, Chaabane and Paquet, 2010). The Protocol introduced three 

mechanisms through which countries can cooperate to meet their emission reduction 

targets. First, emissions trading or carbon market, allows countries that pollute more 

than their target to buy used carbon amount (carbon credits) from countries that have 

excess credits i.e., pollute less in order to stay below their target or cap. Second, clean 

development mechanism that permits a country to acquire carbon emissions credit if 

it invests on climate change initiatives to reduce carbon emission in underdeveloped 

countries. Third, a country is allowed to get unused amount of carbon through joint 

implementation if it is carrying out emission reduction projects in another 

industrialized country committed to its emission reductions.  

The efficient collection of used products from customers are critical for 

performance of recovery activities such as refurbishment, recycling, repair, recovery 

etc. in a CLSC network. The prime importance of used products recovery has two 

major advantages: (i) environmental sustainability, (ii) maximizing the value creation 

of entire lifecycle of a product with best possible recovery practices. Therefore, the 

need to introduce the means to increase the quantity and quality of products returns 

through different types of financial incentives such as acquisition price, cash rebate, 

and promotional offers such as discounts and product exchange which are the 

important factors in influencing the collection of product returns. 

Since last decade, concerns due to uncertainties from various sources (external, 

internal) have prompted researchers to consider uncertainty in their supply chain 

network design (SCND) planning decisions, otherwise it leads to sub-optimal or 

infeasible solutions. There are two major sources of uncertainties addressed in the 

literature, categorized them as internal supply chain (operational risks) uncertainties 
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and external (disruption risks) uncertainties. Uncertainty in supply chain such as 

operational costs, facility capacity, production and distribution quantities, demand, 

return rate etc., are called internal uncertainties which are caused due to implicit 

disruptions within an organization. Whereas external uncertainties are caused due to 

natural disasters such as earthquakes, floods, and man-made disasters such as terrorist 

attacks, fires etc. (Simangunsong, Hendry and Stevenson, 2012). SCND and strategic 

planning are long term (timescale of years) decisions. For example, network design, 

facility location, facility capacity, technology and transportation modes selection are 

all extremely costly and time taking decisions (difficult to change in the short run) 

during which critical parameters such as raw material supply and demand of customers 

will change i.e., quite uncertain (Pishvaee, Jolai and Razmi, 2009). Especially reverse 

logistics activities such as collection (return) rate of used products, variety of quality 

returns, tend to be highly uncertain in a short period. Thus, designing and planning of 

CLSC configuration under uncertainty is highly necessary to deal with uncertain 

parameters such that the impact of parameter fluctuations on network configuration 

will be less. To deal with uncertainty, different mathematical programming techniques, 

such as fuzzy programming, stochastic programming, dynamic programming, 

constrained programming, and robust optimization have been used to solve SCND 

problems. In order to deal with the issues enumerated above, there is a need to develop 

integrated optimization models for design and planning of CLSC by considering 

various carbon emission policies under uncertainty. 

This research investigates a generalized closed loop supply chain network, as 

shown in Figure 1.1 as investigated by other researchers (Chaabane, Ramudhin and 

Paquet, 2012; Fahimnia et al., 2013). In the forward supply chain, the network includes 

multiple production centers (PCs), multiple distribution centers (DCs), and multiple 

markets. In the reverse supply chain, the network includes multiple collection centers 

(CCs), multiple recycling centers (RCs), and multiple disposal depots (DDs). In 

practice, such a CLSC network could span across several countries or continents. 
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Figure 1.1 A general CLSC network 

In the forward chain, PCs get new components through suppliers and recycled 

ones through the RC. Each PC could produce multiple product types using 

technologies that may differ from other producers. Each technology has its own 

acquisition, operation and production costs as well as carbon emission rate. Finished 

products are shipped to markets from the DCs. A variety of transportation modes are 

available for shipping products among facilities at different costs and fuel efficiency 

rates. In the reverse supply chain, the used products are collected by the CCs, collected 

products are shipped to RCs. At the RCs, products are disassembled into components, 

inspected and sorted into recycled and non-recyclable components. This study assumes 

that recycled components are as good as new components (Özkır and Başlıgil, 2013). 

Non-recyclable components are shipped to DDs for disposal purpose. 

1.2 Statement of the Problem 

Most of the carbon emission reduction initiatives have focused largely on 

replacing energy inefficient equipment and facilities, redesigning products and 

packaging, finding less polluting sources of energy and implementing energy-saving 

programmes. While such efforts are valuable, many firms tend to ignore a potentially 

more significant source of emissions (industrial carbon footprint), which is driven by 

business practices, operational policies, and coordination in a long and complex supply 

chain. One of the effective approaches to reduce carbon emissions is the adoption of 

CLSC network. Moreover, environmental sustainability of collecting used products 

and maximizing the value creation of entire life-cycle of a product depend on the best 
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possible recovery practices in the reverse supply chain network. However, existing 

mathematical models mainly focus on the separate issues relating to optimal 

configuration of CLSC network or incorporating carbon emission policies or financial 

incentives for acquiring used products or parameters uncertainty in SCND planning 

decisions. They tend to ignore integrating these issues in the context of configuring 

optimal CLSC network and reduce carbon emission. Therefore, there is a need to 

integrate these issues because (i) the decision regarding the design and planning of an 

optimal CLSC network plays a major role in determining the total carbon footprint 

across the supply chain; (ii) the performance of recovery activities in a CLSC mainly 

depends upon the effective and efficient collection process of used products; (iii) 

optimal configuration of a CLSC network under uncertainty is necessary to deal with 

uncertain parameters such that the impact of parameter fluctuations on network design 

will be less. Therefore, it is highly necessary to propose integrated optimization models 

for design and planning of CLSC network by considering all above-mentioned aspects. 

1.3 Purpose of the Research 

This research proposes optimization models to address a CLSC network design 

problem with carbon footprint consideration under uncertainty by quantifying and 

comparing both economic and carbon emission on SCND planning decisions under 

multiple planning periods. The proposed models extended further to analyse the effect 

of carbon emission policies such as carbon cap, carbon tax, and carbon trade policy on 

the SCND planning decisions. The proposed models with carbon policies is extended 

further to incorporate uncertainty issues in SCND and operational decisions. Supply 

chain total cost is minimized by determining optimal location of facilities, optimal 

acquisition price with respect to return rate and optimal manufacturing, 

remanufacturing, recycling, and transportation quantities. 
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1.4 Research Questions 

The following key research questions will be investigated in this study through 

the research gaps addressed in the problem statement. 

i. How carbon footprint to be incorporated in SCND planning decisions? 

ii. How carbon policies effect on the CLSC network design decisions? 

iii. What is the trade-off that exists between supply chain total cost and carbon 

emission under various carbon policies? 

iv. How can the uncertainty dimension (parameters uncertainty) be included in a 

deterministic model? 

v. What is the impact of parameters uncertainty on SCND planning decisions of 

the CLSC network? 

vi. Considering various product recovery activities in reverse network, what is the 

impact of these activities on supply chain total cost and carbon emission? 

vii. How the conservatism degree of various uncertain parameters under the robust 

model effects on net change in objective function value (total cost)? 

1.5 Research Objectives 

The objectives of this research are:  

i. To propose an optimization model to address a multi-period CLSC network 

design and planning problem considering various carbon emission policies. 

ii. To develop stochastic and robust CLSC models to deal with parameters 

uncertainty such that to minimize the total cost and carbon emission. 

iii. To enhance the robust model for a CLSC network considering multi recoveries 

and return incentives. 
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1.6 Scope and Key Assumptions  

This section provides scope of this study and relevant key assumptions. 

 

Scope 

 

i. Addressing CLSC network under multi product and multi period settings. 

ii. Only operational (internal) uncertainty is considered and limited to scenario-

based stochastic programming and robust optimization approaches to deal with 

uncertain parameters. 

 

Key assumptions 

 

i. The number, capacity and location of potential facilities in network is known 

in advance. 

ii. The number and location of customer zones and secondary markets (products 

markets, spare part markets and materials markets) are fixed and predefined. 

iii. Each processed product yields both components and raw materials having 

different quality levels. 

iv. Procurement cost, customer demand, and returned products are assumed to be 

uncertain. 

v. At the beginning of planning horizon, distribution centres have enough 

products for next time periods to satisfy customers demand. 

vi. Returned products are classified according to their quality levels (high, 

medium, poor). Example, under warranty products and damaged products are 

considered as high-quality returns, end-of-use products are considered as 

medium quality returns, while end-of-life products are categorised as poor-

quality returns. 

vii. Components and materials are brought back to as good as new through the 

repair and recycling processes at repair and recycling centres respectively. 

Their processing costs are cheaper as compared to procurement cost of new 

components and raw materials from suppliers. 
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viii. Unit cost of collection, recovery, disassembly, repair, and recycling are quality 

dependent. 

ix. Emissions generated due to processing of products at facilities and emissions 

generated due to shipping products between the facilities are known. 

x. Emission cost for storing a product at facilities is negligible when compared to 

the overall cost of carbon emissions in supply chain network (Fahimnia et al., 

2013). 

xi. Inventory holding cost and shortage cost are incurred due to holding inventory 

and penalizing for not satisfying demand requirement respectively. 

1.7 Importance of the Research 

This research extends current optimization models which emphasizes not only 

on minimizing the total cost but also reducing the carbon emissions across the supply 

chain by considering carbon footprint criteria under various carbon emission policies. 

Policy makers can use these models to analyse the effect of policy parameters on 

SCND planning decisions. This will allow them to choose most suitable carbon 

reduction policy based on strict carbon cap, carbon tax rate, carbon market price over 

total emissions. Furthermore, these models can help decision makers to predict the 

impact of these policies on SCND planning decisions based on overall supply chain 

costs and carbon emissions. Moreover, the prime importance of considering multiple 

recovery activities of the used products in a CLSC has three folds; (i) maximizing the 

remaining economic value of a used product with best possible recovery practices, (ii) 

improving environmental sustainability of collecting used products, and (iii) 

increasing the quality and quantity of returned products as well as prosperity of 

business in the reverse logistics by offering financial incentives for collecting used 

products from the customers.  

In addition, consideration of uncertainties in the model parameters leads to 

more realistic problems. Developing stochastic and robust optimization models which 

can withstand (absorb) uncertainty of input parameters help managers and decision 

makers in making proper decisions. Because SCND decisions’ effects last for several 
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years, during which critical parameters change i.e., quite uncertain. While not 

considering uncertainty issues in the models leads to sub-optimal or infeasible 

solutions. 

With these considerations while designing and planning a CLSC, the proposed 

optimization models with different carbon policies can be valuable to the companies, 

researchers, and decision makers to forecast the effect of these policies on SCND and 

planning decisions. Therefore, decision makers can choose the suitable carbon policy 

to meet their needs. In addition, the proposed stochastic and robust models considering 

three carbon policies can be valuable for decision makers based on the properties of a 

selected uncertainty set. 

1.8 Definitions of Terms 

This section provides definitions of the terms which are important and 

currently used in this research. 

a) Mixed Integer Linear Programming 

Mixed integer-linear programs (MILP) are linear programs arising naturally in 

many real-life applications, in which some of the decision variables are 

constrained to be integer values at the optimal solution. 

b) Carbon Cap Policy 

A firm is allowed to emit a limited amount of carbon emission over the 

planning horizon. The emitted carbon could be due to production, storage, and 

transportation activities. The imposed carbon allowance is referred to as the 

carbon cap or maximum allowable carbon emission. 
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c) Carbon Tax Policy 

A financial penalty is incurred per unit of carbon emission through taxes. 

d) Carbon trade Policy 

A firm is allocated to emit a limited amount of carbon emission over the 

planning horizon which is same as in carbon cap policy. In addition, it is 

allowed to trade its carbon allowance.  If a firm emits less than its prescribed 

carbon cap, then it allows to sell the unused amount of carbon credits. Vice-

versa, if a firm emits more than its prescribed carbon cap then it allows to 

purchase additional carbon emission credit to maintain its supply chain 

activities or it can reduce its carbon emissions and to implement more 

environmental friendly manners of conducting its business. 

e) Uncertainties 

There are two major sources of uncertainties addressed in the literature, 

categorized them as internal (operational risks) uncertainties and external 

(disruption risks) uncertainties. Internal uncertainties are attributed to implicit 

disruptions within the organization such as operational costs, facility capacity, 

production and distribution quantities, demand, return rate etc. Whereas 

external uncertainties are attributed to natural disasters such as earthquakes, 

floods, and man-made disasters such as terrorist attacks, fires etc. 

f) Single Recovery and Multi Recoveries 

In reverse supply chain network, returned product goes through various 

recovery practices including collection, disassembly, remanufacture, recycling, 

disposal etc., to recover the used product, component, module, material as good 

as new to; (i) improve the environmental sustainability, (ii) maximize the 

economic value of the used product, and (iii) increase economic benefits of a 
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firm. As such, single recovery refers to only one entity (product or component 

or module or material) recovered and multi recoveries refer to more than one 

entity recovered. 

g) Return Incentives 

The means to increase the quality and quantity of used products returns from 

customers through various types of financial incentives and promotional offers 

such as acquisition price, cash rebate, discounts and product exchange which 

are the important factors in influencing the collection of product returns. 

1.9 Overview of Research Methodology 

This research proposes a deterministic MILP model to address a CLSC 

network design problem with carbon regulations consideration, by integrating the 

carbon emission into SCND planning decisions. To make the model more realistic, 

this research addresses the SCND and planning decisions focusing on selection of 

technologies at the production facilities, transportation mode selection, multiple 

recovery options for returned products based on their different quality levels, 

incentive-based quality returns, capacity limits on potential facilities and 

transportation. The model extends further to incorporate uncertainty issues in the input 

parameters. Stochastic scenario-based programming and robust optimization 

approaches are used to represent the imprecise input parameters as scenarios and 

bounded uncertainty sets respectively. These approaches provide a framework to deal 

with uncertainties in optimization problems that could sustain optimal solutions i.e., 

protect against infeasibility or sub-optimality in a given realization or scenario. A 

detailed description about each approach is provided in chapter 3 of the thesis. 
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1.10 Summary of Research Contributions 

This study proposes optimization models for CLSC network design and 

planning considering carbon footprint under uncertainty to quantify and evaluate  both 

supply chain total cost and carbon emissions based on the key parameters of various 

carbon policies by determining the optimal number of potential facilities to be opened, 

determining the optimal quantities in both  forward supply chain network and in the 

reverse network, transportation quantities, type of transportation mode to be used 

between the facilities, and type of available technologies to be used at production 

centres so that the total supply chain cost and carbon emissions are minimized. To 

make supply chain becomes more realistic, this research incorporates multiple 

recovery options in the reverse network and incentive offers for collecting used 

products at collection centres for maximizing the value creation of entire life of a 

product. In addition, this research develops stochastic and robust optimization 

approaches to deal with effect of parameters uncertainty. Numerical results provide 

some insightful observations with respect to supply chain total cost and carbon 

emission on SCND planning decisions.  

Figure 1.2 briefly illustrates the hierarchical of research development stages 

and research contribution. Previous research in the area of forward SCND has 

extensively focussing in terms of network structure, location of facilities (from 

suppliers to customers), modelling features (different sources of uncertainty), 

performance measures (cost, profit), and solution approaches (exact methods, meta 

heuristics). Reverse SCND is based on facility type for reuse, recycle, repair of retuned 

products and type of return.  CLSC network design is an emerging area because its 

goal is to strive for sustainability by improving economic and environmental 

performance measures simultaneously. The prime importance of used products 

recovery has two major advantages: (i) environmental sustainability of collecting used 

products by various means (incentives/promotional offers), (ii) maximizing the 

economic value of a used product with best possible recovery practices. To address the 

problem of carbon emissions reduction from supply chain and logistics perspective, 

the logistics network should be designed in a way that it could reduce both the cost 

and the carbon footprint across the supply chain because the decision concerning the 
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design an optimal network of the CLSC plays a vital role in determining the total 

carbon footprint across the supply chain and also the cost. Therefore, it is essential to 

make these decisions such a way that it could not only configure optimal network but 

also reduce total cost and carbon footprint. Moreover, not considering operational 

uncertainty while design and planning of CLSC network leads to sub-optimal and 

infeasible solutions. Therefore, in order to address above issues, this research proposes 

optimization models for CLSC network design with carbon policies under uncertainty. 

 

Figure 1.2 Hierarchy of research development stages and contributions 

1.11 Organization of the Thesis 

As shown in Figure 1.3, this work is structured into eight chapters. The 

foundation of the research is presented in Chapter 1.  Chapter 2 covers literature review 

which provides contextual information in the interrelated subjects of this research. 

Chapter 3 describes the research methodology and its rationale. Chapter 4 presents 
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deterministic MILP model for a multi-period CLSC network design problem with 

consideration of carbon policies and provides numerical results at the end of the 

chapter. Chapter 5 is an extension of Chapter 4 by considering uncertainty in product 

demand and used products returns. This research used scenario-based stochastic 

approach and robust optimization approach to deal with uncertainty. Chapter 6 is also 

extension of Chapter 4 by (i) incorporating multiple recovery options in the reverse 

logistic of the network, (ii) considering returned products with different quality levels, 

and financial incentives are offered that are based on the quality level of each returned 

product to maximize economic value of the used products with best possible recovery 

practices. Moreover, (incorporated uncertainty in supply, demand, and used products 

availability at customer zones) a robust counterpart of the proposed model is developed 

to immunize the effect of uncertainty on supply chain planning and operational 

decisions. Chapter 7 provides an overall discussion on the research findings. Chapter 

8 summarizes the conclusions, and contributions of this research. Moreover, the 

limitations of this research as well as suggestions for future research are provided at 

the end the chapter. 

 

Figure 1.3 Organization of the thesis 
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1.12 Summary 

An essential introduction to this research is presented in this chapter. Started 

with background of this research in which research issues are discussed and research 

gaps are highlighted. Followed by the statement of the problem in which the problem 

of this research is outlined. Subsequently, purpose, objectives, scope and key 

assumptions, and importance of this research is presented. A brief overview of research 

methodology is provided. At the end of this chapter, contributions of this research are 

highlighted, and organization of the thesis is outlined. 
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