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ABSTRACT 

Flight delay has become a hot issue over the recent years since it is one of the 

common factors that can impact the airline companies in terms of financial cost. When 

a flight is delayed, it requires the consumption of extra fuels, labor and other necessary 

aspects in the airline production process and this may lead to higher operating cost to 

the airlines. Thus, this study aims to develop the hybridization between Autoregressive 

Integrated Moving Average (ARIMA) models and Generalised Autoregressive 

Conditional Heteroscedasticity (GARCH) models to predict the flight delay at Kuala 

Lumpur International Airport (KLIA). The weekly average minutes flight delay data 

were obtained from Kuala Lumpur Air Traffic Control Centre (KL ATCC) Flight 

Information Regions (FIR) Subang which dated from 5th May 2014 until 2nd July 2018. 

The data are divided into two parts, which 80% of the data are used as in-sample data 

and the rest 20% are used as out-sample data. The in-sample data are those from 5th 

May 2014 until 28th August 2017 and out-sample data will be from 4th September 2017 

until 2nd July 2018. The data are first analysed by using GARCH models and the 

performance of these models is compared with hybrid ARIMA-GARCH models. The 

results of this study revealed that hybrid ARIMA-GARCH model is the best method 

for modelling and forecasting flight delay compared to GARCH models as it has a 

smaller value of Akaike’s Information Criterion, Mean Absolute Error (MAE), Mean 

Squared Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute 

Percentage Error (MAPE). 
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ABSTRAK 

Kelewatan penerbangan merupakan satu isu yang hangat dibincangkan 

semenjak beberapa tahun ini kerana ia merupakan salah satu faktor yang menjejaskan 

prestasi sesebuah syarikat penerbangan terutamanya dari segi kewangan. Hal ini 

kerana keperluan untuk penambahan bagi penggunaan tenaga kerja serta bahan bakar 

akibat kelewatan penerbangan menyebabkan sesebuah syarikat penerbangan itu harus 

menanggung kos operasi yang lebih tinggi. Justeru, kajian ini dijalankan bagi 

membangunkan model penghibridan antara model Autoregresi Purata Bergerak 

Terkamir (ARIMA) dan model Autoregresi Teritlak Heteroskedastisiti Bersyarat 

(GARCH) untuk ramalan kelewatan penerbangan di Lapangan Antarabangsa Kuala 

Lumpur (KLIA). Data mingguan dari tempoh 5 Mei 2014 sehingga 2 Julai 2018 bagi 

kelewatan penerbangan mengikut purata minit diperoleh daripada Pusat Kawalan 

Trafik Udara Kuala Lumpur (KL ATCC) Informasi Penerbangan Kawasan (FIR) 

Subang. Data tersebut dibahagikan kepada dua bahagian di mana 80% daripadanya 

digunakan sebagai data sampel dalam dan selebihnya digunakan sebagai data sampel 

luar. Data yang bertarikh 5 Mei 2014 sehingga 28 Ogos 2017 digunakan sebagai data 

sampel dalam manakala data sampel luar diambil daripada data yang bertarikh 4 

September 2017 sehingga 2 Julai 2018. Analisis data tersebut dibuat menggunakan 

model GARCH dan kemudiannya dibandingkan dengan hasil analisis daripada model 

penghibridan ARIMA-GARCH. Hasil kajian menunjukkan bahawa model 

penghibridan ARIMA-GARCH adalah model yang terbaik dalam permodelan dan 

peramalan kelewatan penerbangan kerana model ini mempunyai nilai Kriteria 

Informasi Akaike (AIC), MAE, MSE, RMSE dan MAPE yang kecil berbanding model 

GARCH. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Introduction 

Flights can be delayed due to the airline maintenance and services, security 

issues, extreme events such as heavy floods, volcano eruption, thunderstorm and 

tsunami. According to the Federal Aviation Administration (FAA), flights are 

considered to be delayed when it is 15 minutes later than its scheduled time. These 

flight delays can cause so much inconvenience to people who travel back and forth for 

businesses and also leisure activities. On top of that, when flights are delayed, the 

passengers who are on a multi-plane trips could miss the connecting flights and arrive 

late at the destinations. If flights are cancelled, most airlines will rebook the tickets for 

the affected passengers at no additional charge but it is totally a different case when 

flights are delayed.  

 

Flights can also be affected by reactionary delays, in which this delays are 

caused by the late arrival of previous flights. These type of delays can worsen the 

schedule operation. Flight schedules are often subjected to irregularity. Due to tight 

connections among airlines resources, flight delays could grow immensely over time 

and space unless the proper actions are taken (Oza et al. 2015). It can be costly to 

airline companies if the flights are delayed as this involves all aspects of aerodrome 

operations such as extra consumptions of aircraft fuelling and aircraft maintenance. 

Ryersen et al. (2014) also claimed that flight delays will usually lead to massive 

amount of fuel burnt. This sometimes will urge the airlines to increase the price of the 

flight tickets just to cover the costs of extra consumptions of fuel and other necessities.  
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1.2 Background of the Study 

According to Cheng (2014), flight delays prediction has been one of the hot 

issues over the past few years. Many factors can lead to flight delays such as adverse 

weather conditions, the reactionary delays, mechanical and maintenance problems. 

There have been a lot of researches conducted previously regarding the flight delays. 

In a research done by Mueller and Chatterji (2002), the departure and arrivals delay 

were modelled by using Normal or Poisson distributions and its purpose is to improve 

the airlines traffic management systems. Kalliguddi and Leboulluec (2017) proposed 

a predictive modelling engine using machine learning techniques and developed some 

statistical models to predict flight delays. The aim of developing the predictive model 

for flight delay is to have better management decisions for the airlines.  

In addition, Oza et al. (2015) in their study managed to develop the models 

which can help to predict the flight delay using OneR Algorithm. Cheng (2014) on the 

other hand, used weighted spline combined with ARIMA model as a tool to predict 

flight departure delay. The model is able to predict delays for each flight in terms of 

specific day and hour. The study involved several contributing factors such as school 

and public holidays, weather and hourly pattern which lead to flight delay.  In another 

study done by Lee and Zhong (2016), the correlation between flight delay and duration 

of rainfall as well as thunderstorms were investigated using multiple regression model 

namely linear model and square root model. It turns out that square root model 

produced a better accuracy in determining the correlation between weather and the 

flight delay compared to the linear model.  

These past researches prove that it is crucial to predict flight delay as it will 

help in enhancing the accuracy of flight schedules and more importantly, provide 

convenience for the passengers. Therefore, in this study, GARCH and hybrid ARIMA-

GARCH models will be proposed to predict flight delays at Kuala Lumpur 

International Airport. Weekly average minutes will be considered since daily data is 

not appropriate due to massive missing values. This study only focuses on the delay 

between 15 minutes up to 60 minutes as more than one hour delay will be considered 

as outliers.   



 

3 

At the end of the study, modelling and forecasting performance between the 

best models of GARCH and hybrid ARIMA-GARCH will be compared. The smaller 

value of Akaike’s Information Criterion (AIC) indicates that the model is better than 

the other model in terms of modelling performance. Meanwhile, in terms of forecasting 

performance, the smaller values of Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 

(MAPE) will be concluded as the best forecasting method.  

1.3 Problem Statement 

Flight delay is one of the common factors that lead to high cost impact to airline 

companies. When a flight is delayed, it requires the consumption of extra fuel, labor 

and other necessary in the airline production process, resulting in higher operating cost 

to the airlines. It is also inconvenience to the passengers when flights are delayed as 

this could affect their schedules and activities. Therefore, it is vital to carry a study 

which is able to improve the accuracy of flight arrivals and departures.  

Since there is no similar studies exist in Malaysia yet, modelling and 

forecasting flight delays at Kuala Lumpur International Airport (KLIA) can be 

considered to overcome the problem. Time series model are used in the current study. 

However, volatility which exist in the flight delay data can be a tough issue in 

modelling and forecasting the time series. Hence, it is crucial to perform an analysis 

that can comprehend the entire behavior of the delay data as well as provide more 

accurate result at the end of the study.  

Even though Autoregressive Integrated Moving Average (ARIMA) is known 

as a flexible model, it is unfortunately unable to handle volatility. Thus, this study aims 

to find the best method which can model and forecast the volatile flight delay data. 

Furthermore, the presence of Autoregressive Conditional Heteroscedasticity (ARCH) 

effect is another problem which needs to be taken care of. Hence, a more appropriate 

model is chosen in order to remove the ARCH effect that exists in the data. Hopefully 



 

4 

this study will produce better accuracy of flight schedules and reduce the number of 

flight delays.  

1.4  Objectives of the Study 

The objectives of the research are: 

1) To develop the best GARCH model for flight delay at Kuala Lumpur 

International Airport (KLIA). 

2) To develop the best hybrid ARIMA-GARCH model for flight delay at Kuala 

Lumpur International Airport (KLIA). 

3) To compare the modelling as well as forecasting performances between 

GARCH and hybrid ARIMA-GARCH models for flight delay data.  

1.5 Scopes and Limitations 

This study involves weekly average minutes flight delay data at Kuala Lumpur 

International Airport (KLIA) which are obtained from Kuala Lumpur Air Traffic 

Control Centre (KL ATCC) Flight Information Regions (FIR) Subang dated from 8th 

October 2013 until 13th July 2018. In this study, the flight delay data cover both KLIA 

and KLIA 2. The reason why this study used weekly data instead of daily data is 

because there are massive missing values for the whole consecutive three weeks from 

29th January 2017 until 17th February 2017. Mean imputation method can be used to 

overcome the missing values but it is still considered inappropriate for replacing the 

three weeks missing values with the imputed mean of average minutes flight delay.  

Moreover, the research only focuses on the data after KLIA2 has been fully 

operated, which is on 2nd May 2014 onwards. It is impossible to consider the whole 

data prior and after the opening of KLIA2 since there are huge difference between the 
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delay records among these two events. Obviously, there was quite a large delay which 

had been recorded prior to the opening of KLIA2 since there are only two runways 

operated. It is a weekly data and every new week will start on Mondays, therefore the 

data will begin on Monday (5th May 2014). There are a total of 218 observations 

indicating that there are 218 weekly data involve in this research. The data in this study 

were analysed by using EViews and RStudio softwares. 

GARCH models will be proposed in this study since the data are very volatile. 

In a study done by Miswan et al. (2014), GARCH models need to be applied only to a 

volatile data and if it happens otherwise, it will not produce a good modelling and 

forecasting results. Hybridization between ARIMA and GARCH models will be 

proposed later to compare the modelling and forecasting performance. In most cases, 

hybridization models will increase the accuracy performance since it is able to 

complement the weakness of each model components. Therefore, in this research two 

methods of modelling and forecasting will be compared at the end of the study which 

are GARCH models and hybrid ARIMA-GARCH models.  

 
1.6 Significance of the Study 

In this study, flight delay will be modelled and forecasted by using GARCH 

and hybrid ARIMA-GARCH models. ARIMA model has the ability to handle 

nonstationary data while GARCH model is able to capture the volatility which exists 

in the conditional variance of the time series. Hybridization between these two models 

will improve the accuracy and forecasting performance since it carries both qualities 

in ARIMA and GARCH models.  

Flight delays can be costly to airline companies as it requires the consumptions 

of extra fuel, labor and other necessary production process. According to Abdullah et 

al. (2007), even though promotions for flight tickets are widely held, it is still not 

enough to satisfy the airline customers. This is because not all customers are willing 

to accommodate unnecessary delays in their travel plans. Therefore, it is crucial to 

predict the flight delays as it can be beneficial for airlines.  



 

6 

1.7 Organizations of the Report 

This research consists of five chapters, which in the first chapter includes the 

introduction, background of the study, problem statement, scopes and limitations in 

the study, significance of study and lastly the organizations of the report. Chapter 2 

describes in detail the reviewed literature made in the past by other researchers. The 

methodology of this research will be discussed in Chapter 3 which includes volatility 

testing for GARCH models, stationary testing, model identification, parameter 

estimation, diagnostic checking and forecasting. Meanwhile, the analysis of this 

research will be done in Chapter 4. This chapter is the most important chapter as it will 

conclude the best method for modelling and forecasting. The best modelling 

performance will be assessed by using the smallest value of Akaike’s Information 

Criterion (AIC). On the other hand, the best forecasting performance will be assessed 

by using the smallest value of Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 

(MAPE). Finally, chapter 5 consists of summary and conclusions of the study as well 

as suggestions for future research.  

 



 

101 

REFERENCES 

Abdullah, K., Abd.Manaf, N. H. & Noor, K. M., 2007. Measuring The Service Quality 

of Airline Services in Malaysia. IIUM Journal of Economics and Management, 

Volume 15, pp. 1-29. 

Abdullah, L., 2012. ARIMA Model for Gold Bullion Coin Selling Prices Forecasting. 

International Journal of Advances in Applied Sciences (IJAAS), 1(4), pp. 153-

158. 

Ahmad, M. H., Ping, P. Y., Yaziz, S. R. & Miswan, N. H., 2015. Forecasting 

Malaysian Gold Using a Hybrid of ARIMA and GJR-GARCH Models. 

Applied Mathematical Sciences, 9(30), pp. 1491-1501. 

Amath, E., 2011. Time Series Concepts, University of Washington: Unpublished Note. 

Angabini, A. & Wasiuzzaman, S., 2011. GARCH Models and the Financial Crisis-A 

Study of the Malaysian Stock Market. The International Journal of Applied 

Economics and Finance, 5(3), pp. 226-236. 

Babu, C. N. & Reddy, B. E., 2014. Selected Indian Stock Predictions Using a Hybrid 

ARIMA-GARCH Model. Bangalore, The Institute of Electrical and 

Electronics Engineers. 

Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity. 

Journal of Econometrics, Volume 31, pp. 307-327. 

Cheng, J., 2014. Estimation of Flight Delay Using Weighted Spline Combined with 

ARIMA Model. pp. 8-20. 

Cheng, J., 2014. Risk Management Using Big Real Time Data, s.l.: s.n. 

Christodoulos, C., Michalakelis, C. & Varoutas, D., 2010. Forecasting with limited 

data: Combining ARIMA and diffusion models. Technological Forecasting & 

Social Change, Volume 77, pp. 558-565. 

Cunningham, J., Cook, L. & Provan, C., 2012. The Utilization Of Current Forecast 

Products In A Probabilistic Airport Capacity Model. Third Aviation, Range 

and Aerospace Meteorology Special Symp. on Weather-Air Traffic 

Management Integration, New Orleans, LA, Amer. Meteor. Soc. , Volume 540. 

Ding, J. & Li, H., 2012. The Forecasting Model of Flight Delay Based On DMT-GMT 

Model. Physics Procedia, Volume 33, pp. 395-402. 



 

102 

Ding, Y., 2017. Predicting Flight Delay Based On Multiple Linear Regression. IOP 

Conference Series: Earth and Environmental Science, Volume 81. 

Guirguis, H. S., Giannikos, C. I. & Anderson, R. I., 2005. The US Housing Market: 

Asset Pricing Forecasts Using Time Varying Coeffecients. The Journal of Real 

Estate Finance and Economics, 30(1), pp. 33-53. 

Hansen, B. K. & Riordan, D., 2001. Weather Prediction Using Case-Based Reasoning 

and Fuzzy Set Theory.  

Jadevicius, A. & Huston, S., 2015. ARIMA Modelling of Lithuanian House Price 

Index. nternational Journal of Housing Markets and Analysis, 8(1), pp. 135-

147. 

Jadhav, V., Reddy, B. V. C. & Gaddi, G. M., 2017. Application of ARIMA Model for 

Forecasting Agricultural Prices. Journal of Agricultural Science and 

Technology, Volume 19, pp. 981-992. 

Kalliguddi, A. M. & Leboulluec, A. K., 2017. Predictive Modeling of Aircraft Flight 

Delay. Universal Journal of Management, 5(10), pp. 485-491. 

Kane, I. & Yusof, F., 2013. Assessment of Risk of Rainfall Events with a Hybrid of 

ARFIMA-GARCH. Canadian Center of Science and Education, 7(12), pp. 78-

89. 

Klein, A., Kavoussi, S. & Lee, R. S., 2009. Weather Forecast Accuracy: Study of 

Impact on Airport Capacity and Estimation of Avoidable Costs. Eighth 

USA/Europe Air Traffic Management Research and Development Seminar, 

Volume 8. 

Knight, J. & Satchell, S., 1998. Forecasting Volatility in the Financial Markets. 1 ed. 

Butterworth-Heinemann, Oxford: s.n. 

Lee, Y. X. & Zhong, Z. W., 2016. A study of The Relationship Between Adverse 

Weather Conditions and Flight Delay. Journal of Advances in Technology and 

Engineering Research, 2(4), pp. 113-117. 

Lim, C. M. & Sek, S. K., 2013. Comparing The Performances of GARCH-Type 

Models in Capturing The Stock Market Volatility in Malaysia. Procedia 

Economics and Finance, Volume 5, pp. 478-487. 

Markovic, D., T.Hauf, P.Röhner & U.Spehr, 2008. A Statistical Study of The Weather 

Impact on Punctuality at Frankfurt Airport. Meteorological Applications , 

Volume 15, pp. 293-303. 



 

103 

Miswan, N. H., Ngatiman, N. A., Hamzah, K. & Zamzamin, Z. Z., 2014. Comparative 

Performance of ARIMA and GARCH Models in Modelling and Forecasting 

Volatility of Malaysia Market Properties and Shares. Applied Mathematical 

Sciences, 8(140), pp. 7001-7012. 

Miswan, N., 2013. Modelling and Forecasting Volatile Data by Using ARIMA and 

GARCH Models, Universiti Teknologi Malaysia: Master's Degree. 

Mueller, E. R. & Chatterji, G. B., 2002. Analysis of Aircraft Arrival and Departure 

Delay Characteristics, Los Angeles: American Institute of Aeronautics and 

Astronautics. 

Narsoo, J., 2015. Forecasting USD/MUR Exchange Rate Dynamics: An Application 

of Asymmetric Volatility Models. International Journal of Statistics and 

Applications, 5(5), pp. 247-256. 

Okyere, F. & Kyei, L., 2014. Temporal Modelling of Producer Price Inflation Rates of 

Ghana. IOSR Journal of Mathematics (IOSR-JM), 10(3), pp. 70-77. 

Osborne, J. W., 2010. Improving Your Data Transformations: Applying the Box-Cox 

Transformation. Practical Assessment, Research & Evaluation, 15(12), pp. 1-

6. 

Oza, S. et al., 2015. Flight Delay Prediction System Using Weighted Multiple Linear 

Regression. International Journal Of Engineering And Computer Science, 

April, 4(4), pp. 11668-11677. 

Pahlavani, M. & Roshan, R., 2015. The Comparison among ARIMA and hybrid 

ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran. 

International Journal of Business and Development Studies, 7(1), pp. 31-50. 

Pampaka, M., Hutcheson, G. & Williams, J., 2016. Handling Missing Data: Analysis 

of A Challenging Data Set Using Multiple Imputation. International Journal of 

Research & Method in Education, 39(1), pp. 19-37. 

Paul, D. J. C., Hoque, M. S. & Rahman, M. M., 2013. Selection of Best ARIMA Model 

for Forecasting Average Daily Share Price Index of Pharmaceutical Companies 

in Bangladesh: A Case Study on Square Pharmaceutical Ltd.. Global Journal 

of Management and Business Research Finance, 13(3), pp. 15-26. 

Peck, L. & Hedding, D. W., 2017. Developing a Weather Impact Index for O.R. Tambo 

International Airport, South Africa. Weather And Forecasting, Volume 32, pp. 

1529-1539. 



 

104 

Pejovic, T., Williams, V. A., Noland, R. B. & Toumi, R., 2009. Factors Affecting the 

Frequency and Severity of Airport Weather Delays and The Implications of 

Climate Change for Future Delays. Journal of the Transportation Research 

Board, pp. 97-106. 

Rehm, F. & Klawonn, F., 2005. Learning Methods For Air Traffic Management. 

Lecture Notes in Computer Science, pp. 992-1001. 

Ryersen, M. S., Hansen, M. & Bonn, J., 2014. Time to Burn : Flight Delay , Terminal 

Efficiency And Fuel Consumption in The National Airspace System. 

Transportation Research Part A, Volume 69, pp. 286-298. 

Sasse, M. & Hauf, T., 2003. A Study of Thunderstorm-Induced Delays at Frankfurt 

Airport, Germany. Meteorological Applications, Volume 10, pp. 21-30. 

Schmitt, P., Mandel, J. & Guedj, M., 2015. A Comparison of Six Methods for Missing 

Data Imputation. Journal of Biometrics & Biostatistics , 6(1), pp. 1-6. 

Singye, T. & Unhapipat, S., 2018. Time Series Analysis of Diabetes Patients: A case 

Study of Jigme Dorji Wangchuk National Referral Hospital in Bhutan. Journal 

of Physics, pp. 1-11. 

Solanki, P. & Sharma, M., 2016. Forecasting of Price Volatility in Cumin Using 

EGARCH Model. International Journal Seed Spices, 6(2), pp. 96-99. 

Tamiselvan, M. & Vali, S. M., 2016. Forecasting Stock Market Volitility-Evidence 

From Muscat Security Market Using GARCH Models. International Journal of 

Commerce and Finance, 2(1), pp. 37-53. 

Thorlie, M. A., Song, L., Wang, X. & Amin, M., 2014. Modelling Exchange Rate 

Volatility Using Asymmetric GARCH Models (Evidence from Sierra Leone). 

International Journal of Science and Research (IJSR), 3(11), pp. 1206-1214. 

Wang, W., Gelder, P. H. A. J. M. V., Vrijling, J. K. & Ma, J., 2005. Testing and 

Modelling Autoregressive Conditional Heteroskedasticity of Streamflow 

Processes. Nonlinear Processes in Geophysics, Volume 12, pp. 55-66. 

Wei, W. W. S., 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd 

Edition ed. s.l.:Pearson Addison Wesley. 

Wiphatthanananthakula, C. & Sriboonchittab, S., 2010. The Comparison Among 

ARMA-GARCH, -EGARCH, -GJR, and -PGARCH Models on Thailand 

Volatility Index. The Thailand Econometrics Society, 2(2), pp. 140-148. 



 

105 

Yaziz, S. R., Ahmad, M. H., Nian, L. C. & Muhammad, N., 2011. A Comparative 

Study on Box-Jenkins and Garch Models in Forecasting Crude Oil Prices. 

Journal of Applied Sciences, 11(7), pp. 1129-1135. 

Yaziz, S. R., Azizan, N. A., Zakaria, R. & Ahmad, M. H., 2013. The Performance of 

Hybrid ARIMA-Garch Modeling in Forecasting Gold Price. Adelaide, s.n. 

Yusof, F., Kane, I. L. & Yusop, Z., 2013. Hybrid of ARIMA-GARCH Modeling in 

Rainfall Time Series. Jurnal Teknologi, 63(2), pp. 27-34. 

Zhang, G. P., 2003. Time Series Forecasting Using a Hybrid ARIMA and Neural 

Network Model. Neurocomputing, Volume 50, pp. 159-175. 

 

 
 




