MODELLING AND FORECASTING FLIGHT DELAY AT KUALA LUMPUR INTERNATIONAL AIRPORT USING HYBRID ARIMA-GARCH MODEL

ILYA FARHANA ZULKEFLEE

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science

> Faculty of Science Universiti Teknologi Malaysia

> > MAY 2019

DEDICATION

To my dearest husband, who has always believed in me and my beloved family, who never fail to support me.

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude to the Almighty God that I am finally able to complete this dissertation on time. I would also like to express my deepest gratitude to my supervisor, Prof. Dr. Fadhilah Yusof for all the guidance and knowledge she had been given me since the very beginning of this journey. Without her supports and patience, I would not be able to complete this dissertation successfully.

I am also indebted to UTM-CIAM for giving me the opportunity to handle the research project under COE grant Q.JI30000.2409.03G96 and also many thanks to all the members of the project, Prof. Dr. Zainal Abdul Aziz, Dr. Arifah Bahar, Assoc. Prof. Dr. Zaitul Marlizawati Zainuddin and Dr Istaz Fahrurrazi Nusyirwan for all the guidance and help throughout the completion of this dissertation.

I would like to extend my sincerest gratitude to my dearest husband, Nazmi Bin Razalini and my beloved family who never failed in giving me supports and continuous motivations, who had always been there during all those hardships.

Last but not least, I would like to thank all my colleagues and friends who had involved directly and indirectly through the completion of this dissertation. Without their help, this dissertation surely would not be the same as presented here.

ABSTRACT

Flight delay has become a hot issue over the recent years since it is one of the common factors that can impact the airline companies in terms of financial cost. When a flight is delayed, it requires the consumption of extra fuels, labor and other necessary aspects in the airline production process and this may lead to higher operating cost to the airlines. Thus, this study aims to develop the hybridization between Autoregressive Integrated Moving Average (ARIMA) models and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models to predict the flight delay at Kuala Lumpur International Airport (KLIA). The weekly average minutes flight delay data were obtained from Kuala Lumpur Air Traffic Control Centre (KL ATCC) Flight Information Regions (FIR) Subang which dated from 5th May 2014 until 2nd July 2018. The data are divided into two parts, which 80% of the data are used as in-sample data and the rest 20% are used as out-sample data. The in-sample data are those from 5th May 2014 until 28th August 2017 and out-sample data will be from 4th September 2017 until 2nd July 2018. The data are first analysed by using GARCH models and the performance of these models is compared with hybrid ARIMA-GARCH models. The results of this study revealed that hybrid ARIMA-GARCH model is the best method for modelling and forecasting flight delay compared to GARCH models as it has a smaller value of Akaike's Information Criterion, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).

ABSTRAK

Kelewatan penerbangan merupakan satu isu yang hangat dibincangkan semenjak beberapa tahun ini kerana ia merupakan salah satu faktor yang menjejaskan prestasi sesebuah syarikat penerbangan terutamanya dari segi kewangan. Hal ini kerana keperluan untuk penambahan bagi penggunaan tenaga kerja serta bahan bakar akibat kelewatan penerbangan menyebabkan sesebuah syarikat penerbangan itu harus menanggung kos operasi yang lebih tinggi. Justeru, kajian ini dijalankan bagi membangunkan model penghibridan antara model Autoregresi Purata Bergerak Terkamir (ARIMA) dan model Autoregresi Teritlak Heteroskedastisiti Bersyarat (GARCH) untuk ramalan kelewatan penerbangan di Lapangan Antarabangsa Kuala Lumpur (KLIA). Data mingguan dari tempoh 5 Mei 2014 sehingga 2 Julai 2018 bagi kelewatan penerbangan mengikut purata minit diperoleh daripada Pusat Kawalan Trafik Udara Kuala Lumpur (KL ATCC) Informasi Penerbangan Kawasan (FIR) Subang. Data tersebut dibahagikan kepada dua bahagian di mana 80% daripadanya digunakan sebagai data sampel dalam dan selebihnya digunakan sebagai data sampel luar. Data yang bertarikh 5 Mei 2014 sehingga 28 Ogos 2017 digunakan sebagai data sampel dalam manakala data sampel luar diambil daripada data yang bertarikh 4 September 2017 sehingga 2 Julai 2018. Analisis data tersebut dibuat menggunakan model GARCH dan kemudiannya dibandingkan dengan hasil analisis daripada model penghibridan ARIMA-GARCH. Hasil kajian menunjukkan bahawa model penghibridan ARIMA-GARCH adalah model yang terbaik dalam permodelan dan peramalan kelewatan penerbangan kerana model ini mempunyai nilai Kriteria Informasi Akaike (AIC), MAE, MSE, RMSE dan MAPE yang kecil berbanding model GARCH.

TABLE OF CONTENTS

TITLE

DEC	LARATION	ii
DED	DICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACT	v
ABS	TRAK	vi
ТАВ	LE OF CONTENTS	vii
LIST	FOF TABLES	xi
LIST	FOF FIGURES	xii
LIST	COF ABBREVIATIONS	xiv
LIST	FOF SYMBOLS	xvi
LIST	FOF APPENDICES	xviii
CHAPTER 1	INTRODUCTION	1
1.1	Introduction	1

1.2	Background of the Study	2
1.3	Problem Statement	3
1.4	Objectives of the Study	4
1.5	Scopes and Limitations	4
1.6	Significance of the Study	5
1.7	Organizations of the Report	6
CHAPTER 2	LITERATURE REVIEW	7
CHAPTER 2 2.1	LITERATURE REVIEW Introduction	7 7
CHAPTER 2 2.1 2.2	LITERATURE REVIEW Introduction Volatility in Time Series	7 7 7
CHAPTER 2 2.1 2.2 2.3	LITERATURE REVIEW Introduction Volatility in Time Series Flight Delay Prediction Models	7 7 7 8
CHAPTER 2 2.1 2.2 2.3 2.4	LITERATURE REVIEW Introduction Volatility in Time Series Flight Delay Prediction Models Summary of Flight Delay Prediction Models	7 7 7 8 13
CHAPTER 2 2.1 2.2 2.3 2.4 2.5	LITERATURE REVIEW Introduction Volatility in Time Series Flight Delay Prediction Models Summary of Flight Delay Prediction Models ARIMA Models	7 7 7 8 13 16

2.7	Hybri	d Models		22
CHAPTER 3	RESE	CARCH N	IETHODOLOGY	27
3.1	Introd	uction		27
3.2	Data S	Source		27
3.3	Mean	Imputatio	on Method	28
3.4	Box-J	enkins M	odel	28
	3.4.1	Stationa	ry Time Series	29
	3.4.2	Nonstati	onary Time Series	29
		3.4.2.1	Nonstationary in Mean	30
		3.4.2.2	Nonstationary in Variance	31
		3.4.2.3	Data Transformation: Box-Cox Transformation	31
	3.4.3	Stationa	ry Testing	33
		3.4.3.1	Augmented-Dickey Fuller (ADF) Test	33
3.5	GAR	CH Model	S	34
	3.5.1	Volatilit	y Testing	35
	3.5.2	ARCH a	and GARCH Process	35
3.6	Mode	l Identific	ation	37
3.7	Param	eter Estir	nation	39
	3.7.1	Ordinary	y Least Squares (OLS)	39
	3.7.2	Maximu	m Likelihood Estimation (MLE)	40
3.8	Diagn	ostic Che	cking	41
	3.8.1	Jarque-H	Bera (JB) Test	42
	3.8.2	Breusch	-Godfrey Serial Correlation LM test	44
	3.8.3	Correlog	gram Squared Residuals	45
	3.8.4	ARCH-	LM Test	46
	3.8.5	McLeod	-Li Test	47
3.9	Forec	asting		48
3.10	Opera model	tional Fr lling	amework of GARCH and ARIMA	49
3.11	Hybri	d ARIMA	-GARCH	51

	3.12	Opera Mode	tional Fra l	umework of Hybrid ARIMA-GARCH	53
	3.13	Perfor GAR	mances CH Model	of GARCH and Hybrid ARIMA- ling	54
СНАРТЕ	CR 4	DATA	A ANALY	/SIS	57
	4.1	Introd	uction		57
	4.2	Data I	Descriptio	n	57
	4.3	GAR	CH Model	S	58
		4.3.1	Stationa	ry Testing	59
		4.3.2	Volatilit	y Testing	61
		4.3.3	Model Id	dentification	63
		4.3.4	Paramet	er Estimation	65
		4.3.5	Diagnos	tic Checking	66
			4.3.5.1	Jarque-Bera (JB) Test	67
			4.3.5.2	ARCH-LM Test	68
			4.3.5.3	Correlogram Squared Residuals	69
		4.3.6	Forecast	ing	71
	4.4	ARIM	IA Models	5	74
		4.4.1	Stationa	ry Testing	74
		4.4.2	Model Id	dentification	74
		4.4.3	Paramet	er Estimation	76
		4.4.4	Diagnos	tic Checking	77
			4.4.4.1	Jarque-Bera (JB) Test	78
			4.4.4.2	Breusch-Godfrey Serial Correlation LM Test	79
			4.4.4.3	ARCH-LM Test	80
			4.4.4.4	McLeod-Li Test	81
	4.5	Hybri	d ARIMA	-GARCH	82
		4.5.1	Model Id	dentification	82
		4.5.2	Paramet	er Estimation	84
		4.5.3	Diagnos	tic Checking	87
			4.5.3.1	Jarque-Bera Test	87

	4.5.3.2 ARCH-LM Test	89
	4.5.3.3 Correlogram Squared Residuals	90
	4.5.4 Forecasting	91
4.6	Performances of GARCH and Hybrid ARIMA-GARCH Models	94
4.7	Summary	95
CHAPTER 5 RECOMMENDA	SUMMARY, CONCLUSION AND ATIONS	97
5.1	Introduction	97
5.2	Summary	97
5.3	Conclusion	98
5.4	Suggestions for future study	99
References		101

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Summary of Flight Delay Prediction Models	13
Table 2.2	Summary of Hybrid Models	25
Table 3.1	Common Box-Cox Transformations	32
Table 3.2	Summary of Behaviour of ACF and PACF	38
Table 4.1	Descriptive Statistic of Average Minutes Flight Delay	58
Table 4.2	ADF Test for Original Flight Delay Series	59
Table 4.3	ADF Test Result for Returns	61
Table 4.4	Parameter Estimation for GARCH (p, q) and AIC Value	66
Table 4.5	Heteroscedasticity Test	69
Table 4.6	Correlogram of Standardized Squared Residuals	70
Table 4.7	Parameter Estimation for ARIMA (p, q) and AIC Value	77
Table 4.8	Breusch-Godfrey Serial Correlation LM Test	80
Table 4.9	ARCH-LM Test	80
Table 4.10	Parameter Estimation for Hybrid ARIMA-GARCH and AIC Value	85
Table 4.11	ARCH-LM Test	89
Table 4.12	Correlogram of Standardized Squared Residuals	90
Table 4.13	Comparison of AIC Value	94
Table 4.14	Comparison of MSE, RMSE, MAE and MAPE	95

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 3.1	Flowchart of GARCH Model	49
Figure 3.2	Flowchart of ARIMA Model	50
Figure 3.3	Flowchart of Hybrid Model	53
Figure 4.1	Flight Delay at KLIA from 5 th May 2014 until 2 nd July 2018	58
Figure 4.2	Plot of Transformed First Difference Series	60
Figure 4.3	Volatility Clustering for Flight Delay Data	62
Figure 4.4	Histogram and Descriptive Statistics for Returns Series	63
Figure 4.5	Correlogram of ACF for returns	64
Figure 4.6	Correlogram of PACF returns	64
Figure 4.7	Descriptive Statistics for Residuals of GARCH (1,1) Model	67
Figure 4.8	Volatility Clustering for Residuals of GARCH (1,1) Model	68
Figure 4.9	In-Sample Forecast and Accuracy for GARCH (1,1) Model	72
Figure 4.10	Out-Sample Forecast and Accuracy for GARCH (1,1) Model	73
Figure 4.11	Correlograms of ACF for returns	75
Figure 4.12	Correlograms of PACF for returns	75
Figure 4.13	Descriptive Statistics for Residuals of ARIMA (1, 1, 1) Model	78
Figure 4.14	Volatility Clustering for Residuals of ARIMA (1, 1, 1) Model	79
Figure 4.15	McLeod-Li Test	81
Figure 4.16	Correlograms of ACF for residuals	82
Figure 4.17	Correlograms of PACF for residuals	83
Figure 4.18	Descriptive Statistics for Residuals of ARIMA (1, 1, 1)-GARCH(2,1) Model	88

Figure 4.19	Volatility Clustering for Residuals of ARIMA (1, 1, 1)- GARCH(2,1) Model	88
Figure 4.20	In-Sample Forecast and Accuracy for ARIMA(1,1,1)-GARCH (2,1) Model	93
Figure 4.21	Out-Sample Forecast and Accuracy for ARIMA(1,1,1)-GARCH (2,1) Model	93

LIST OF ABBREVIATIONS

AAR	-	Airport Arrival Rate
ACF	-	Autocorrelation Function
ADF	-	Augmented-Dicky Fuller
AIC	-	Akaike's Information Criterion
APMC	-	Agricultural Produce Market Committee
ARCH	-	Autoregressive Conditional Heteroscedasticity
ARIMA	-	Autoregressive Integrated Moving Average
ARMA	-	Autoregressive Moving Average
CBR	-	Case-Based Reasoning
DMT	-	Danger Model Theory
DSE	-	Dhaka Stock Exchange
FAA	-	Federal Aviation Administration
FIR	-	Flight Information Regions
GARCH	-	Generalised Autoregressive Conditional Heteroscedasticity
GDP	-	Ground Delay Programs
GMT	-	Grey Model Theory
KL ATCC	-	Kuala Lumpur Air Traffic Control Centre
KLIA	-	Kuala Lumpur International Airport
LM	-	Lagrange Multiplier
MAE	-	Mean Absolute Error
MAPE	-	Mean Absolute Percentage Error
MLE	-	Maximum Likelihood Estimation
MOM	-	Method of Moments
MSE	-	Mean Squared Error
MSM	-	Muscat Security Market
OBHI	-	Ober-House Lithuanian House Price Index
OLS	-	Ordinary Least Squares
PACF	-	Partial Autocorrelation Function
PPI	-	Producer Price Index

RMSE	-	Root Mean Square Error
SPL	-	Square Pharmaceuticals Limited
SSE	-	Sum of Squared Errors
ТОТР	-	Total Daily Punctuality
WITI	-	Weather Impacted Traffic Index
WTI	-	West Texas Intermediate
WTM	-	Weather Translation Model

LIST OF SYMBOLS

$\widehat{ ho}_k^2$	-	Squared sample autocorrelations at lag k
Ø _p	-	AR polynomial
A_t	-	actual values
F _t	-	forecasted values
H_0	-	null hypothesis
H_1	-	alternative hypothesis
x _t	-	optional exogenous regressor
Z _t	-	series of independent identically distributed random variables
α_i	-	coefficient of ARCH parameters
β_i	-	coefficients of the lag difference
β_j	-	coefficient of GARCH parameters
Ŷ	-	tested time series
ε_t	-	error at time t
ε_{t-i}^2	-	past squared return
$\hat{\varepsilon}(k)$	-	McLeod-Li test
$ heta_q$	-	MA polynomial
σ_t^2	-	estimated conditional variance
σ_{t-j}^2	-	past conditional variance
$\psi_{\tau}(0,1)$	-	probability density function of residuals with 0 mean and
		variance 1
Δy_t	-	differenced series
В	-	backward shift operator
EK	-	excess kurtosis
h	-	number of tested lags
Κ	-	sample kurtosis
n	-	sample size
Ν	-	sample size
р	-	autoregressive order
q	-	moving average order

- *S* sample skewness
- δ estimated parameters
- λ minimum residual mean square error value
- au distributional parameter

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Parameter Estimation of GARCH Models by Using MLE	106
Appendix B	Parameter Estimation of ARIMA Models by Using OLS	111
Appendix C	Parameter Estimation of Hybrid ARIMA-GARCH Models by Using OLS and MLE	113
Appendix D	R Code for Mean Imputation Method and McLeod-Li Test	119

CHAPTER 1

INTRODUCTION

1.1 Introduction

Flights can be delayed due to the airline maintenance and services, security issues, extreme events such as heavy floods, volcano eruption, thunderstorm and tsunami. According to the *Federal Aviation Administration* (FAA), flights are considered to be delayed when it is 15 minutes later than its scheduled time. These flight delays can cause so much inconvenience to people who travel back and forth for businesses and also leisure activities. On top of that, when flights are delayed, the passengers who are on a multi-plane trips could miss the connecting flights and arrive late at the destinations. If flights are cancelled, most airlines will rebook the tickets for the affected passengers at no additional charge but it is totally a different case when flights are delayed.

Flights can also be affected by reactionary delays, in which this delays are caused by the late arrival of previous flights. These type of delays can worsen the schedule operation. Flight schedules are often subjected to irregularity. Due to tight connections among airlines resources, flight delays could grow immensely over time and space unless the proper actions are taken (Oza et al. 2015). It can be costly to airline companies if the flights are delayed as this involves all aspects of aerodrome operations such as extra consumptions of aircraft fuelling and aircraft maintenance. Ryersen et al. (2014) also claimed that flight delays will usually lead to massive amount of fuel burnt. This sometimes will urge the airlines to increase the price of the flight tickets just to cover the costs of extra consumptions of fuel and other necessities.

1.2 Background of the Study

According to Cheng (2014), flight delays prediction has been one of the hot issues over the past few years. Many factors can lead to flight delays such as adverse weather conditions, the reactionary delays, mechanical and maintenance problems. There have been a lot of researches conducted previously regarding the flight delays. In a research done by Mueller and Chatterji (2002), the departure and arrivals delay were modelled by using Normal or Poisson distributions and its purpose is to improve the airlines traffic management systems. Kalliguddi and Leboulluec (2017) proposed a predictive modelling engine using machine learning techniques and developed some statistical models to predict flight delays. The aim of developing the predictive model for flight delay is to have better management decisions for the airlines.

In addition, Oza et al. (2015) in their study managed to develop the models which can help to predict the flight delay using OneR Algorithm. Cheng (2014) on the other hand, used weighted spline combined with ARIMA model as a tool to predict flight departure delay. The model is able to predict delays for each flight in terms of specific day and hour. The study involved several contributing factors such as school and public holidays, weather and hourly pattern which lead to flight delay. In another study done by Lee and Zhong (2016), the correlation between flight delay and duration of rainfall as well as thunderstorms were investigated using multiple regression model namely linear model and square root model. It turns out that square root model produced a better accuracy in determining the correlation between weather and the flight delay compared to the linear model.

These past researches prove that it is crucial to predict flight delay as it will help in enhancing the accuracy of flight schedules and more importantly, provide convenience for the passengers. Therefore, in this study, GARCH and hybrid ARIMA-GARCH models will be proposed to predict flight delays at Kuala Lumpur International Airport. Weekly average minutes will be considered since daily data is not appropriate due to massive missing values. This study only focuses on the delay between 15 minutes up to 60 minutes as more than one hour delay will be considered as outliers. At the end of the study, modelling and forecasting performance between the best models of GARCH and hybrid ARIMA-GARCH will be compared. The smaller value of Akaike's Information Criterion (AIC) indicates that the model is better than the other model in terms of modelling performance. Meanwhile, in terms of forecasting performance, the smaller values of Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) will be concluded as the best forecasting method.

1.3 Problem Statement

Flight delay is one of the common factors that lead to high cost impact to airline companies. When a flight is delayed, it requires the consumption of extra fuel, labor and other necessary in the airline production process, resulting in higher operating cost to the airlines. It is also inconvenience to the passengers when flights are delayed as this could affect their schedules and activities. Therefore, it is vital to carry a study which is able to improve the accuracy of flight arrivals and departures.

Since there is no similar studies exist in Malaysia yet, modelling and forecasting flight delays at Kuala Lumpur International Airport (KLIA) can be considered to overcome the problem. Time series model are used in the current study. However, volatility which exist in the flight delay data can be a tough issue in modelling and forecasting the time series. Hence, it is crucial to perform an analysis that can comprehend the entire behavior of the delay data as well as provide more accurate result at the end of the study.

Even though Autoregressive Integrated Moving Average (ARIMA) is known as a flexible model, it is unfortunately unable to handle volatility. Thus, this study aims to find the best method which can model and forecast the volatile flight delay data. Furthermore, the presence of Autoregressive Conditional Heteroscedasticity (ARCH) effect is another problem which needs to be taken care of. Hence, a more appropriate model is chosen in order to remove the ARCH effect that exists in the data. Hopefully this study will produce better accuracy of flight schedules and reduce the number of flight delays.

1.4 Objectives of the Study

The objectives of the research are:

- 1) To develop the best GARCH model for flight delay at Kuala Lumpur International Airport (KLIA).
- To develop the best hybrid ARIMA-GARCH model for flight delay at Kuala Lumpur International Airport (KLIA).
- 3) To compare the modelling as well as forecasting performances between GARCH and hybrid ARIMA-GARCH models for flight delay data.

1.5 Scopes and Limitations

This study involves weekly average minutes flight delay data at Kuala Lumpur International Airport (KLIA) which are obtained from Kuala Lumpur Air Traffic Control Centre (KL ATCC) Flight Information Regions (FIR) Subang dated from 8th October 2013 until 13th July 2018. In this study, the flight delay data cover both KLIA and KLIA 2. The reason why this study used weekly data instead of daily data is because there are massive missing values for the whole consecutive three weeks from 29th January 2017 until 17th February 2017. Mean imputation method can be used to overcome the missing values but it is still considered inappropriate for replacing the three weeks missing values with the imputed mean of average minutes flight delay.

Moreover, the research only focuses on the data after KLIA2 has been fully operated, which is on 2nd May 2014 onwards. It is impossible to consider the whole data prior and after the opening of KLIA2 since there are huge difference between the

delay records among these two events. Obviously, there was quite a large delay which had been recorded prior to the opening of KLIA2 since there are only two runways operated. It is a weekly data and every new week will start on Mondays, therefore the data will begin on Monday (5th May 2014). There are a total of 218 observations indicating that there are 218 weekly data involve in this research. The data in this study were analysed by using EViews and RStudio softwares.

GARCH models will be proposed in this study since the data are very volatile. In a study done by Miswan et al. (2014), GARCH models need to be applied only to a volatile data and if it happens otherwise, it will not produce a good modelling and forecasting results. Hybridization between ARIMA and GARCH models will be proposed later to compare the modelling and forecasting performance. In most cases, hybridization models will increase the accuracy performance since it is able to complement the weakness of each model components. Therefore, in this research two methods of modelling and forecasting will be compared at the end of the study which are GARCH models and hybrid ARIMA-GARCH models.

1.6 Significance of the Study

In this study, flight delay will be modelled and forecasted by using GARCH and hybrid ARIMA-GARCH models. ARIMA model has the ability to handle nonstationary data while GARCH model is able to capture the volatility which exists in the conditional variance of the time series. Hybridization between these two models will improve the accuracy and forecasting performance since it carries both qualities in ARIMA and GARCH models.

Flight delays can be costly to airline companies as it requires the consumptions of extra fuel, labor and other necessary production process. According to Abdullah et al. (2007), even though promotions for flight tickets are widely held, it is still not enough to satisfy the airline customers. This is because not all customers are willing to accommodate unnecessary delays in their travel plans. Therefore, it is crucial to predict the flight delays as it can be beneficial for airlines.

1.7 Organizations of the Report

This research consists of five chapters, which in the first chapter includes the introduction, background of the study, problem statement, scopes and limitations in the study, significance of study and lastly the organizations of the report. Chapter 2 describes in detail the reviewed literature made in the past by other researchers. The methodology of this research will be discussed in Chapter 3 which includes volatility testing for GARCH models, stationary testing, model identification, parameter estimation, diagnostic checking and forecasting. Meanwhile, the analysis of this research will be done in Chapter 4. This chapter is the most important chapter as it will conclude the best method for modelling and forecasting. The best modelling performance will be assessed by using the smallest value of Akaike's Information Criterion (AIC). On the other hand, the best forecasting performance will be assessed by using the smallest value of Mean Absolute Error (MAE), Mean Squared Error (MAPE). Finally, chapter 5 consists of summary and conclusions of the study as well as suggestions for future research.

REFERENCES

- Abdullah, K., Abd.Manaf, N. H. & Noor, K. M., 2007. Measuring The Service Quality of Airline Services in Malaysia. IIUM Journal of Economics and Management, Volume 15, pp. 1-29.
- Abdullah, L., 2012. ARIMA Model for Gold Bullion Coin Selling Prices Forecasting. International Journal of Advances in Applied Sciences (IJAAS), 1(4), pp. 153-158.
- Ahmad, M. H., Ping, P. Y., Yaziz, S. R. & Miswan, N. H., 2015. Forecasting Malaysian Gold Using a Hybrid of ARIMA and GJR-GARCH Models. Applied Mathematical Sciences, 9(30), pp. 1491-1501.
- Amath, E., 2011. Time Series Concepts, University of Washington: Unpublished Note.
- Angabini, A. & Wasiuzzaman, S., 2011. GARCH Models and the Financial Crisis-A Study of the Malaysian Stock Market. The International Journal of Applied Economics and Finance, 5(3), pp. 226-236.
- Babu, C. N. & Reddy, B. E., 2014. Selected Indian Stock Predictions Using a Hybrid ARIMA-GARCH Model. Bangalore, The Institute of Electrical and Electronics Engineers.
- Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, Volume 31, pp. 307-327.
- Cheng, J., 2014. Estimation of Flight Delay Using Weighted Spline Combined with ARIMA Model. pp. 8-20.
- Cheng, J., 2014. Risk Management Using Big Real Time Data, s.l.: s.n.
- Christodoulos, C., Michalakelis, C. & Varoutas, D., 2010. Forecasting with limited data: Combining ARIMA and diffusion models. Technological Forecasting & Social Change, Volume 77, pp. 558-565.
- Cunningham, J., Cook, L. & Provan, C., 2012. The Utilization Of Current Forecast Products In A Probabilistic Airport Capacity Model. Third Aviation, Range and Aerospace Meteorology Special Symp. on Weather-Air Traffic Management Integration, New Orleans, LA, Amer. Meteor. Soc., Volume 540.
- Ding, J. & Li, H., 2012. The Forecasting Model of Flight Delay Based On DMT-GMT Model. Physics Procedia, Volume 33, pp. 395-402.

- Ding, Y., 2017. Predicting Flight Delay Based On Multiple Linear Regression. IOP Conference Series: Earth and Environmental Science, Volume 81.
- Guirguis, H. S., Giannikos, C. I. & Anderson, R. I., 2005. The US Housing Market: Asset Pricing Forecasts Using Time Varying Coeffecients. The Journal of Real Estate Finance and Economics, 30(1), pp. 33-53.
- Hansen, B. K. & Riordan, D., 2001. Weather Prediction Using Case-Based Reasoning and Fuzzy Set Theory.
- Jadevicius, A. & Huston, S., 2015. ARIMA Modelling of Lithuanian House Price Index. nternational Journal of Housing Markets and Analysis, 8(1), pp. 135-147.
- Jadhav, V., Reddy, B. V. C. & Gaddi, G. M., 2017. Application of ARIMA Model for Forecasting Agricultural Prices. Journal of Agricultural Science and Technology, Volume 19, pp. 981-992.
- Kalliguddi, A. M. & Leboulluec, A. K., 2017. Predictive Modeling of Aircraft Flight Delay. Universal Journal of Management, 5(10), pp. 485-491.
- Kane, I. & Yusof, F., 2013. Assessment of Risk of Rainfall Events with a Hybrid of ARFIMA-GARCH. Canadian Center of Science and Education, 7(12), pp. 78-89.
- Klein, A., Kavoussi, S. & Lee, R. S., 2009. Weather Forecast Accuracy: Study of Impact on Airport Capacity and Estimation of Avoidable Costs. Eighth USA/Europe Air Traffic Management Research and Development Seminar, Volume 8.
- Knight, J. & Satchell, S., 1998. Forecasting Volatility in the Financial Markets. 1 ed. Butterworth-Heinemann, Oxford: s.n.
- Lee, Y. X. & Zhong, Z. W., 2016. A study of The Relationship Between Adverse Weather Conditions and Flight Delay. Journal of Advances in Technology and Engineering Research, 2(4), pp. 113-117.
- Lim, C. M. & Sek, S. K., 2013. Comparing The Performances of GARCH-Type Models in Capturing The Stock Market Volatility in Malaysia. Procedia Economics and Finance, Volume 5, pp. 478-487.
- Markovic, D., T.Hauf, P.Röhner & U.Spehr, 2008. A Statistical Study of The Weather Impact on Punctuality at Frankfurt Airport. Meteorological Applications , Volume 15, pp. 293-303.

- Miswan, N. H., Ngatiman, N. A., Hamzah, K. & Zamzamin, Z. Z., 2014. Comparative Performance of ARIMA and GARCH Models in Modelling and Forecasting Volatility of Malaysia Market Properties and Shares. Applied Mathematical Sciences, 8(140), pp. 7001-7012.
- Miswan, N., 2013. Modelling and Forecasting Volatile Data by Using ARIMA and GARCH Models, Universiti Teknologi Malaysia: Master's Degree.
- Mueller, E. R. & Chatterji, G. B., 2002. Analysis of Aircraft Arrival and Departure Delay Characteristics, Los Angeles: American Institute of Aeronautics and Astronautics.
- Narsoo, J., 2015. Forecasting USD/MUR Exchange Rate Dynamics: An Application of Asymmetric Volatility Models. International Journal of Statistics and Applications, 5(5), pp. 247-256.
- Okyere, F. & Kyei, L., 2014. Temporal Modelling of Producer Price Inflation Rates of Ghana. IOSR Journal of Mathematics (IOSR-JM), 10(3), pp. 70-77.
- Osborne, J. W., 2010. Improving Your Data Transformations: Applying the Box-Cox Transformation. Practical Assessment, Research & Evaluation, 15(12), pp. 1-6.
- Oza, S. et al., 2015. Flight Delay Prediction System Using Weighted Multiple Linear Regression. International Journal Of Engineering And Computer Science, April, 4(4), pp. 11668-11677.
- Pahlavani, M. & Roshan, R., 2015. The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran. International Journal of Business and Development Studies, 7(1), pp. 31-50.
- Pampaka, M., Hutcheson, G. & Williams, J., 2016. Handling Missing Data: Analysis of A Challenging Data Set Using Multiple Imputation. International Journal of Research & Method in Education, 39(1), pp. 19-37.
- Paul, D. J. C., Hoque, M. S. & Rahman, M. M., 2013. Selection of Best ARIMA Model for Forecasting Average Daily Share Price Index of Pharmaceutical Companies in Bangladesh: A Case Study on Square Pharmaceutical Ltd.. Global Journal of Management and Business Research Finance, 13(3), pp. 15-26.
- Peck, L. & Hedding, D. W., 2017. Developing a Weather Impact Index for O.R. Tambo International Airport, South Africa. Weather And Forecasting, Volume 32, pp. 1529-1539.

- Pejovic, T., Williams, V. A., Noland, R. B. & Toumi, R., 2009. Factors Affecting the Frequency and Severity of Airport Weather Delays and The Implications of Climate Change for Future Delays. Journal of the Transportation Research Board, pp. 97-106.
- Rehm, F. & Klawonn, F., 2005. Learning Methods For Air Traffic Management. Lecture Notes in Computer Science, pp. 992-1001.
- Ryersen, M. S., Hansen, M. & Bonn, J., 2014. Time to Burn : Flight Delay , Terminal Efficiency And Fuel Consumption in The National Airspace System. Transportation Research Part A, Volume 69, pp. 286-298.
- Sasse, M. & Hauf, T., 2003. A Study of Thunderstorm-Induced Delays at Frankfurt Airport, Germany. Meteorological Applications, Volume 10, pp. 21-30.
- Schmitt, P., Mandel, J. & Guedj, M., 2015. A Comparison of Six Methods for Missing Data Imputation. Journal of Biometrics & Biostatistics , 6(1), pp. 1-6.
- Singye, T. & Unhapipat, S., 2018. Time Series Analysis of Diabetes Patients: A case Study of Jigme Dorji Wangchuk National Referral Hospital in Bhutan. Journal of Physics, pp. 1-11.
- Solanki, P. & Sharma, M., 2016. Forecasting of Price Volatility in Cumin Using EGARCH Model. International Journal Seed Spices, 6(2), pp. 96-99.
- Tamiselvan, M. & Vali, S. M., 2016. Forecasting Stock Market Volitility-Evidence From Muscat Security Market Using GARCH Models. International Journal of Commerce and Finance, 2(1), pp. 37-53.
- Thorlie, M. A., Song, L., Wang, X. & Amin, M., 2014. Modelling Exchange Rate Volatility Using Asymmetric GARCH Models (Evidence from Sierra Leone). International Journal of Science and Research (IJSR), 3(11), pp. 1206-1214.
- Wang, W., Gelder, P. H. A. J. M. V., Vrijling, J. K. & Ma, J., 2005. Testing and Modelling Autoregressive Conditional Heteroskedasticity of Streamflow Processes. Nonlinear Processes in Geophysics, Volume 12, pp. 55-66.
- Wei, W. S., 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd Edition ed. s.l.:Pearson Addison Wesley.
- Wiphatthanananthakula, C. & Sriboonchittab, S., 2010. The Comparison Among ARMA-GARCH, -EGARCH, -GJR, and -PGARCH Models on Thailand Volatility Index. The Thailand Econometrics Society, 2(2), pp. 140-148.

- Yaziz, S. R., Ahmad, M. H., Nian, L. C. & Muhammad, N., 2011. A Comparative Study on Box-Jenkins and Garch Models in Forecasting Crude Oil Prices. Journal of Applied Sciences, 11(7), pp. 1129-1135.
- Yaziz, S. R., Azizan, N. A., Zakaria, R. & Ahmad, M. H., 2013. The Performance of Hybrid ARIMA-Garch Modeling in Forecasting Gold Price. Adelaide, s.n.
- Yusof, F., Kane, I. L. & Yusop, Z., 2013. Hybrid of ARIMA-GARCH Modeling in Rainfall Time Series. Jurnal Teknologi, 63(2), pp. 27-34.
- Zhang, G. P., 2003. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing, Volume 50, pp. 159-175.