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Membrane bioreactor employs an efficient filtration technology for solid and 
liquid separation in wastewater treatment process. Development of membrane 
filtration model is significant as this model can be used to predict fouling 
development which is later utilized in control development. Most of the available 
models only suitable for monitoring purpose, which are too complex, required many 
variables and not suitable for control system design. Artificial neural network (ANN) 
is a simple and efficient method in modelling of filtration process. In this thesis, the 
dynamic ANN is used to model the filtration process using the developed submerged 
membrane bioreactor (SMBR) pilot plant. The accuracy of the dynamic neural 
network is further improved using the proposed optimization algorithms. These 
algorithms are developed based on the hybrid particle swarm optimization and 
gravitational search algorithm (PSOGSA) using cooperative approach. The first 
cooperative PSOGSA (CPSOGSA-1) is developed using master-slave cooperative 
technique where one master group and a few slave groups are created. The second 
cooperative PSOGSA (CPSOGSA-2) is where multiple groups are created, and the 
best solution found by one of the group will share with other groups. The model 
performances of the ANN training and testing are assessed using mean square error, 
mean absolute deviation and correlation coefficient. To establish the model training 
performance, another set of input output data from heating process is performed. 
Furthermore, the training performance of the algorithms is tested to minimize ten 
mathematical functions. The simulation results indicate the proposed algorithms 
outperformed the existing PSO, GSA and PSOGSA algorithms for the SMBR model. 
Similar trends of results can be observed for heating process model and for all 
benchmark functions tested. An improved SMBR trained model is then used for 
neural network model predictive control (NNMPC) design for permeate flux control 
as to prevent flux decline in the membrane filtration cycle due to fouling problem. 
The PSO, CPSOGSA-1 and CPSOGSA-2 algorithms are utilized in NNMPC real-
time optimization cost function. From the experimental result, the best filtration 
control is given by NNMPC with CPSOGSA-2 algorithm. The superiority of the 
NNMPC in membrane filtration control resulted from real time implementation 
showed an improvement of 100% overshoot, 7.06% settling time and 11.96% of 
integral absolute error when compared to PID-PSO.  
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  Bioreaktor membran menggunakan teknologi penapisan yang cekap untuk 
pemisahan pepejal dan cecair dalam proses rawatan air sisa 
kumbahan. Pembangunan model penapisan membran penting kerana model ini boleh 
digunakan untuk meramalkan pembentukkan kotoran yang kemudiannya digunakan 
dalam membangunkan system kawalan. Kebanyakan model yang ada hanya sesuai 
digunakan untuk pemantauan kerana ianya terlalu kompleks, memerlukan banyak 
pembolehubah, dan tidak sesuai untuk reka bentuk sistem kawalan. Rangkaian neural 
buatan (ANN) adalah satu kaedah yang mudah dan berkesan dalam pemodelan 
proses penapisan. Dalam tesis ini, ANN digunakan untuk memodelkan proses 
penapisan menggunakan loji pandu bioreaktor membran tenggelam (SMBR) yang 
dibangunkan. Ketepatan rangkaian neural yang dinamik terus dipertingkatkan dengan 
penggunaan algoritma pengoptimuman dicadangkan. Algoritma ini dibangunkan 
berdasarkan pengoptimuman hibrid zarah kerumunan dan graviti algoritma carian 
(PSOGSA) menggunakan pendekatan koperasi. Algoritma koperatif PSOGSA 
pertama (CPSOGSA-1) dibangunkan menggunakan teknik koperatif tuan-hamba di 
mana satu kumpulan induk dan beberapa kumpulan hamba yang dicipta. Algoritma 
koperatif kedua PSOGSA (CPSOGSA-2) adalah di mana beberapa kumpulan dicipta, 
dan penyelesaian terbaik yang ditemui oleh salah satu kumpulan yang akan 
berkongsi dengan kumpulan lain. Persembahan latihan and ujian model ANN dinilai 
menggunakan ralat persegi min, sisihan min mutlak dan pekali korelasi. Untuk 
mewujudkan prestasi latihan model, satu lagi set data output input dari proses 
pemanasan dilakukan. Tambahan pula, prestasi latihan algoritma diuji untuk 
mengurangkan sepuluh fungsi matematik. Keputusan simulasi menunjukkan 
algoritma yang dicadangkan mengatasi PSO, GSA dan PSOGSA algoritma yang 
sedia ada bagi model SMBR itu. Trend yang sama keputusan boleh diperhatikan bagi 
model proses pemanasan dan untuk semua fungsi penanda aras diuji. Model SMBR 
terlatih yang terbaik kemudiannya digunakan untuk model rangkaian neural kawalan 
ramalan (NNMPC) yang reka bentuk untuk kawalan fluks meresap untuk 
mengelakkan penurunan fluks dalam kitaran penapisan membran kerana masalah 
kotoran. Algoritma PSO, CPSOGSA-1 dan CPSOGSA-2 digunakan dalam NNMPC 
fungsi kos pengoptimuman masa nyata. Dari hasil eksperimen, kawalan penapisan 
terbaik diberikan oleh NNMPC dengan algoritma CPSOGSA-2. Keunggulan 
NNMPC dalam kawalan penapisan membran hasil daripada pelaksanaan masa nyata 
menunjukkan peningkatan sebanyak 100% terlajak, 7.06% masa pengenapan dan 
11.96% bagi ralat mutlak kamiran berbanding PID-PSO. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1 Background 

High concern in water and wastewater treatment quality has trigged more 

research on the treatment technology. Membrane bioreactor (MBR) was recognized 

as a promising technology to replace conventional activated sludge (CAS) process. 

This technology has proven to be very useful for wastewater treatment in producing 

high-quality effluent (treated water) either from industrial or domestic waste. Among 

the well-known capability of the MBR system are efficient organics removal, 

enhanced nutrient removal stability, lower sludge production, smaller footprint, 

effluent disinfection and high loading rate capabilities. 

MBR is the combination of biological process in a bioreactor and membrane 

filtration process. Unlike the CAS configuration, the MBR does not have standard 

stages of the process. Some of the MBR plants were developed from the combination 

of CAS and membrane filtration to replace secondary settler of the treatment. The 

MBR systems also can be built with more simplified configuration of it nitrification 

and denitrification process, where some of the configuration of the MBR system is 

only design with a single bioreactor and this plant is running similar principle with 

sequential bioreactor (SBR) system [1]. With this configuration, the size of the 

treatment plant is much smaller compared to the conventional system. 
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Membrane filtration process is a crucial element in any MBR plant. 

Application of membrane technology in filtration system is the approach where the 

membrane that produces from polymers used as a filtering mechanism to separate the 

effluent from the biomass. The application of membrane filtration on MBR system is 

to provide better solid-liquid separation in wastewater treatment process.  The 

membrane will filter the unwanted solid material from the effluent discharged. 

Several techniques in membrane filtration process such as microfiltration (MF), 

ultrafiltration (UF), nanofiltration and reverse osmosis (RO) have been applied in 

water and wastewater treatment industries [2].  

Membrane fouling is a major problem in membrane filtration process, if not 

carefully handle it will lead to the high operating cost and low filtration output 

(permeate flux).  Fouling in membrane filtration can cause high energy consumption 

on pumping, cleaning and expensive membrane replacement cost[3][4][5].  

In any MBR system, membrane filtration plays most important role in the 

treatment process where this system usually placed at the final stage of the treatment. 

Membrane technology in filtration system is the approach where the membrane that 

produces from polymers used as a filtering mechanism to separate the effluent from 

the biomass. As a result, the effluent quality is significantly higher than that 

generated by conventional treatment. Thus, there is no need for a further tertiary 

disinfection process. 

Due to its effectiveness in producing high quality of effluent, MBR is getting 

a lot of attention around the world. Investments in this technology are exponential 

increase each year which indicate MBR will be the future superior technology for 

wastewater treatment. Due to this rapid development of MBR application in the 

world, it is important to gain a better understanding of its operations regarding 

parameters that affect the process performance, especially the operating parameters. 

Finally, with the sufficient knowledge of the MBR system, the process can be 

adequately controlled and optimized. 
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1.2 Problem Statement 

Despite many advantages of MBR, the system also has its difficult part. The 

main issue with the MBR is the fouling in the filtration process. Fouling can be 

described as blockage during the membrane filtration process that caused by many 

factors such as colloidal, particulate, solute materials, plant operations and the 

characteristics of the membrane [4]. Fouling can cause permeate flux (filtration 

output) decline in the filtration process or high transmembrane pressure (TMP) 

measurement [2]. Therefore it is important to provide adequate flux control system to 

ensure an optimal permeate flux [6][7].  

Cleaning sequence in MBR process is among popular techniques used to 

reduce fouling such as aeration airflow, backwash, relaxation and chemical cleaning 

[8][9]. Fouling also can be reduced when running below critical flux 

condition[10][11].To avoid flux decline in the MBR filtration process, a reliable 

feedback control is needed. The existing PID controller is not capable to produce 

reliable and efficient control for the SMBR filtration process. The PID controller 

usually suffer from the high overshoot and  required the controller to be re-tuned to 

get a good performance[12]. Model-based control technique is an alternative to the 

conventional PID controller to produce better control performance. This method 

requires an acceptable degree of model accuracy and model reliability to ensure the 

controller is at the desired performance. 

 

The existing mathematical models for SMBR are too complex involving many 

parameters and most of the variables need to be tuned. The ANN model is used 

alternatively to model the MBR process. However, the existing ANN models are 

developed to monitor the effluent quality and not for the control purpose. In order to 

perform a model based control, the technique requires more simpler and reliable model. 

Paul[13] proposed a time series system identification modelling technique using two inputs 

and one output of the membrane filtration parameter. The filtration models are developed 

using linear autoregressive with exogenous input (ARX), ARMAX, subspace and state space 

technique. The important of time series modelling also presented by [14] where the time 

series analysis can revealed the characteristic of the phenomenon as well as the future 

prediction of the membrane filtration process. However, the linear time series modelling 
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technique is lack of accuracy and poor prediction[13]. Hence, nonlinear time series neural 

network modelling is more suitable for the SMBR filtration application. 

1.3 Objectives 

This research is focusing on the development of submerged membrane 

filtration model and design of neural network based model based control in 

submerged membrane bioreactor (SMBR) filtration process. Several objectives set to 

fulfil the research aim, as follows: 

1. Develop and evaluate the SMBR filtration process model using ANN. 

2. Design, test and analyze a neural network based model predictive control 

(NNMPC) for a membrane filtration flux control. 

3. Evaluation and performance analysis of the NNMPC for the SMBR filtration 

process. 

1.4 Scope of Study 

Based on the objectives of the research this work will cover: 

1. Development of filtration model using ANN for SMBR pilot plant. 

2. GSA, PSO and PSOGSA are used to train ANN models. 

3.  Develop a Hybrid PSOGSA algorithms using cooperative approach for ANN 

model improvement. 

4. Evaluate the algorithm using heating process ANN model. 

5. Benchmark the algorithms using ten mathematical functions minimization. 

6. Develop a neural network-based model predictive control (NNMPC) for 

permeate flux with proposed cooperative PSOGSA algorithms. 
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7. Implementation and evaluation of the controller developed in (h) in SMBR 

pilot plant. 

8. Compare the developed MPC with particle swarm optimization (PSO) tuned 

PID controller. 

1.5 Thesis Structure and Organization 

Chapter 2 discusses membrane bioreactor and the existing filtration systems. 

This chapter also reviews on the operation of the SMBR and the current cleaning 

mechanism of the filtration process in dealing with fouling phenomena for SMBR 

system. The modeling technique also discussed in this chapter, focusing on the 

application of artificial intelligent and soft computing techniques in the modeling of 

the filtration process. The application of controllers in SMBR also discussed and 

elaborated. 

Chapter 3 explains the methodology of the modeling for the SMBR filtration 

process. The plant development and the experimental setup of the SMBR presented 

at the beginning of this chapter. Then, systematic modeling techniques including the 

model training and evaluation methods presented. In this chapter, the proposed 

algorithms for training ANN model introduced. This chapter also includes the 

verification on the proposed algorithm using ten benchmark functions and another 

data set, which is the heating process data set.  

Chapter 4 introduces on the controller development. This includes the PID 

controller design with PSO tuning method. This chapter also discusses the 

methodology neural network model predictive controller design with different real-

time optimization strategies. 

Chapter 5 presents and discuss on the modeling result of the SMBR filtration. 

This chapter also reveals on the performance of the proposed algorithms on training 

the ANN model and minimizing benchmark functions. Finally, this chapter presents 
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the performance of NNMPC in controlling the filtration process and the comparison 

of its performances with PID controller. 

Chapter 6 presents the conclusion for the thesis. The potential future works 

recommended at the end of this chapter. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a review on the modelling and control of submerged 

membrane bioreactor (SMBR) filtration system. In general, detail review is given on 

the modelling, optimization and control of the SMBR. As the work focusing on 

fouling control, more detail review on fouling in SMBR filtration and fouling control 

operation such as aeration airflow, backwash and relaxation is given. 

Basically, this review is divided into several main parts. First, review on 

MBR filtration modelling and control is presented. Then, due to the non-linearity of 

the filtration process and almost impossible to represent it using standard 

mathematical equation, the artificial neural network (ANN) is investigate and 

reviewed. For better prediction and control of SMBR filtration model, ANN with soft 

computing approach such as GSA, PSO and hybrid PSOGSA is also reviewed. 

Furthermore, the model predictive control (MPC) is presented. As the MBR 

filtration is a nonlinear process, the neural network model predictive control 

(NNMPC) is also reviewed. 
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2.2 Membrane Bioreactor 

Membrane technology has become significantly important in filtration 

systems and has become a requirement in wastewater treatment technology. As 

reported by [15], the application of MBR technology in many parts of the world has 

grown significantly over last few years. This showing the MBR is a superior 

technology in wastewater treatment either for domestic or industrial.   With more 

stringent effluent requirements and environmental concerns, as well as water 

protection awareness, membrane technology is one of the promising techniques that 

can resolve the quality issue in wastewater treatment process. 

Membrane bioreactor system for wastewater treatment is the combination of 

membrane filtration with bioreactors that treat wastewater.  The bioreactor in MBR 

wastewater treatment process is a place where the influent biologically treated.  The 

configuration of membrane bioreactors divided to two well-known architectures of 

MBR systems which are side-stream membrane bioreactor and submerged membrane 

bioreactor (SMBR).  

2.2.1 Side stream membrane bioreactor 

Side stream MBR system or also known as cross-flow membrane MBR the 

filtration system located on the outside of the bioreactor tank. This filtration system 

is also known as the crossflow filtration system. In this configuration, the treated 

influent will pumped to the filtration module under the allowable pressure 

requirement by the manufacturer. The filtrate effluent is called permeate flux. The 

side-stream membrane filtration system also is suitable for other separation 

applications such as food processing, desalination and drinking water process. Figure 

2.1 shows the configuration of the side-stream MBR filtration process.  
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