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ABSTRACT 

Orbit propagation is one of the critical science tasks used to determine and 

forecast the position and velocity of orbiting space objects such as satellites, mission-

related debris, rocket bodies, and others.  Developing an accurate orbit propagation 

model is vital to ensure uninterrupted operational planning and prevent any disrupted 

collisions or disasters. However, using the current orbit propagation model has 

limitations, and these reduce the ability for long-term forecasting. It has errors 

depending on various aspects like measurement error, space environment information 

that constantly changes, inherent uncertainty in the data used, and errors in the data 

processing.  Although classical time series methods such as Holt-Winters can improve 

the orbit propagator's accuracy and efficiency, it requires changes in the components' 

probability distribution, causing complexity and computational burden for end-user. 

However, this method can achieve maximum performance through integration with 

other approaches. Deep learning techniques, the new field of research within machine 

learning, are recently explored to analyse and improve the Simplified General 

Perturbations-4 (SGP4) Model, the orbit propagation model commonly used by space 

operators.  The improved model should minimize errors and maintain accuracy even 

if the propagation span increases.  Therefore, this study examined the Recurrent Neural 

Network (RNN) and Long Short-Term Memory (LSTM) technique, a deep learning 

approach dealing with long-term time-series data. It can learn tasks and deal with 

complicated problems.  Additionally, these learning techniques are a time series 

forecasting method that can improve models by capturing periodic data patterns by 

memorizing and learning from historical data. Thus, a hybrid RNN-LSTM SGP4 

Model was developed. The performance and effectiveness of the improved model were 

evaluated and validated. As a result, this hybrid RNN-LSTM SGP4 Model improved 

more than 27% better than the SGP4 Model alone. It was also capable of being a 

reliable long-term time series forecasting model for space object data. 
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ABSTRAK 

Penyebaran orbit adalah merupakan salah satu tugasan sains kritikal yang 

digunakan untuk menentukan dan meramalkan kedudukan dan halaju objek angkasa 

yang mengorbit seperti satelit, serpihan berkaitan misi, badan roket dan lain-lain. 

Membangunkan model ramalan orbit yang tepat sangat penting untuk memastikan 

perancangan operasi tidak terganggu dan mencegah sebarang perlanggaran atau 

bencana berlaku. Walau bagaimanapun, penggunaan model penyebaran orbit semasa 

mempunyai kekangan dan mengurangkan keupayaan untuk ramalan jangka panjang. 

Kekangan ini adalah disebabkan oleh pelbagai aspek, termasuk kesalahan pengukuran, 

maklumat persekitaran angkasa yang sentiasa berubah, ketidakpastian pada data yang 

digunakan, dan kesalahan dalam pemprosesan data. Walaupun kaedah ramalan siri 

masa klasik seperti Holt-Winters dapat meningkatkan ketepatan dan kecekapan 

penyebaran orbit, kaedah ini memerlukan perubahan pada taburan kebarangkalian 

komponen yang menyebabkan kerumitan dan beban pengiraan kepada pengguna 

akhir. Selain itu, kaedah ini boleh mencapai prestasi maksimum melalui integrasi 

dengan pendekatan lain. Terkini, teknik pembelajaran mendalam, iaitu satu bidang 

penyelidikan baharu dalam pembelajaran mesin telah diterokai untuk menganalisa dan 

menambah baik Model Simplified General Perturbations-4 (SGP4). Model ini adalah 

model penyebar orbit yang biasa digunakan oleh operator angkasa. Model yang 

ditambah baik ini perlu meminimumkan ralat di samping dapat mengekalkan ketepatan 

walaupun di dalam jangka masa penyebaran yang meningkat. Oleh itu, penyelidikan 

ini mengkaji teknik Rangkaian Neural Berulang (RNN) dan Memori Jangka Pendek 

Panjang (LSTM), iaitu pendekatan pembelajaran mendalam yang boleh memproses 

data siri masa jangka panjang. Ia dapat mempelajari tugas dan menangani masalah 

yang rumit. Selain itu, teknik pembelajaran ini adalah kaedah ramalan siri masa yang 

dapat menambah baik model dengan menangkap corak data berkala dengan menghafal 

dan belajar daripada data sejarah. Oleh itu, Model RNN-LSTM SGP4 hibrid 

dibangunkan. Prestasi dan keberkesanan model yang dipertingkatkan ini  dinilai dan 

disahkan. Hasilnya, prestasi Model RNN-LSTM SGP4 hibrid ini meningkat 27% lebih 

baik daripada Model SGP4. Ia juga mampu menjadi model ramalan siri masa jangka 

panjang yang boleh dipercayai untuk data objek angkasa.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview and Motivation 

Space situational awareness (SSA) is a critical issue affecting the space 

industry and national security. SSA refers to the ability to observe, characterize and 

forecast the properties of natural and artificial objects that orbit the Earth. It also aims 

to prevent collisions, identify untracked objects, and ensure security for future 

missions (Oltrogge and Cooper, 2020; Pelton, 2019; Choi et al., 2017). One of the 

critical technical discussions in the SSA is that space objects propagate state 

uncertainties due to dynamic and nonlinear environmental factors (Park, 2016). 

Besides that, the lack of information such as the space environment information and 

space object characteristics causes the current orbit propagation model unable to 

achieve the accuracy required for proper operational planning and avoid space object 

collisions (Tarran, 2021; Peng and Bai, 2018a). 

Every year, the number of resident space objects (RSOs) orbiting the Earth 

increases and indirectly increases the conflict between RSOs (Lu et al., 2020; Luo and 

Yang, 2017; Pelton and Jakhu, 2017; Park, 2016). It consists of satellites, mission-

related debris, rocket bodies, etc. The growth is due to many countries scrambling to 

explore space for various purposes such as communications, remote sensing, scientific 

mission, security, defence, and many more. The number of space objects larger than 

10cm is now approaching 21,000, an object of between 1 and 10cm is estimated to be 

around 500,000, and for objects smaller than 1cm, it is to be over 100 million (Peng 

and Bai, 2018a). Moreover, there is a large amount of debris in the orbits around the 

Earth, all of which endanger space assets and society (Tarran, 2021; Gambi et al., 

2018; San-Juan et al., 2017; Lim, 2015). Figure 1.1 shows the number of objects in 

Earth Orbit by object type increasing yearly. 
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Figure 1.1 Yearly Number of Objects in Earth Orbit by Object Type (Source: 

https://orbitaldebris.jsc.nasa.gov/modeling/legend.html) 

Some incidents involving space objects have also occurred, such as the 

February 2009 collision involving the U.S. Iridium communication satellite and 

Russian Cosmos 2251 communication satellite, as well as the threat of RED threshold 

late notice conjunction with the International Space Station (ISS) from the "25090 

PAM-D" debris (Seong et al., 2017; Kelso, 2012; Jakhu, 2010; Bergin, 2009).  One of 

the leading causes of these incidents is the orbit propagation model's ability to obtain 

accurate information about the satellite's position (Peng and Bai, 2019).  The physics-

based prediction failure also arises from a lack of information such as the space object's 

state, the initial time, the environment information, the intent information, etc.  Figure 

1.2 shows the Iridium 33 and Cosmos 2251 collision illustration view, which created 

more debris. 
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Figure 1.2 Illustration view of Iridium 33 and Cosmos 2251 Collision (Source: 

https://celestrak.com/events/collision/) 

On April 2, 2018, the Chinese space station Tiangong-1 (Heavenly Palace) was 

declared out of control by Chinese authorities and re-entered the atmosphere 

(Goswami, 2018; Danner, 2018). Later, the incident involved a Long March 5B 

Rocket, also owned by China, had entered atmospheric space out of control (Zannoni, 

2022). Therefore, the authorities should continuously track this space object to ensure 

its re-entry into the atmosphere can be immediately detected to prevent any accident 

from happening. Unfortunately, the related information is usually only obtained after 

the incident occurred. Thus, having the orbit propagation model that can forecast for 

long-term horizon will help affected parties have proper planning operations and take 

extra precautions to prevent collisions and observe the space objects orbiting the Earth. 

This orbit propagation model will also help identify possible crash locations to ensure 

no casualties. Countries with no space object information details can also take 

preventive measures using this orbit propagation model. Therefore, further analysis 

needs to ensure that no adverse events occur, especially collisions between the 

operating satellites resulting in the loss of millions of dollars.  

Besides that, an accurate orbit propagation model is crucial to maintain 

catalogue objects' growth, conduct collision prevention assessments, and address 

satellite missions currently operating in orbit (Reiland et al., 2021; Bradley, 2015; 

Bennett et al., 2013). These also drive the need to improve the current orbit 

propagation model. 
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The need for high accuracy and efficiencies prompted various studies to renew 

the orbit propagation method (Petit et al., 2021; San-Juan et al., 2017). One of the 

methods proposed is to propagate uncertainty by capturing the absence of dynamic 

information. Hence, it remains a challenge to forecast space objects. Among the 

challenges is our understanding of the space environment is limited. The information 

about the space object is not accurately updated, manoeuvring of a spacecraft could be 

unavailable, surveillance resources are expensive, and measurements are sparse and 

noisy. 

The Simplified General Perturbations-4 (SGP4) Model is the orbit propagator 

model commonly used by the satellite operator as its code and input data; the Two-

Line Elements (TLE) are publicly available and accessible by everyone (Driedger and 

Ferguson, 2021; Peng and Bai, 2020; San-Juan et al., 2017). However, the TLE data 

must be updated to have an accurate result, or else the SGP4 Model error can be 1 km 

and grow ~1–3 km per day (Romano et al., 2021; Riesing, 2015; Vallado et al., 2006a). 

The North American Aerospace Defense Command (NORAD) provides the TLE data 

daily, but its accuracy is valid for 2- 3 days (Abay et al., 2021; Romano et al., 2021). 

Therefore, the SGP4 Model is unreliable for long-term forecasting horizons, and it 

shall be improved to increase its performance with minimal risk and cost. 

1.2 Background of the Problem 

The growth of space objects increases the risk of collision among those objects 

and, at the same time, poses a danger to space assets and humans. Also, the satellite 

communication window, especially in the Low Earth Orbit (LEO), is concise at about 

7 to 12 minutes. This limited time is valuable for scheduling satellite operations such 

as satellite health checks, uploading schedules, and downloading mission data. The 

planning of this satellite schedule is prepared based on the time determined by the orbit 

propagator. However, there are distortions and noise in the orbit propagation caused 

by orbit perturbations such as earth gravity, atmospheric drag, multi-body gravity, and 

solar radiation pressure.  Therefore, the orbit propagator becomes inaccurate and needs 
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to be improved to minimize the error, reduce this risk, and ensure future mission safety.  

Figure 1.3 illustrates the overview of the orbit propagation approaches used. 
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Figure 1.3 Overview of the Orbit Propagation Approaches 

 

The satellite operation typically uses the physical-based approaches for orbit 

propagation. However, this approach's success requires knowing the space object at 

the beginning of trajectory calculations, environmental information, and manoeuvre 

the objects (Peng and Bai, 2018a). Meanwhile, the understanding of the space 

environment is limited. Furthermore, the information on space objects is not updated 

accurately; for example, a satellite owned by another country is not accessible if the 

owner is unwilling to share the information. Also, the current surveillance resources 

are limited and costly (Peng and Bai, 2018a). 

There are various mathematical uncertainty expressions used for SSA, such as 

Gaussian, Polynomial Chaos Expansions (PCEs), State Transient Tensors (STTs), and 

Taylor Series Polynomial (Park, 2016). However, these expressions are inconsistent 

with substantial uncertainties with various perturbations such as earth gravity, 

atmospheric drag, multi-body gravitation, solar radiation pressure, or longer 

propagation time (Park, 2016; Shou, 2014). 

Later, researchers proposed an analytic solution to solve the problem. Many 

researchers have explored analytical and semi-analytical solutions to explain the 
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orbital motion with additional perturbation values (Park, 2016).   In addition, analytical 

and semi-analytical solutions can provide an in-depth view of classifying variations in 

an object's orbital motion.  This fact inspires a new perspective to explain uncertainty's 

evolution and implies new orbit propagation methods. 

Machine learning approaches present different modelling capabilities and 

forecasting than physics-based methods (Gonzalo and Colombo, 2021). The 

forecasting process can be performed without explicitly modelling space objects and 

limited space environment information. Instead, the models are studied based on the 

observed data. There are various types of machine learning approaches. The most 

common types are; supervised, unsupervised, and reinforcement learning (Jo, 2021; 

Abu-Mostafa et al., 2012).  Supervised learning is a method that studies the function 

or mapping of labelled data (Xie and Huang, 2021; Huang et al., 2014). Yet, 

unsupervised learning is a learning method from unlabelled data (Wang et al., 2021; 

Novotny et al., 2018). It uses to find patterns and structure data such as cluster data 

into different groups without providing output to describe groups. Besides, 

reinforcement learning is used to make decisions (Leng et al., 2021; Abu-Mostafa et 

al., 2012). Thus, supervised learning is ideal for increasing orbit propagation accuracy 

based on historical measurements. In addition, it is more straightforward and not 

complicated compared to other methods. 

Also, using the data-driven approach for orbit propagation allows the 

prediction process through data processing to aid decision-making (Jiménez-Luna et 

al., 2021). The data-driven approach can produce a precise orbit propagation model, 

although there are elements that mathematical models cannot determine. For example, 

identifying perturbation value through data approaches (Jiménez-Luna et al., 2021; 

Jäggi and Arnold, 2017).  Peng and Bai (2017) used the data-driven approach to reduce 

orbit prediction errors from historical data and increase orbit propagation accuracy. 

Recently, the hybrid propagation method has improved the accuracy of the 

orbit propagator (Lopez et al., 2021; San-Juan et al., 2017). This method combines 

classical integration methods with a forecasting technique based on either statistical 

time series or machine learning techniques. It can model the difference between the 
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integrated solution and natural behaviour.  The hybrid propagation method also 

enhances orbit propagation by refining the analytic approach and improving 

computational efficiency (Park, 2016). San-Juan et al. (2017) improved 90.03% over 

30 days of the SGP4 Model by using this hybrid method with statistical technique. 

However, it also causes complexity and computational burden for the end-user (San-

Juan et al., 2017). Later, Peng and Bai (2017) improve orbit propagator accuracy by 

up to 96.1% using a support vector machine (SVM) for medium-term forecasting. 

Therefore, further study is required to explore the recent method used and appropriate 

learning techniques to accomplish this study. 

1.3 Problem Statement 

The SGP4 Model is the orbit propagator model commonly used and known as 

the most advanced space surveillance system. However, this SGP4 Model has an error 

of ~1 km and grows at ~1–3 km per day. Besides that, the TLE data used in conjunction 

with the SGP4 Model for space operations can be forecasted with accuracy valid for 

2- 3 days. It needs to be updated periodically to minimize the error. The increased 

propagation span caused the position error to rise to 270.7km for 30 days. Thus, the 

operation planning will disrupt and create problems for the user, such as the desired 

image cannot be taken due to an incorrect satellite position. In case of collision, 

accident detection may be too late for prevention. Recently, the hybrid propagator 

method has improved the orbit propagator. The hybrid propagator method extends the 

validity of TLE data and reduces the error in the SGP4 Model. The Holt-Winters 

technique was used in this hybrid propagator, and it improves 90.03% over 30 days of 

propagation. However, this method requires changes in the components' probability 

distribution, causing complexity and computational burden for the end-user. Later, the 

SVM can reduce error and improve orbit propagator accuracy up to 96.1%. However, 

this technique's correction capability is limited and adequate after 28 days. Its ability 

reduces for long-term forecasting. In the literature, it has been found that ANN has the 

most regression capability due to its more flexible structure. Thus, this study explores 

deep learning techniques as they are scalable and suitable for complex data. The 

Recurrent Neural Network (RNN) and long short-term memory (LSTM) are deep 



 

8 

learning methods ideal for time series forecasting and can remember patterns for long-

term forecasting. Therefore, an improved orbit propagation model can be developed 

through the hybrid of the RNN-LSTM with the SGP4 Model. This hybrid RNN-LSTM 

is proposed because integrating these two techniques can assist in long-term 

forecasting with minimal error as they complement each other and overcome their 

weaknesses. Also, it can reduce the reliance on external inputs in performing 

forecasting. It also provides a solution to sequence and time series-related problems. 

Furthermore, the forecasting only required initial TLE data for long-term forecasting. 

Thus, it avoids relying on updated TLE data and enhances the current SGP4 Model 

capabilities. 

1.4 Research Aim 

This research project aims to improve the SGP4 Model for orbit propagation 

using the deep learning approaches. As a result, the improved SGP4 Model will 

overcome the limitations of orbit propagation for long-term forecasting and handle 

complex satellite data information. Furthermore, the enhanced SGP4 Model will 

validate.  Hence, the results can be evaluated and discussed. 

1.5 Research Questions 

A set of research questions is formulated to find the solution for this research 

study. The following are the research questions used to guide the research 

accomplishment: 

(a) (RQ1): What are the essential features in the space object data to form the 

SGP4 Model? 

(b) (RQ2): How to design the SGP4 Model framework for identifying elements 

involved in improving the SGP4 Model? 
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(c) (RQ3): How to develop a hybrid RNN-LSTM SGP4 Model for minimizing 

errors and maintaining accuracy in long-term forecasting? 

(d) (RQ4): How to validate the improved SGP4 Model based on error rate forecast 

measurements? 

1.6 Research Objectives 

Following are the research objectives of the study to achieve the aim of the 

research: 

(a) (RO1): To identify essential features in the space object data for pre-processing 

to form the SGP4 Model. 

(b) (RO2): To design the SGP4 Model Framework in identifying the elements 

involved in improving the SGP4 Model. 

(c) (RO3): To develop a hybrid RNN-LSTM SGP4 Model for minimizing errors 

and maintaining accuracy in long-term forecasting. 

(d) (RO4): To validate the improved SGP4 Model based on error rate forecast 

measurements. 

 

1.7 The Scope of The Study 

The research is bounded by: 

(a) The space object data used in this study is a Low Earth Orbit (LEO) space 

object data. The selection of The LEO space object for this study is because it 

is this space object that is tracked by the Ground Station, Malaysia Space 
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Centre. Therefore, the results of this study will be able to assist the monitoring 

and operation of the satellite operators. In addition, LEO space object data is 

the most abundant data in orbit. Its increasing number poses a danger to the 

surroundings because they can collide, and its position is close to the Earth 

compared to other space objects. Therefore, LEO space object tracking is 

crucial compared to other space objects, such as in Medium Earth Orbit (MEO) 

and Geostationary orbit (GEO). 

(b) The forecasting analysis is focused on the learning-based process approach. 

This approach is used because it is less complicated than other approaches, 

such as the statistical-based approach or mathematical approach, which 

requires mastery of mathematical formulations that are more complex and 

complicated. In this study, a learning-based approach that uses machine 

learning techniques through deep learning can optimize the use of historical 

data. The method is also less complicated and suitable for dealing with the 

development of a long-term forecasting model. 

(c) The space object data used in this study is text type. The selection of text type 

data was made because the forecasting results for this study will also be in the 

form of text. In addition, the enhanced model developed is a regression model, 

and text-type data can assist in long-term forecasting. Although there are other 

types of space object data, such as images, for this study, such data will not be 

used and will be unsuitable for solving the long-term forecasting issues. 

(d) The algorithm used in this study will also focus on appropriate techniques for 

time series data only. This is because the data features selected to be trained in 

this study, namely position and velocity space object data, are time-series data. 

(e) This research does not investigate the privacy issues or the security issues 

related to orbit propagation. These privacy and security issues include tracking 

a spy satellite used by certain parties for intelligence purposes, warfare, and so 

on. Therefore, the results of this study will only help the parties involved in 

terms of governance of space object data only.  
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1.8 The Significance of the Study 

The significance of this study can be gained through practicality and 

theoretically as follow. 

1.8.1 Practicality 

(a) Nation 

The study will play an essential role in the space industry and assist the 

regulatory authorities in monitoring the space asset and public safety. In 

addition, it will provide additional inputs to the international regulatory 

authorities monitoring space object issues such as NORAD and other related 

international organizations. Thus, it will prevent unwanted events from 

happening.  In turn, it helps speed up the prevention process in any incident. 

(b) Space Agency 

The study's outcome will allow the space agency that cannot afford the related 

facilities to benefit at a worthwhile cost.  Subsequently, it will assist in 

administering the operational management of the ground station activity. As a 

result, space-based organizations can have their orbit propagation system 

without relying on other space agencies. Also, this orbit propagation model 

system can be designed based on their requirements and needs.   

(c) Researcher 

The ideas presented may be used as reference data to conduct new space data 

analytics research and improve current research. The researcher or analyst can 

make the right decision based on the deep learning approach despite their lack 

of expertise and facilities.   
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(d) Individual 

The study will produce a reliable orbit propagation model and provide vital 

information for individuals or anyone affected without gathering the 

information from the authorities or any related organization. 

1.8.2 Theoreticality 

(a) The study helps to improve the method for the long-term forecasting horizon 

of space object data. 

(b) The improved model is more robust and resilient to the effects of the space 

environment as the modelling does not require the latest space environment 

data as it is based on the historical data used. 

(c) The improved model framework can assist in having systematic rules when 

processing and preparing the raw space object until the data is ready to be used 

for the modelling process. 

(d) The improved model framework can assist in future modification of the orbit 

propagation model and dealing with space object data. 

1.9 Thesis Organization 

The thesis's organization is structured as follows;  

• Chapter 1 presents the research work's introduction, describing the 

research's overview and motivation, the background of the problem, 

problem statement, research aim, scope, and significance of the study. 

The problem statement highlights the need for an orbit propagation 
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model for long-term forecasting. Also, to provide an accurate result-

based deep learning approach to overcome the current SGP4 Model 

limitation.   

• Chapter 2 reviews related works and evaluate the previous study and 

results that led to the research gap. Then, based on the literature 

investigation, the way forward of the research is discussed. 

• Chapter 3 describes the research methodology and deliverables for the 

activities involved in achieving the research aims. The research plan 

contains five (5) phases that are: 1) Preliminary Study, which aims to 

analyse the problem and limitation of the current orbit propagation 

model and identify an approach that can improve the SGP4 Model's 

performance; 2) Data Collection, which explains how the collection of 

data is executed; 3) Data Analysis and Pre-Processing, which to pre-

process the space object data; 4) Design and Modelling which to design 

and model-based deep learning approach to overcome the SGP4 Model 

limitation which is the integration between the SGP4 Model and the 

RNN-LSTM module, and 5) Validation Phase which aims to validate 

the improved model through experimental simulation and analyse the 

performance in terms of error rate forecast measurement. 

• Chapter 4 presents the data analysis and pre-processing for the study. 

Firstly, the analysis of data is conducted. Secondly, the space object 

data collection is explained. Next, the space object data is studied to 

understand more about the data. Then, the execution of pre-processing 

of the data. A suitable sampling interval is proposed based on the 

analysis conducted. Then, identify the essential features in the space 

object to form the SGP4 Model, and present the behaviour of the data 

patterns. This chapter addresses the first research objective (RO1) of 

the thesis, which identifies the essential features in the space object data 

for pre-processing to form the SGP4 Model. With that, this chapter 

provides the first contributions of this study. 
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• Chapter 5 explains the design of the SGP4 Model Framework. This 

chapter also addresses the thesis's second research objective (RO2), 

which is to design the SGP4 Model framework to identify the elements 

involved in improving the SGP4 Model. In addition, this chapter 

contributes to the second contribution of the study. 

• Chapter 6 addresses the third and fourth research objectives (RO3, 

RO4) to contribute to the thesis. First, it will explain the RNN-LSTM 

module development contribute to the integration model's 

development. Next, the integration model is validated to ensure this 

study's accomplishment. Thus, this chapter contributes to the third and 

fourth contributions of the thesis. 

• Chapter 7 addresses the last research objective (RO4) of the thesis. On 

top of that, it will elaborate the experiments' results and discussion of 

findings in detail. Thus, this chapter contributes to the final contribution 

of the study. 

• Chapter 8 summarizes the achievement of the thesis, the research 

contributions, limitations of proposed approaches, research outcomes, 

and future works. 
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