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ABSTRACT

Climate change and anthropogenic activities have caused the degradation of 
seagrass ecosystems. Hence, systematic habitat mapping and identification process are 
required to ensure that seagrass is protected and monitored continuously. This research 
aims to utilize a multibeam echosounder (MBES) system, habitat suitability modeling 
(HSM), and image classification to produce a seagrass seascape map at the Redang 
archipelago. Bathymetric map, backscatter mosaic, and their associated predictors like 
slope, eastness, northness, curvature, gray-level co-occurrence matrix (GLCM) texture 
features (homogeneity, entropy, and correlation), angular range analysis (ARA) 
parameters (phi and characterization) were used as the predictors. All predictors were 
tested for different spatial resolutions (1 and 50 m) and window sizes analysis (3 x 3 , 
9 x 9 , and 21 x 21 pixels). For HSM, three machine learning algorithms were used: 
maximum entropy (MaxEnt), random forest (RF), and support vector machine (SVM). 
For image classification, only RF was used. Seagrass occurrence data was used to train 
and test the seagrass habitat suitability modeling (SHSM), while seascape feature data 
was used to classify and validate the seafloor classification map. The results showed 
that both fine and coarse spatial resolution datasets produced training models with high 
predictive accuracy (AUC >90%). Testing models derived from MaxEnt and RF 
achieved the highest predictive accuracy (AUC >90%), while the SVM models had 
the lowest predictive accuracy (AUC <85%). Bathymetry was found to be the most 
influential predictor for all models. For the coarse resolution models, backscatter 
predictors like ARA characterization, ARA phi, GLCM texture features, and 
backscatter mosaic 32-bit contributed more to produce SHSM. Different window sizes 
analysis and coarse spatial resolution dataset produced inconsistent habitat suitability 
models compared to the fine spatial resolution dataset. Overall, the MBES dataset and 
HSM produced a detailed seagrass habitat suitability map and provided precise 
information on the seagrass habitat in the Redang archipelago. The improved habitat 
model was proposed by integrating a seafloor classification map to associate seagrass 
habitat suitability index and seafloor features (i.e., seagrass on fine sand, seagrass on 
coarse sand, fine sand, medium sand, and coarse sand). The proposed integration 
method produced a detailed seascape seagrass map. The information produced from 
this seascape seagrass map will be useful for decision-makers like the marine park 
authorities to manage seagrass habitats in response to anthropogenic activities and 
climate change.
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ABSTRAK

Perubahan iklim dan aktiviti-aktiviti antropogenik telah menyebabkan 
kemerosotan ekosistem rumput laut. Oleh itu, proses pemetaan dan pengecaman 
habitat yang sistematik diperlukan untuk memastikan rumput laut dilindungi dan 
dipantau secara berterusan. Kajian ini bertujuan untuk menggunakan sistem pemerum 
gema berbilang alur (MBES), pemodelan kesesuaian habitat (HSM), dan klasifikasi 
imej untuk menghasilkan peta landskap rumput laut di kepulauan Redang. Peta 
batimetri, mozek serak balik, dan peramal berkaitannya seperti cerun, eastness, 
northness, kelengkungan, ciri-ciri tekstur gray-level co-occurrence matrix (GLCM) 
(kehomogenan, entropi, dan korelasi), parameter angular range analysis (ARA) (phi 
dan pencirian) telah digunakan sebagai peramal. Semua peramal telah diuji dengan 
resolusi spatial yang berbeza (1 dan 50 m) dan analisis saiz tingkap yang berbeza (3 x 
3, 9 x 9 , 21 x 21 piksel). Untuk HSM, tiga algoritma pembelajaran mesin telah 
digunakan: entropi maksimum (MaxEnt), random forest (RF), dan support vector 
machine (SVM). Bagi klasifikasi imej, hanya RF yang digunakan. Data kewujudan 
rumput laut telah digunakan untuk melatih dan menguji pemodelan kesesuaian habitat 
rumput laut (SHSM), manakala data ciri landskap laut telah digunakan untuk 
mengklasifikasikan dan mengesahkan peta klasifikasi dasar laut. Keputusan 
menunjukkan bahawa kedua-dua set data resolusi spatial halus dan kasar 
menghasilkan model latihan dengan ketepatan ramalan tinggi (AUC >90%). Model 
ujian yang diterbitkan daripada MaxEnt dan RF mendapat ketepatan ramalan tertinggi 
(AUC >90%), manakala model daripada SVM mempunyai ketepatan ramalan 
terendah (AUC <85%). Batimetri didapati sebagai peramal yang paling berpengaruh 
untuk semua model. Bagi model resolusi kasar, peramal serak balik seperti ARA 
pencirian, ARA phi, ciri-ciri tekstur GLCM dan mozek serak balik 32-bit 
menyumbang lebih banyak untuk menghasilkan SHSM. Analisis saiz tingkap yang 
berbeza dan set data resolusi spatial kasar memaparkan model kesesuaian habitat yang 
tidak konsisten dibandingkan dengan set data resolusi spatial halus. Secara 
keseluruhannya, set data MBES dan HSM menghasilkan peta kesesuaian habitat 
rumput laut yang terperinci dan memberikan maklumat tepat tentang habitat rumput 
laut di kepulauan Redang. Model habitat yang dipertingkatkan telah dicadangkan 
dengan integrasi antara peta klasifikasi dasar laut untuk mengaitkan indeks kesesuaian 
habitat rumput laut dan ciri dasar laut (iaitu rumput laut di atas pasir halus, rumput laut 
di atas pasir kasar, pasir halus, pasir sederhana kasar, dan pasir kasar). Kaedah 
integrasi yang dicadangkan ini akan menghasilkan peta landskap rumput laut yang 
terperinci. Maklumat yang dihasilkan daripada peta landskap rumput laut ini akan 
berguna untuk pembuat keputusan seperti pihak berkuasa taman laut untuk 
menguruskan habitat rumput laut sebagai tindak balas kepada aktiviti-aktiviti 
antropogenik dan perubahan iklim.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Research

In marine botany, seagrass is classified as a submerged marine flowering plant 

(Green et al., 2003; Short et al., 2007; Fortes, 2018). Ecologically, seagrass ecosystems 

provide essential functions that influence the physical, chemical, and biological 

environment in coastal ecosystems (Hemminga and Duarte, 2000; Barbier et al., 2011; 

Campagne et al., 2014; Nordlund et al., 2016; Scott et al., 2018; Hearne et al., 2019). 

Seagrass is normally found in most tropical and temperate regions (Den Hartog, 1970; 

Short et al., 2007) distributed in shallow coastal water areas (Green et al., 2003; Short 

et al., 2007) and estuarine ecosystems (Heck and Orth, 1980). The seagrass distribution 

and species vary according to the condition of the surrounding coastal environment. In 

the tropical Indo-Pacific, Southeast Asia has the largest concentration of high seagrass 

diversity (Short et al., 2007). Malaysia's coast is divided into two, i.e., Peninsular 

Malaysia and East Malaysia (i.e., Sabah and Sarawak), which are relatively extensive 

with different environmental conditions. Partially, Malaysia's coastal water is covered 

by seagrass meadows (Ogawa et al., 2011) widely distributed throughout subtidal and 

intertidal areas, semi-enclosed lagoons, and shoals along the coastline of Malaysia 

(Zakaria and Bujang, 2013; Ondiviela et al., 2014). On the east coast of Peninsular 

Malaysia, seagrass is normally found on offshore islands (e.g., Sibu Island, Tinggi 

Island, and Redang Island) and colonizes the outer coastal area between the coral and 

semi-open seas (Bujang et al., 2006). Meanwhile, on the west coast of Peninsular 

Malaysia, seagrass is normally found in open-sea coastal waters (Bujang, 2012). In 

East Malaysia, most seagrass beds on the western coast of Sabah can be found near 

shores (e.g., Bak-Bak, Tanjung Mengayau, Sepangar Bay, and Gaya islands), south

eastern coast, and offshore islands (e.g., Sipadan, Maganting, Tabawan, and Bohey 

Dulang) (Bujang et al., 2006). Sub-tidal seagrasses also grow on coral rubble in the 

four isolated offshore islands of Maganting, Tabawan, Bohey Dulang, and Sipadan
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(Ismail, 1993; Bujang et al., 1999; Bujang et al., 2000; Bujang et al., 2006). 

Meanwhile, in Sarawak, seagrass is normally found along the coastline of river 

estuaries, such as Bintulu river (Den Hartog, 1970; Bujang, 2012) and Lawas river 

estuary (Bujang et al., 2006; Al-Asif et al., 2020; Ismail et al., 2020).

Seagrass ecosystems are one of coastal ecosystem in Malaysia (Mazarrasa et 

al., 2018; Hossain and Hashim, 2019). They provide substantial diverse benefits to 

marine ecosystems, such as contributors that control the diversity of various fauna, 

including vertebrates and invertebrates (Sasekumar et al., 1989; Arshad et al., 2008). 

For example, seagrass ecosystems play a vital role as food sources and shelter for 

diverse animal communities (Peralta and Yusoff, 2015; Hossain et al., 2016; Francis 

et al., 2018; Hearne et al., 2019; Unsworth et al., 2019b) such as dugongs, seahorses, 

and turtles (Bujang et al., 2006; Unsworth et al., 2019b; de los Santos et al., 2020; 

Johan et al., 2020). Furthermore, they also function as a habitat for small marine fauna 

such as prawns, small fishes, and crabs (Jackson et al., 2001; Gillanders et al., 2003; 

Heck Jr et al., 2003; Bujang et al., 2006; Quang Le et al., 2020). They also provide 

nursery grounds for several different types of fish (Criales et al., 2011; Criales et al.,

2015). In addition, seagrass ecosystems also serve as a source of food for seasonal 

migratory birds such as the little egret through ground-feeding (Bujang et al., 2006).

Seagrass ecosystems also provide many critical ecological functions that 

support the well-being and livelihoods of local communities (Cullen-Unsworth et al., 

2014; Nordlund et al., 2016). They produce and export organic carbon and regulate 

carbon dioxide through photosynthesis. They play an important role as carbon sinks, 

absorbing carbon dioxide released from the air, animals, coral reefs, and plants; thus, 

reducing carbon dioxide (Short et al., 2011; Lavery et al., 2013; Ricart et al., 2017; 

Rozaimi et al., 2017; Mazarrasa et al., 2018). They are also known for their capacity 

to stabilize sediments and reduce coastal erosion (Lamb et al., 2017; Oreska et al., 

2017; Gumusay et al., 2019) by trapping sediment flying through them (Verweij et al., 

2008). Simultaneously, this process will control the nutrient cycle and turbidity of the 

surrounding water (Jeudy de Grissac and Boudouresque, 1985; Komatsu and Yamano, 

2000; Hamana and Komatsu, 2016).
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Nowadays, seagrass habitats are facing various pressures from both natural and 

anthropogenic threats (Waycott et al., 2009; Short et al., 2011), causing the number of 

seagrass habitats to decrease yearly in many regions (Boudouresque et al., 2009; 

Waycott et al., 2009; De’ath et al., 2012; Ponti et al., 2014; Hossain et al., 2015c). In 

Malaysia, many seagrass habitats continuously face serious threats from natural causes 

(e.g., erosion, flooding, surface water temperature, and turbidity) and are also impacted 

by anthropogenic activities (e.g., overfishing, dynamite fishing, sand mining, 

dredging, settlement, marine development, and tourism activities (Bujang et al., 2006; 

Boudouresque et al., 2009; Brown et al., 2011a; Short et al., 2011; Bujang et al., 2016) 

that cause significant degradation and possible habitat loss. For instance, 

anthropogenic activities such as port development and land reclamation have caused 

large areas of seagrass habitats to be reduced, especially meadows in the Sungai Pulai 

Estuary, Johor (Bujang and Zakaria, 2003; Bujang et al., 2006). Sand mining, filling, 

and land reclamation are marine activities that have an immediate and significant 

impact on the marine environment and its resources. Meanwhile, heavy loads of 

suspended sediments have resulted from land reclamation, which frequently deposits 

a coating of silt several centimeters thick over seagrass and benthic organisms (Bujang 

et al., 2016). Similarly, dynamite fishing and marine development significantly 

produced heavy loads of suspended sediments, which reduced the subsurface light 

intensity, causing the seagrass environment on Gaya Island in Sabah to deteriorate 

(Freeman et al., 2008). Seagrasses in Pengkalan Nangka in Kelantan, Paka in 

Terengganu, and Punang-Sari Lawas in Sarawak are degraded due to coastline changes 

(Hossain et al., 2015c). Thus, the preservation and conservation of seagrass habitats 

are important (Sagawa et al., 2010; Unsworth et al., 2019a) to manage and monitor 

seagrass habitats (Hamad et al., 2022) and it has become necessary to sustain and 

prevent the loss of their habitats (Cullen-Unsworth and Unsworth, 2016; Unsworth et 

al., 2019a). For this reason, an effective approach is required to manage and monitor 

the seagrass habitats in Malaysia.

Related bodies require detailed information to describe the geographic location 

and spatial distribution of seagrass to manage and monitor seagrass habitats. A 

seagrass habitat suitability map is an important tool to extract detailed information 

about seagrass habitat distribution. Having detailed information about seagrass habitat 

distribution would increase the efficiency of managing and monitoring the seagrass
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habitat distribution. Furthermore, detailed information about seagrass distribution will 

aid scientists in understanding seagrass. Full understanding through mapping allows 

the appropriate monitoring and management of the seagrass resources. Thus, seagrass 

habitat distribution maps are necessary tools for managing, protecting, and monitoring 

seagrass resources.

In the last few decades, underwater acoustic survey techniques have been used 

by scientists to determine the relationship between seafloor features and marine 

habitats (Brown and Blondel, 2009; Che Hasan et al., 2011; Che Hasan et al., 2014; Li 

et al., 2017; Janowski et al., 2018; Schimel et al., 2018). One of the acoustic techniques 

used to map the seafloor is the multibeam echosounder (MBES) sonar system. MBES 

is an effective acoustic technique due to the availability of simultaneous measurement 

of geo-located backscatter data with bathymetry data (Wright and Heyman, 2008; 

Brown and Blondel, 2009). Additionally, MBES provides full-coverage mapping with 

high-spatial resolution datasets and has been used to produce marine habitat suitability 

maps for fishes (Monk et al., 2010; Monk et al., 2011), corals (Rengstorf et al., 2012; 

Ross and Howell, 2012; Rengstorf et al., 2014; Miyamoto et al., 2017; Rowden et al.,

2017), starfishes and crinoids (Rowden et al., 2017), seagrasses (Bakirman and 

Gumusay, 2020), and kelps (Bajjouk et al., 2015). The availability of the MBES 

dataset (i.e., bathymetry and backscatter data) has been previously used to characterize 

seafloor topography and sediment composition that influence the distribution of 

marine habitats (Kostylev et al., 2001; Ierodiaconou et al., 2007; Holmes et al., 2008; 

Rein et al., 2011; Che Hasan et al., 2012; Micallef et al., 2012; Costa and Battista, 

2013; Rattray et al., 2015; Dunlop et al., 2018; Ierodiaconou et al., 2018).

Bathymetry data only provide information on bathymetric depth while multiple 

terrain analysis can be used to measure seafloor complexity and produce bathymetric 

predictors (e.g., aspect, slope, eastness, northness, and rugosity). These data have been 

demonstrated in previous studies, revealing the relationship between seafloor 

characteristics and marine habitats (Lundblad et al., 2006; Verfaillie et al., 2007; 

Wilson et al., 2007; Monk et al., 2010; Anderson et al., 2016b; Subarno et al., 2016; 

Rowden et al., 2017; Boswarva et al., 2018; Haggarty and Yamanaka, 2018; 

Ierodiaconou et al., 2018), especially seagrass habitat (Chefaoui et al., 2016;
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Tyllianakis et al., 2019). Meanwhile, characterization of backscatter data could also 

distinguish the seafloor covered by various composited sediments (Blondel and Sichi, 

2009; Diesing et al., 2014; Biondo and Bartholoma, 2017).

In mapping marine habitats, choosing the right spatial resolution dataset is 

crucial (Brown et al., 2011a; Lecours et al., 2015; Lecours et al., 2017b). Maps with 

detailed information produced using high-spatial resolution data are valuable for 

thorough marine spatial management and planning (Brown et al., 2011a). In contrast, 

a biogeographic study that required measuring and monitoring patterns of species 

richness across vast regional extents used a low-spatial resolution dataset (Chiarucci 

and Scheiner, 2011). Previous studies by Kinlan et al. (2020) and Nezer et al. (2017) 

have demonstrated habitat suitability modeling (HSM) using several spatial resolution 

datasets. Research into an appropriate spatial resolution in habitat suitability studies is 

still restricted. Choosing the right spatial resolution, on the other hand, is expected to 

produce an accurate habitat suitability model (Olivero et al., 2016), especially for 

seagrass habitats. Theoretically, predicted habitats may also react to predictors derived 

using various window sizes analysis (Freemark and Merriam, 1986; Monk et al.,

2011). Bathymetric and backscatter predictors are normally measured using specific 

window size analysis (Ierodiaconou et al., 2018; Porskamp et al., 2018). Furthermore, 

no research on the impact of various window sizes analysis on seagrass HSM has been 

conducted. As a result, a thorough investigation into the ideal window size analysis for 

seagrass HSM is required.

Various machine learning algorithms are used to utilize a set of bathymetric 

and backscatter predictors, and ground-truth data to produce accurate habitat 

suitability models (Lauria et al., 2015; Porskamp et al., 2018; Cui et al., 2021; Viala et 

al., 2021) and classification maps (Calvert et al., 2014; Ariasari et al., 2019; Zhafarina 

and Wicaksono, 2019; Bayyana et al., 2020; Upadhyay et al., 2020; Benmokhtar et al., 

2021). HSM is a frequently used modeling technique for forecasting the spatial 

distribution of species, and it has been applied in marine research (Monk et al., 2010; 

Monk et al., 2011; Zapata-Ramirez et al., 2014; Miyamoto et al., 2017; Rowden et al., 

2017; Porskamp et al., 2018; Bowden et al., 2021). HSM analyzes the spatial 

distribution of a species and the response curve concerning environmental conditions
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by quantifying the relationship between ground-truth data and predictors (Franklin, 

2010; Coll et al., 2019; Droz et al., 2019; Amiri et al., 2020). Meanwhile, supervised 

classification is a frequent image classification technique for seafloor characterization, 

demonstrated by several marine habitat studies (Brown and Blondel, 2009; Wang et 

al., 2018), especially for seagrass habitat (Micallef et al., 2012; Rende et al., 2020; 

Viala et al., 2021). The image classification technique categorizes all pixels in all 

MBES predictors to obtain seafloor features. HSM and image classification techniques 

will provide an in-depth measurement of seagrass habitat distribution. In addition, the 

results from previous studies demonstrated that HSM (Monk et al., 2010; Monk et al., 

2011; Bakirman and Gumusay, 2020) and image classification techniques (Brown and 

Blondel, 2009; Viala et al., 2021) provide reliable and accurate marine habitat maps.

To date, there is no existing study that discusses the application of MBES 

dataset, associated predictors, and machine learning algorithms to produce seagrass 

habitat map in the Redang archipelago. Although several studies have demonstrated 

the use of MBES dataset and associated predictors in seagrass applications (Lurton et 

al., 2015; Lucieer et al., 2018; Bakirman and Gumusay, 2020), there are criteria that 

need to be considered to produce seagrass habitats using MBES dataset and machine 

learning algorithms, especially for seagrass habitats in Malaysia's coastal area. This 

study effort is an initial step to implement seagrass habitat mapping in Malaysia and 

proving these methods in the study of seagrass habitat mapping to be considered as 

reliable methods.

1.2 Problem Statement

Anthropogenic impacts in the world's oceans have led to the deterioration or 

destruction of seagrass habitats. The loss of seagrass habitats in oceans worldwide 

threatened the coastal ecosystems (Jorda et al., 2012; Fernandes et al., 2019; Prasad et 

al., 2019) and led to imbalanced ecosystems due to the structural and functional roles 

of seagrass habitats (Waycott et al., 2009; Pu and Bell, 2017; Topouzelis et al., 2018). 

The spatial extent of seagrass habitats in the world's oceans has decreased by almost 

29% since the beginning of the 20th century (Fourqurean et al., 2012; Tyllianakis et
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al., 2019). Parts of Malaysia's coastal areas had already lost seagrass habitats due to 

the impact of anthropogenic activities (Zakaria and Bujang, 2011; Hossain et al., 

2015b; Hossain et al., 2015c). Therefore, the protection of seagrass habitats is essential 

to prevent a major reduction in seagrass habitat distribution in Malaysia's coastal areas. 

Hence, it is vital to have accurate information on the distribution of seagrass habitats 

as a prerequisite to manage them.

The interest in protecting and managing marine resources to be more 

sustainable has grown in the past decades. Marine Park Malaysia is an initiative to 

meet the demand for a more sustainable marine resource in Malaysia's coastal area. 

Information on marine resources, especially their spatial distribution, is still limited 

due to the lack of field study. Related bodies (e.g., state government and marine park 

managers) are put in a difficult situation due to the lack of data that provided vital 

information. The initial strategy of extracting vital information from marine park areas 

could minimize risks in managing marine resources.

Previously, physical survey techniques (i.e., scuba dive, transect, underwater 

photo and video, and tow video) have been used to map seagrass habitats (Holmes et 

al., 2007; Ooi et al., 2011). Even though these techniques provide accurate information 

about seagrass habitat, they offer localized mapping purposes and are only efficient 

for small-scale mapping. Meanwhile, other mapping techniques like remote sensing 

(i.e., satellite and aerial imageries) and a combination of image classification 

techniques are widely used in mapping seagrass (Kendrick et al., 2002; Costello and 

Kenworthy, 2011; Hossain et al., 2016; Pu and Bell, 2017; Hossain and Hashim, 2019). 

Although these techniques have been used for seagrass detection and mapping, they 

are only suitable to be implemented during optimal environmental conditions, 

including high clarity water (McKenzie et al., 2001; Uhrin and Townsend, 2016) and 

low tide conditions (Roelfsema et al., 2013; Hossain et al., 2016). Furthermore, these 

techniques are preferable for shallow coastal water because deeper water depth does 

not allow high light penetration to the seafloor (Van der Meer and De Jong, 2001; 

Baumstark et al., 2016), leading to the inefficiency of spectral resolution to detect 

seagrass habitats.
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Recently, most studies focusing on single beam echosounder, multibeam 

echosounder, and side-scan sonar that have been extensively used for high-spatial 

resolution seagrass habitat mapping (Ferretti et al., 2017; Pergent et al., 2017; 

Ierodiaconou et al., 2018; Prampolini et al., 2018; Tyllianakis et al., 2019), which are 

capable of solving the problems faced by physical survey and remote sensing 

technique. Acoustic techniques, particularly bathymetry and backscatter data, are 

effectively used to map seagrass habitats in relatively turbid waters (Hossain et al., 

2015a). MBES has become a choice to map seagrass habitats due to its ability that 

simultaneously collects co-located full bottom coverage of bathymetry and backscatter 

data. Both data could describe seabed features, particularly seafloor topography and 

sediment composition. These features are generally known to influence benthic 

community structure and ecological process at various spatial scales (Bourget et al., 

1994; Snelgrove and Butman, 1995; Cusson and Bourget, 1997; Guichard and 

Bourget, 1998).

In recent years, bathymetric and backscatter predictors and ground-truth data 

are combined (Ierodiaconou et al., 2007; Micallef et al., 2012; Lucieer et al., 2013; 

Diesing et al., 2016) and statistically analyzed using machine learning algorithms as 

an effort to produce accurate marine habitat suitability models (Lauria et al., 2015; 

Porskamp et al., 2018; Cui et al., 2021; Viala et al., 2021) and marine classification 

maps (Lucieer and Lamarche, 2011; Micallef et al., 2012; Calvert et al., 2014; 

Ierodiaconou et al., 2018; Ariasari et al., 2019; Zhafarina and Wicaksono, 2019; 

Bayyana et al., 2020; Upadhyay et al., 2020; Benmokhtar et al., 2021)

Although many predictors can be extracted from the MBES dataset to aid in 

producing marine habitat maps, suitable bathymetric and backscatter predictors to map 

seagrass habitats are not yet discovered, and the mapping framework has never been 

developed for seagrass habitat, especially in Malaysia's coastal area. Furthermore, 

existing processing parameters of the MBES predictor, such as spatial resolution and 

window size analysis to enhance the detection of seafloor topography features and 

sediment compositions, are still insufficient to obtain a suitable predictor that mimics 

the actual seagrass habitat. It is impossible to achieve an accurate seagrass habitat map 

without an initial assessment of the suitable processing parameters that lead to the
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characterization of seafloor topography and sediment composition to detect seagrass 

habitat features. Besides, using a single machine learning algorithm such as maximum 

entropy (MaxEnt) is insufficient, especially when seagrass presence-only occurrence 

data produce a seagrass habitat suitability model. Although MaxEnt is a high- 

performance machine learning algorithm to model habitat suitability, it is still 

inadequate to represent the overall predicted seagrass habitat as it does not use the 

seagrass absence occurrence data, which are important. Hence, for better modeling of 

suitable seagrass habitats, various machine learning algorithms that use presence- 

absence occurrence data should be referred to in achieving the desired seagrass habitat 

map. Unfortunately, these advanced mapping techniques are still poorly understood in 

applying seagrass habitat mapping in Malaysia. Moreover, SHSM illustrated only the 

habitat suitability index of seagrass habitats and was regarded as one of the limiting 

factors in this method to distinguish between the most suitable seagrass habitat and 

other features (e.g., coral and sand). Thus, the integrated assessment of SHSM is very 

limited, and this technique lacks vital information. The integration of SHSM and 

seascape features information from the seafloor classification map might aid in 

producing a reliably predicted seagrass habitat map and efficiently mapping seagrass 

habitat distribution.

1.3 Research Questions

This research addresses the gaps that have been identified from previous 

studies. The analysis of the gaps shaped a few fundamental research questions:

(a) Do different MBES predictors generate different contributions when 

producing seagrass habitat suitability models?

(b) Do different MBES processing parameters (i.e., spatial resolutions and 

window sizes analysis) affect the seagrass habitat suitability models?

(c) Do different machine learning algorithms affect the performance of 

seagrass habitat suitability models?
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(d) Does the integration between seagrass habitat suitability models and 

classification maps generate different results? Can we improve the seagrass 

habitat suitability model by integrating other information such as sediment 

and substrate types?

1.4 Research Objectives

This research aims at producing a seagrass habitat distribution map using 

habitat suitability modeling and image classification approaches within the Redang 

archipelago. The following objectives have been identified to accomplish the aim of 

this research:

(a) To investigate the contribution of different types of predictors derived 

from the MBES data for the seagrass habitat suitability model.

(b) To determine the effect of different MBES processing parameters 

(spatial resolutions and window sizes analysis) that are commonly used 

with MBES data (predictor) in producing a seagrass habitat suitability 

model.

(c) To evaluate the performance of different machine learning algorithms 

when using MBES predictors in producing a seagrass habitat suitability 

model.

(d) To propose an improvement of the seagrass habitat prediction map by 

integrating information from habitat suitability and marine habitat 

classification maps.
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1.5 Scope of the Research

This research analyzes the role of underwater acoustic technology, a swath 

MBES system used together with ground-truth data, machine learning algorithms, 

image classification techniques, and geographic information system (GIS) approaches 

to map the seagrass habitat distribution in the Redang archipelago. The scope of the 

research is restricted to the selected MBES datasets, specifically bathymetry and 

backscatter data, and will not involve the water column data. Further, this research also 

involves analysis of bathymetry and backscatter data using different MBES processing 

parameters (i.e., spatial resolutions and window sizes analysis) to depict the complex 

topographical features and sediment composition within the coastal water of the 

Redang archipelago. The scope of the study is restricted to two selected spatial 

resolutions, specifically 1 and 50 m, and limited to three window sizes analysis, 

specifically 3 x 3 , 9 x 9 , and 21 x 21 pixels.

For the seagrass species, this research is restricted to obtain information on 

seagrass species in coastal water within the Redang archipelago, specifically 

Halophila decipiens, Halophila minor, and Halodule pinifolia, and does not involve 

all species inhabited in the coastal water of Malaysia. This research also analyzes the 

role of ground-truthing survey to develop and validate the seagrass habitat map. This 

research is restricted to obtain ground-truth data by using underwater imagery 

sampling and will not involve scuba diving. The occurrence of seagrass, their species, 

and seafloor features are only determined from underwater imagery samples.

This research applied machine learning to develop (1) seagrass habitat 

suitability models and (2) a seafloor classification map. This research used three 

machine learning algorithms, including maximum entropy (MaxEnt), random forest 

(RF), and support vector machine (SVM) to produce SHSM. Only image classification 

using RF was carried out to produce a seafloor classification map. These multiple 

machine learning algorithms must be assessed for precise prediction and classification, 

specifically MaxEnt, RF, and SVM. The purpose of SHSM is to depict the habitat 

suitability index of seagrass habitat. Meanwhile, a seafloor classification map will be 

used to illustrate the seascape features in the study area.
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1.6 Significance of the Research

Over recent decades, the interest in marine habitat mapping has grown 

significantly. Marine habitats, such as seagrass habitats, are important to be mapped 

because they play an important role in marine ecology. Seagrass habitat mapping using 

acoustic technologies is one of the mapping techniques to obtain a high-spatial 

resolution and accurate final output map. The research of seagrass habitat mapping 

using acoustic technologies and machine learning algorithms can be a mapping 

paradigm that could provide vital seafloor information and enhance decision-making 

to manage and monitor seagrass habitats.

The research goal is designed to investigate the application of acoustic 

technologies and machine learning algorithms to improve existing mapping techniques 

(e.g., remote sensing and in situ survey) to obtain reliable information. The mapping 

technique using MBES datasets and machine learning algorithms has never been 

implemented in Malaysia, especially for seagrass habitats. With the capacity of the 

MBES acoustic system, information on the distribution of seagrass habitats may be 

considered with greater accuracy than other mapping techniques (i.e., in situ survey 

and remote sensing). Directly, it is beneficial as a potential method for assisting and 

supporting the government institutions, authorities, agencies, and non-governmental 

organizations in strengthening the system of the marine park area in Malaysia's coastal 

area and implementing conservation and preservation of marine resources.

Generally, the seagrass habitat suitability index (SHSI) measures seagrass 

habitat suitability status. The foundation of SHSI is solely based on a habitat suitability 

model that provides the basis for the spatial distribution of the seagrass habitat in the 

study area. Meanwhile, the seafloor classification map is used as a “present seafloor 

cover” that classifies the Redang Marine Park (RMP) seafloor area. Unfortunately, the 

SHSI values cannot yield enough information on the locality of seagrass habitat in the 

RMP area. Therefore, this approach is not strong enough as the main tool to assess the 

status of seagrass habitat distribution because the SHSI could not clearly define and 

justify seagrass habitat on a specific seafloor cover, whether it is a suitable seafloor 

cover for seagrass habitat or vice versa. Therefore, integrating SHSM and seafloor
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classification map is necessary to complete the spatial information of seagrass habitat 

distribution. The integration between the SHSM and the seafloor classification map 

gives a broader perspective to describe the state of the seagrass resource in the RMP 

area.

The stakeholder who will directly benefit from this research is the Department 

of Fishery (DoF), the lead agency in conserving and managing sustainable marine 

resources, especially the RMP area. One of the major objectives of establishing RMP 

is to conserve and protect the biological diversity of the marine community and its 

habitats, especially the seagrass habitats. Although the DoF has implemented 

geographic information systems, such as the Marine Park Management Information 

System (MPMIS) and the global positioning system (GPS) for spatial features, those 

implementations are still unclear to produce detailed spatial information of seagrass 

habitat distribution. Due to the rapid growth of acoustic technologies and advanced 

data processing, it is time to revise the whole technique of managing and monitoring 

seagrass habitats. Hence, implementing the latest technology, such as the MBES and 

machine learning algorithms, can give many benefits in managing and monitoring 

marine biodiversity. Indeed, the positive output from this research can be used by the 

DoF as an effective technique to assess the spatial information of seagrass habitats. 

These findings provide the benefit of designing, coordinating, and implementing long

term monitoring programs of seagrass resources in the RMP area. The methods 

developed can also be widely used in the valuation of other marine habitats, such as 

coral reefs, fishes, and marine plants, because they involve a single measurement (i.e., 

MBES survey) but different targeted ground-truth data. The methods developed also 

provide comprehensive information related to the priority sites of marine habitats. The 

developed methods will also facilitate the monitoring work of marine resources in the 

RMP area and can be easily understood by general users.

1.7 Organization of the Thesis

This section describes the organization of the thesis, which starts from Chapter 

1 to Chapter 5 (Figure 1.1). The first chapter is the introduction section. This chapter
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presents the background of the research, problem statement, as well as research 

questions and objectives to provide an appropriate research design to conduct the 

research. This chapter also discusses the scope of the research, defining the boundaries 

within which this research will be performed. This chapter also discusses the 

significance of this research to justify its importance.

The second chapter is the literature review section. This chapter presents the 

definition of marine biodiversity in Malaysia, seagrass, as well as current seagrass 

mapping techniques to obtain a seagrass habitat distribution map of coastal waters, 

including ground-truth survey, remote sensing, and underwater acoustic systems. This 

chapter also discusses current applications in seagrass habitat mapping by using the 

MBES system and the MBES dataset, including bathymetry and backscatter data. The 

section continues to discuss the MBES predictors used in the research and its 

processing parameters, including spatial resolution and window size analysis, to derive 

MBES predictors from bathymetric maps and backscatter mosaics. The next section 

of this chapter discusses the development of habitat suitability models and a 

classification map using machine learning algorithms. The summary of the literature 

review is discussed in the last section of the chapter.

The third chapter is the research methodology section. This chapter presents 

the materials and methods used to achieve the objectives of this research. The first 

section of this chapter discusses the introduction of this chapter and continues 

discussing the study area. The section continues to discuss the overall methodologies 

applied in the research. The next section of this chapter discusses the data acquisition 

used in the research, including the MBES survey, underwater imagery sampling, and 

secondary data collection. The section continues to discuss the data processing for 

bathymetry, backscatter, and ground-truth data. The next section of this chapter 

discusses the data analysis applied to produce a seagrass habitat suitability model and 

classification map, starting with data preparation, including MBES predictors (e.g., 

bathymetric and backscatter predictors), seagrass occurrence data, seascape feature 

data, and correlation of MBES predictors. The section continues to focus on the 

methodologies applied in HSM using three machine learning algorithms (e.g., 

MaxEnt, RF, and SVM). These machine learning algorithms were used to produce

14



seagrass habitat suitability models and image classification was performed by using 

the RF machine learning algorithm to produce a classification map. The next section 

of this chapter discusses the integration of the seagrass habitat suitability model and 

the classification map to produce a seagrass seascape map. The last part of this chapter 

focuses on the summary of the chapter.

The fourth chapter presents the results and discussion of the research. The first 

section discusses the introduction of the chapter. The next part of this section presents 

the results of the bathymetric map, backscatter mosaic, MBES predictors, seagrass 

occurrence map, seascape feature map, and predictor selection. In addition, the results 

of seagrass habitat suitability models and a classification map using machine learning 

algorithms are also provided. The results of the integration between the seagrass 

habitat suitability model and the classification map are presented. The last part of this 

chapter presents the overall discussion of the presented results and the chapter 

summary.

The final chapter provides the research outcomes based on the research 

objectives. The next part of this chapter presents the research that creates new 

knowledge by implementing this extensive and innovative research. The limitations of 

the research are discussed in this chapter. Finally, this chapter discusses the 

recommendations for future research.
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Figure 1. 1 Flowchart showing the general research methodology of research.
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