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ABSTRACT

The rapid advancement of Wireless Sensor Nodes (WSNSs) in conjunction with
the Global Positioning System (GPS) tracker has resulted in various applications,
including health monitoring, industrial process monitoring, and security system
monitoring. However, a significant problem of the GPS device is short tracking
and positioning due to high power consumption. This study develops a Self-Power
Global Positioning System (SP-GPS) for tracking objects powered by hybrid energy
harvesting sources, piezoelectric and solar. First, the Taguchi Design of Experiment
(DOE) method is used to optimise the design of the piezoelectric energy harvester
based on ruler and cylinder designs. Then, the piezoelectric is combined with solar to
create the hybrid Power Management Unit (PMU) for the sustainability of the SP-GPS
Tracker device. Finally, to develop the SP-GPS tracking system, the SP-GPS tracker
is integrated with SP-GPS Base Station. The results demonstrated that the optimum
design for a ruler-based piezoelectric generator is five centimetres and a mass of two
grams. Meanwhile, the optimum design for a cylindrical shape of piezoelectric is the
glass ball-bearing material with a mass of five grams, and the height between the ball-
bearing and casing surfaces is five millimetres. Based on the field experiments around
the Universiti Teknologi Malaysia campus by motorcycle and a car with a distance of
1.74 km and average speed from 11.8 to 24.1 kmh, the total energy generated by hybrid
energy harvester of piezoelectric design is a cylinder (glass), 6.07 kWh and ruler, 2.85
kWh, respectively. On the other hand, the piezoelectric cylinder design achieved higher
total energy of 6.26 kWh and 2.96 kWh. The reason is that the latter design can induce
considerable vibration with the impact of the heavy mass glass ball-bearing on the
cylinder surface. The estimated life span of SP-GPS Tracker is computed and found
can be up to approximately two years and three months for a motorcycle and one year
and five months for a car. Therefore, the current study benefits long-term tracking and

monitoring, such as wild animals or vehicles, in observing their pattern movement.



ABSTRAK

Kemajuan Nod Pengesan Tanpa Wayar (WSN) yang pesat bersama dengan
Sistem Kedudukan Global (GPS) telah menghasilkan pelbagai aplikasi, termasuk
pemantauan kesihatan, pemantauan proses industri, dan pemantauan sistem
keselamatan.  Walau bagaimanapun, masalah utama pada peranti GPS adalah
penjejakan yang pendek dan kedudukan kerana penggunaan kuasa yang tinggi. Kajian
ini adalah untuk membangunkan Sistem Kedudukan Global Kuasa Kendiri (SP-GPS)
untuk mengesan objek yang dijanakan oleh sumber tenaga hibrid dari piezoelektrik
dan solar. Pertama, kaedah reka bentuk Eksperimen Taguchi (DOE) digunakan untuk
mengoptimumkan reka bentuk penuai tenaga piezoelektrik berdasarkan reka bentuk
pembaris dan silinder. Kemudian, piezoelektrik digabungkan dengan solar untuk
mewujudkan Unit Pengurusan Kuasa hibrid (PMU) bagi kelestarian peranti pengesan
SP-GPS. Akhirnya, untuk membangunkan sistem penjejakan SP-GPS, penjejak SP-GPS
disepadukan dengan Stesen Pangkalan SP-GPS. Hasil kajian menunjukkan bahawa
reka bentuk optimum dari penjana piezoelektrik berasaskan pembaris adalah lima
sentimeter dan jisim dua gram. Manakala, reka bentuk optimum bagi piezoelektrik
berbentuk silinder memerlukan bahan bebola kaca dengan jisim lima gram, dan tinggi
diantara permukaan bebola dan permukaan sarung adalah lima milimeter. Berdasarkan
eksperimen lapangan di sekitar kampus Universiti Teknologi Malaysia menggunakan
motosikal dan kereta dengan jarak 1.74 km dan kelajuan purata dari 11.8 kmj ke 24.1
kmj, jumlah tenaga yang dihasilkan dari tenaga hibrid piezoelektrik dengan reka bentuk
silinder (kaca) masing-masing ialah 6.07 kWj dan pembaris, 2.85 kWj. Sebaliknya,
reka bentuk piezoelektrik silinder mencapai jumlah tenaga yang lebih tinggi iaitu 6.26
kWj dan 2.96 kWj menggunakan kaca dan bebola besi Ini disebabkan oleh reka bentuk
besi dapat menghasilkan getaran yang cukup dengan kesan jisim bebola kaca yang berat
pada permukaan silinder. Jangka hayat pengesan SP-GPS telah dihitung dan didapati
anggaranjangka hayatnya ialah dua tahun dan tiga bulan untuk motosikal dan satu tahun
dan lima bulan untuk kereta. Oleh itu, kajian semasa memberi manfaat pengesanan
jangka panjang dan pemantauan, seperti pemantauan haiwan liar atau kenderaan, dalam

memerhati pergerakan coraknya.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In advanced microelectronics engineering over the last decade has seen a rapid
development of ultra-low power Wireless Sensor Nodes (WSN) and systems [1-4].
Sensor systems has an increasing interest for a wide variety of applications, ranging
from structured health monitoring to industrial process control [5—7]. The popularity

of sensors in many systems are mostly because of its mobility advantages

Wireless sensor technology has a number of advantages over wired sensor
technology, which includes the ability to place sensors in regions that are inaccessible
to wired sensors. Without considering difficulties such as physical wiring and
permitted cabling requirements, the wireless method can indeed reduce costs and
time [8,9]. Physical wiring does deter or limit the functions of sensor and due to the
wireless capability, WSNs have a wide range of applications in human, environmental,
agriculture and meteorological activities [10-13]. As an example, using a Bluetooth
strapped to the waist, human heart rate data can be wirelessly transmitted to a
treadmill [14-17]. A wireless electrocardiograph (ECG) with the same platform can be
transmitted to a physician. Another example is the wireless ZigBee module-equipped
smart meter that will monitor energy consumption in residential and commercial
buildings and offers feedback to the user to aid in decision-making and suggestions
for energy conservation [18]. In general, WSNs are inherent in structural monitoring,
industrial processes, security, position tracking, and radio frequency identification

(RFID) [19-22].

Nowadays, localisation using wireless sensor network is a trend in finding and
estimating location of target object [23-29]. The WSN deployed usually consist of

hundreds to thousands of nodes with limited computing power and limited memory,



where the short battery life is the main obstacle in distance estimation of nodes even
though sensors is the most likely way that is more efficient. Localisation is a very
important data required in various sensor applications, where the accuracy of distance
estimation should be higher while keeping cost of localisation to a minimum. The
Globeil Positioning System (GPS) used for monitoring movement ofthe target sensors, is
one ofthe localisations methods used. The GPS tracker is a very straightforward method
in localisation positioning using direct Line of Sight (LOS) approach. GPS tracker are
widely used as in missile guidance, positioning of individuals [25], habitat monitoring
[24,30-32], medical diagnostics [7,26,33,34], and object tracking [27,35,36]. Besides
the LOS approach, some combination of tracking methods was introduced successfully
such as combining GPS coordinate, acceleration and direction or movement of sensors
[37,38]. Itis important to highlight that the use of GPS uses a significant amount of

energy and needs to be conserved [39].

The energy harvesting techniques have been broadly researched as a possible
alternative of energy supply technology in WSN especially in nodes tracking where
the nodes are always mobile and battery replacement or power top-up [29,40-43]. It
is important to imply that power consumption is the key concern in WSNs tracking
applications protocol [38,44]. Tracking by using WSNs will drain the energy rapidly
and cause the sensor to be out of power and will be disconnected from the network which
will significantly impact the performance of the said application. Therefore, energy
harvesting system is required in WSN, to extend the lifetime of sensor nodes. Energy
harvesting system consists of two important processes, namely energy collection and
energy storage. Energy collection is done using the energy harvesting sources available
in our environment such as mechanical (vibration, pressure, etc.), thermal energy
(energy from heat), radiated energy (solar, infrared RF), chemical energy and nuclear
[45,46]. Each of these energy harvesting sources is characterized by different power
densities. Then the harvested energy will be stored using batteries or supercapacitors.
[40,41] discussed on a computer architecture built to map the habit of pink iguanas:
a recently discovered population on the remote Galapagos Islands. Without contact
networks, few iguanas exist in a comparatively small area (about 25 km 2 above Volcano
Wolf, Isla Isabela).



The design blended ultralow sleep mode with high-powered consumption
connectivity capabilities. However, the design only used a single energy harvesting
technology such as solar energy, which produces a lower power because of the size of the
solar panel. On the other hand, vibration energy harvesting (VEH) using piezoelectric
generators is an attractive alternative energy source that can provide energy autonomy
to wireless sensor devices [29,47-50]. The harvested ambient energy may be sufficient
to provide additional power to the sensors. Also, with the advancement in ultra-
low microelectronics and ultra-low-power wireless microcontroller units, the power
consumption of sensor nodes can be greatly reduced [28,51-55]. The WSNs will be
more energy efficient, and this will further reduce the dependence on batteries. In
the past few years, much work has been done to generate effectual power output by
introducing improvements such as innovative design to reduce the weight and size of the
harvester [28,29, 56, 57]. The major challenge is finding a more reliable and effective
way to generate more voltage output from a low-frequency range. With the advances in
technology, small-scale energy harvesting and large-scale vibration energy harvesting

provide promising solutions to the energy crisis.

Hybrid energy harvesting systems have been proposed to address single energy
harvester insufficiency [57,58]. Multi-energy conversion mechanism hybridisation
improves space utilisation and power output. Monitoring infrastructure, industry,
smart transportation, human healthcare, marine monitoring systems, and aerospace
engineering are possible future Internet-of-Things (IoT) applications. This research
focuses on vibrational and thermal energy harvesting technologies in hybrid energy

harvesting.

1.2  Research Background

To date, researchers have demonstrated an increasing interest in tracking WSNs
without GPS over the last few decades [28, 59-63]. These techniques will reduce
power consumption and increase the lifetime of WSNs by utilising the fewest possible
sensors [29,34,55-57]. However, this technique has limitations in terms of localisation

accuracy and system complexity. Thus, the use of GPS receiver module has gained



popularity due to its superior accuracy in location coordinates and line of sight (LOS)
to the satellite. However, the fundamental issues with wireless GPS sensor node tracker
are high power consumption and short-lived batteries. WSN tracking with GPS still
has a chief benefit, a position efficiency for object tracking and outdoor applications.
There have been several discussions on integrating WSN tracking with GPS receiver
for low-power consumption [29, 34, 56, 57]. The goal in sensors is a battery that
provides node control and can run reliably for several weeks or months before power
depletion. Conventionally, the batteries must be changed or recharged in long-term
operation or monitoring. Unfortunately, this is a problem for compliance applications,
especially on whether to charge the battery regularly or within a week since it includes
personal protection and classified operations [34,55]. This discussions show clearly
that using GPS will provide better localisation accuracy but will be offset by high
power consumption. It is important that this problem be solved or reduced and energy

harvesting seems to be a good option to prolong the sensor lifetime.

To date, researchers have demonstrated an increasing interest in tracking WSNs
without GPS over the last few decades [28,59-63]. These techniques will reduce
power consumption and increase the lifetime of WSNs by utilising the fewest possible
sensors [29,34,55-57]. However, this technique has limitations in terms of localisation
accuracy and system complexity. Thus, the use of GPS receiver module has gained
popularity due to its superior accuracy in location coordinates and line of sight (LOS)
to the satellite. However, the fundamental issues with wireless GPS sensor node tracker
are high power consumption and short-lived batteries. WSN tracking with GPS still
has a chief benefit, a position efficiency for object tracking and outdoor applications.
There have been several discussions on integrating WSN tracking with GPS receiver
for low-power consumption [29, 34, 56, 57]. The goal in sensors is a battery that
provides node control and can run reliably for several weeks or months before power
depletion. Conventionally, the batteries must be changed or recharged in long-term
operation or monitoring. Unfortunately, this is a problem for compliance applications,
especially on whether to charge the battery regularly or within a week since it includes
personal protection and classified operations [34,55]. These discussions show clearly
that using GPS will provide better localisation accuracy but will be offset by high
power consumption. It is important that this problem be solved or reduced and energy

harvesting seems to be a good option to prolong the sensor lifetime.
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Recently, most researchers have been developing and testing Long Range (LoRa)
transceivers for localization of GPS tracking devices [55, 64,65]. The GPS LoRa
tracking system was used to track vehicle [66], human [34, 67], boat [68] and also
animal [32]. An open-source tracking system has been developed to determines the
location and speed in real-time. Transponders transmit location data to a cloud server
via LoRa periodically via a gateway. However, the researcher developed a GPS LoRa-
based tracker using an Arduino microcontroller or Raspberry Pi that connected to a
LoRa Shield. This technique demonstrates the GPS tracker’s high-power consumption
and larger size. This discussion demonstrates unequivocally that while a GPS tracker
LoRa-based system consumes little power, it will affect the tracker’s size. It is critical
that this issue is resolved or that the GPS tracker’s size is reduced to allow for additional

applications, such as human or animal tracking.

The energy harvesting serves as a replacement for the energy storage or batteries
in WSNs, hence extending their operational life when powered by an energy source.
Light, kinetics [24, 25, 57], acoustic, thermal [7,26], wireless, chemical, hybrid, and
wind sources were all considered potential energy sources. In terms of ecologically
friendly energy harvesting, light harvesting sunlight energy via solar cells is the best
option. However, this will rely on the location of the wireless sensor nodes. Energy
collection, in particular, has proven to be the most effective method for supplying energy
to the wireless sensor nodes monitoring network. Additionally, the environment for
energy harvesting is often not harvested in laboratory research, but the application’s
validity is contingent upon environmental stimulation. Mobility and on-the-ground
monitoring are also critical components of energy harvesting assessment systems.
Confidential features that also occur when wireless sensor node is used in sensitive
energy harvesting environments such as military, aeronautical, medical, or life-critical,
require that their functionality be formalised. Specialized assessment methods are
critical for guaranteeing the accuracy of data used to certify that energy harvesting can

function and work as intended.



1.3 Problem Statement

The primary drawback of wireless sensor node tracker based on GPS are its
high-power consumption and the need for renewable energy to extend the lifetime of
the system. The emerging concern is that some WSNs equipped with GPS receivers
consume more energy and have a shorter lifetime, although, the primary advantage of
WSN tracking with GPS is the accuracy. The target sensors are made up of a battery that
powers the nodes. These WSN objectives can be accomplished successfully for several
weeks or months between battery replacements. The batteries must then be updated
or replenished to ensure continued functioning or monitoring for an extended period
of time. The primary issue is with compliance applications, regardless of whether
the battery must be adjusted daily or weekly due to the requirement for personal
security and sensitive activity. On the other hand, a user can extend the life of a
WSN tracker by harvesting energy from ambient sources. Additionally, the design and
manufacture of WSNs with ultra-low power consumption are regarded key components
of the electronic device product flow [69]. The majority of academics and engineers
focus on maximising battery life and avoiding excessive battery removal or recharging

in order to reduce power consumption, which will extend the lifetime of WSNs [70,71].

Lately, most researchers have designed and developed GPS tracker systems
using Arduino and raspberry pi combined with a LoRa shield [34,55,64—68]. However,
the prototype GPS tracker’s power consumption will be high due to the development
board’s additional components that are not used by the system. Additionally, the
GPS tracker device is more prominent and unsuitable for specific applications, such as
animal and human monitoring. On the other hand, the battery size will be increased
to enable the object to be tracked for longer. Otherwise, the researchers used a LoRa
gateway, which is currently available on the market for transmitting data to a cloud
or server [55,64,68]. As a result, this research proposes designing and developing a
new GPS tracker with a LoRa-based transceiver device that consumes less power and
is smaller in size, measuring 25 x 50 mm. Additionally, this research has resulted in
developing a LoRa gateway (base station) with customised communication backbones
for data transmission to the cloud or server, including WiFi, GPRS, and an XBee

module.



Lately, most researchers have designed and developed GPS tracker systems
using Arduino and Raspberry Pi combined with a LoRa shield [34,55,64—68]. However,
the prototype GPS tracker’s power consumption will be high due to the development
board’s additional components that are not used by the system. Additionally, the
GPS tracker device is more prominent and unsuitable for specific applications, such as
animal and human monitoring. On the other hand, the battery size will be increased
to enable the object to be tracked for longer. Otherwise, the researchers used a LoRa
gateway, which is currently available on the market for transmitting data to a cloud
or server [55,64,68]. As a result, this research proposes designing and developing a
new GPS tracker with a LoRa-based transceiver device that consumes less power and
is smaller in size, measuring 25 x 50 mm. Additionally, this research has resulted in
developing a LoRa gateway (base station) with customised communication backbones
for data transmission to the cloud or server, including Wi-Fi, GPRS, and an XBee

module.

The lifespan of a battery can be extended by using ambient sources and
converting them to charge the battery and energy storage. Some of the potential energy
sources are, but not limited to, light [19,72], kinetics [24,25,73,74], acoustics [62,75],
thermal [26, 76], wireless [77, 78], chemical, wind [8, 51, 62, 73], and hybrid [79].
Light is the recurrent source for environmental energy harvesting, where the solar
cells harvest the energy from the sunlight. The development of ultra-low power
consumption for WSN is considered an integral part of the electronic system design
flow. However, the size of a wireless GPS sensor node proposed appears to be
unsuitable for an animal tracker or compliance applications as they are often large [70].
Alternatively, researchers introduced the energy harvesting architecture and associated
energy management logic which will be suitable for a portable and inconspicuous
tracker. They also addressed the effect of packaging on sensor efficiency and the

minimal energy available on GPS monitoring.



1.4 Research Objectives

The aim of the study is to sustain the energy supply on the WSN device for a
long term tracking. In order to achieve this aim, specific objectives of this research are

stated as follows:

(@ To design and develop hybrid piezoelectric energy harvester and solar for Self
Powered - GPS Tracker (SP-GPS Tracker).

(b) To produce the SP-GPS Tracking system consists of SP-GPS Tracker device

(transmitter) and base station (receiver).

(© To analyse and evaluate the optimum performance of the SP-GPS Tracker
device, including the piezoelectric hybrid energy harvesting using cars and

motorcycles.

(d) To validate the life span of SP-GPS Tracker device between hybrid energy

harvesting and conventional battery powered.

1.5  Research Scope

This research aims to design and develop a new LoRa-based GPS sensor node
equipped with a hybrid energy harvesting technique (solar and piezoelectric). First,
vibration and light will be produced by the moving object. The capacity of the light
will affect the amount of solar energy harvested. Vibrations then affect the energy
extracted from the piezoelectric transducer. As a result of the sensor node tracking
and monitoring the object’s movement, this study focuses on hybrid solar-piezoelectric
sensors. Second, the SP-GPS Tracker is designed and developed using the Ai-Thinker
Ra-02 LoRa transceiver module. The LoRa transceiver module operates at 433, 915,
and 868MHz. However, the 433MHz frequency was chosen for this study because
the distance between the transmitter and receiver node can be up to ten kilometres in
rural areas. On the other hand, the LoRa module’s transmit power has been limited
to 100mW due to the size constraint imposed by LoRa-based GPS sensor nodes.

Thirdly, the Design of Experiment (DOE) Taguchi method is used to determine the



optimal design of piezoelectric generators for energy harvesting. Additionally, data
were collected experimentally using a frequency-varying vibration shaker. On the other
hand, the DOE Taguchi Method compares the optimization design to the experimental
data. Finally, the MINITAB software analyses all data collected during the laboratory
experiment using a piezoelectric generator using the DOE Taguchi method. Finally, the
estimated operating time of the SP-GPS Tracker device were compared when powered
by a battery versus when powered by hybrid energy harvesting. Due to the battery’s
smaller size and lighter weight, the battery type and capacity used to calculate the
operation time are Lithium Polymer (LiPo) and 1000 mAh, respectively. The estimated
operating time for hybrid energy harvesting, on the other hand, is based on data collected

during a field test involving a motorcycle and a car.

1.6  Significance of the Study

Recent research on tracking wireless sensor networks with low power
consumption has emphasised the importance of monitoring wireless sensor networks
without using a GPS receiver, rather than relying on the WSN’s localisation mechanism.
Howeyver, the primary constraint on this technology is the precision and complexity of
the machine. Additionally, previous researchers used single-source energy harvesting
to power and track GPS trackers. On the other hand, the energy harvesting application
is limited to a specific condition, such as solar or micro-turbine, to power the tracking
device. Thus, this work’s primary objective is to propose a study to test whether a
hybrid energy harvesting system using piezoelectric and solar power can power the
SP-GPS Tracker. The maximum energy output from solar energy harvesting has also
been studied in indoor and outdoor conditions. According to Wijesundara et al.,
previous studies have only examined and developed the SP tracker device without
energy harvesting or single energy harvesting [80]. The main finding is that combining

piezoelectric cylinders energy produces more power than piezoelectric rulers alone.

Most researchers used the DOE Taguchi system to analyse the voltage and
power output from piezoelectric energy harvesters [81-83]. The Taguchi research will

recommend the best piezoelectric device architecture. However, the researchers solely



used COMSOL Multi-physics tools to simulate the piezoelectric plate and device.
As a result, the goal of this research has been to build the piezoelectric system to
determine the optimum power output and compare the best design. The two alternative
designs, ruler and cylinder, were compared in this study. Additionally, the ruler and
cylinder designs for the piezoelectric energy harvesting generator have been proposed
and analysed to determine the optimal design. Thus, this research argues for using
hybrid energy harvesting techniques (such as solar and piezoelectric) to extend the
life and performance of an SP-GPS Tracker device. The hybrid energy harvesting
technique, on the other hand, is incompatible with wireless, battery-free sensors and
devices. Therefore, energy storage was developed and built to provide long-term energy
and store enough short-term energy to meet the unique load characteristics of the WSN.
Then, using the LoRatransceiver Ai-Thinker Ra-02 module in conjunction with Energy
Harvesting, this research enhanced wireless sensor node tracking to achieve ultra-low

power consumption for the SP-GPS Tracker device.

On the other hand, the prototype is 50 mm x 25 mm in size and includes a
fully functional SP-GPS Tracker device using LoRa transceiver module Ai-Thinker
Ra-02. Therefore, the SP-GPS Tracker device power consumption is proportional to
the overall power consumption. Finally, a piezoelectric mechanism was constructed
using a cylinder and a ruler. The Taguchi method was used to analyse this design to
determine the optimal design and size of the piezoelectric energy collecting device.
Additionally, the operating time of the SP-GPS Tracker device was estimated when

powered by battery or hybrid energy harvesting.

1.7 Thesis Organization

The overall structure of this thesis consist of five chapter, including this
introductory chapter. Chapter 2 begins by laying out the literature of the previous
method and look at how the energy harvesting help to increase the energy efficiency
of the GPS tracker. Chapter 3 is a concern with the methodology used for this study.
Chapter 4 discusses the simulation and examine laboratory data of SP-GPS Tracker

device’s power consumption and hybrid energy harvesting capabilities. The Taguchi

10



approach, which is subsequently utilised to optimise the piezoelectric generator’s ruler
and cylinder design system discussed in Chapter 5. Chapter 5 examines the calibration
of the LoRa module transceiver’s power transmission and the power consumption
measurement of the SP-GPS Tracker device. Finally, Chapter 7 concludes the research

and recommendation for future work.
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