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ABSTRACT

Additive manufacturing (AM) is a powder bed process for the build-up of parts 

by the distribution of material in which laser power melts the powder layer by layer as 

generated from a three-dimensional (3D) model design. Selective laser melting (SLM) is 

an AM method that enables the manufacture of complex geometries, lighter and stronger 

parts. In this research, the SLM parameters like scanning speed, laser power, and hatching 

distance were studied using Ti6Al4V powder. The influence of parameters on the surface 

morphology, surface roughness, and hardness of Ti6Al4V parts was characterised using 

field emission scanning electron microscope (FESEM), hardness tests, and 3D profiler 

analysis. In addition, the surface morphology was studied to prove its significance in 

terms of micropores, balling, and splashing effects. Results showed that the quality of 

produced parts from SLM was significantly affected by various manufacturing 

parameters. Hence, the orthogonal array design of experiment was conducted, and 

statistical analysis with signal-to-noise response was used to obtain the optimal SLM 

parameters. The experimental outcomes showed that laser power had a high impact on 

density. Besides, a confirmation experiment was carried out by using optimal parameters 

(P = 175W, v = 852.5mm/s, and h = 0.13mm) and it was proven that the density increased 

to 99.933%. The optimal parameter was then implemented to produce body cubic centric 

(BCC), body cubic centric in Z direction (BCCZ), body cubic centric Z direction in centre 

(BCCZC), face cubic centric (FCC), and face body cubic centric (FBCC) Ti6Al4V lattice 

structures. The mathematical modelling, finite element analysis, and experimental studies 

were conducted to predict and compare the quality of the SLM product. It was discovered 

that the BCCZ had the highest strength at 5000 MPa. Moreover, the strut and fractured 

struts were examined to carry out the microcrack and void effect on the strut. The Ashby 

graph was deployed and the lattice structure was in the range of Ti6 strength. Based on 

this, the optimal SLM parameters were observed to produce a Ti6Al4V part which had 

the potential for aerospace, automotive, and biomedical industries. It can be highlighted 

that this study approached the national policy on Industrial Revolution 4.0 (4IR) through 

future technologies.
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ABSTRAK

Pembuatan tambahan (AM) ialah proses membina produk melalui penambahan 

serbuk bahan di mana kuasa laser mencairkan serbuk lapisan demi lapisan yang dihasilkan 

daripada reka bentuk model tiga dimensi (3D). Pemilihan laser pencairan (SLM) ialah 

kaedah pembuatan tambahan yang menghasilkan geometri yang kompleks, ringan dan lebih 

kuat. Dalam penyelidikan ini, parameter SLM seperti kelajuan imbasan, kuasa laser, dan 

jarak penetasan dikaji menggunakan serbuk Ti6Al4V. Pengaruh parameter pada morfologi 

permukaan, kekasaran permukaan, dan kekerasan bahagian Ti6Al4V telah dicirikan 

menggunakan mikroskop pengimbas pelepasan medan elektron (FESEM), ujian kekerasan, 

dan analisis pemprofilan 3D. Selain itu, morfologi permukaan dikaji untuk membuktikan 

kepentingannya dari segi mikropori, pembebolaan, dan kesan percikan. Keputusan 

mendapati bahawa kualiti bahagian yang dihasilkan daripada SLM banyak dipengaruhi oleh 

pelbagai parameter pembuatan. Oleh itu, kaedah reka bentuk eksperimen tatasusun ortogon 

telah dijalankan, dan analisis statistik dengan tindak balas isyarat-ke-bunyi telah digunakan 

untuk mendapatkan parameter SLM yang optimum. Keputusan eksperimen menunjukkan 

bahawa kuasa laser mempunyai kesan yang tinggi ke atas ketumpatan. Tambahan pula, 

eksperimen mengesahkan dengan menggunakan parameter optimum (P = 175W, v = 

852.5mm/s, dan h = 0.13mm) dan membuktikan bahawa ketumpatan meningkat kepada 

99.933%. Parameter optimum kemudiannya digunakan untuk menghasilkan struktur kekisi 

kiub berpusat (BCC), kekisi kiub berpusat arah tegak (BCCZ), kekisi kiub berpusat arah 

tegak jasad (BCCZC), kekisi kubus berpusat muka (FCC), dan kekisi kubus berpusat kiub 

(FBCC) Ti6Al4V. Pemodelan matematik, analisis unsur terhingga dan kajian eksperimen 

telah dijalankan untuk meramal dan membandingkan kualiti produk SLM. Berdasarkan 

keputusan, BCCZ telah direkodkan sebagai mempunyai kekuatan tertinggi pada 5000 MPa. 

Tambahan pula, struktur tupang dan struktur tupang yang patah telah diperiksa untuk 

menjalankan kesan retak mikro dan lompang pada tupang. Graf Ashby telah digunakan dan 

mendapati bahawa struktur kekisi berada dalam julat kekuatan Ti6. Berdasarkan keputusan 

itu, parameter SLM yang optimum telah diamati untuk menghasilkan produk dari Ti6Al4V 

yang mempunyai potensi untuk industri aeroangkasa, automotif dan bioperubatan. Dalam 

kajian ini, dapat diketengahkan bahawa topik ini mendekati dasar revolusi industri keempat 

(4IR) negara melalui teknologi masa depan.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Additive manufacturing (AM) is defined by the French Standard NF E 67-001 

AFNOR (2011) as the method of creating three-dimensional objects by slicing material 

onto a CAD model and saving the file in Standard Tessellation Language (.STL) 

format. Figure 1.1 shows the AM process, where the STL (Figure 1.1(a)) represents 

the actual design that dictates the size and shape of the component. As a result of the 

exquisite triangulation, a high-quality product can be produced. The programme 

combines the file into layers (Figure 1.1(b)), which are sent to the AM device (Figure 

1.1(c)) as instructions for constructing the components (Figure 1.1 (d)) (Kusuma,

2016). In general, the AM method requires the material to be metal powder. However, 

fused deposition modelling (FDM) uses material in wire form. This tool less process 

may manufacture excellent metallic parts precisely and reduce the finishing procedures 

like polishing, sanding, curing, or filing. Also, programmed tool paths such as 

undercuts and draught angles are not required for this technique.

Figure 1.1 The Process of AM Method (a) Creation of Electronic Design File 
(.STL) using CAD, (b) Modelling of Software Slices into Cross-Sectional Layers, (c) 
AM Machines Following the Design, (d) Production of Final Object.

Popular additive manufacturing processes are photopolymerization, material 

jetting, material extrusion, powder bed fusion, binder jetting, sheet lamination, and 

directed energy deposition, as shown in Figure 1.2. Photopolymerization uses the
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stereolithography and digital light processing (DLP) methods, where cross-section of 

a part of the liquid resin's surface is traced by a laser beam. The resin is inserted and 

immersed in a chemical bath. The cross-section of the part is swept across with a blade 

and re-coated with new material. The material jetting uses the drop-on technique 

similar to multi-jet modelling (MJM). The material is deposited via a nozzle that 

moves horizontally across the build platform, with the print head above it. Then, the 

material layer is hardened or cured using ultraviolet (UV) light. In contrast, binder 

jetting is a printing technique that uses glue or binder to be jetted from an inkjet print 

head using the powder bed inkjet 3D printing (PBIH) method. On top of the previous 

layer, a new layer of powder is distributed with the roller. The jetted binder is then 

printed on the next layer and bonded to the previous one. Material extrusion is a fuse 

deposition modelling (FDM) technique. The material is drawn through a heated nozzle 

and then deposited layer-by-layer. The layers fuse upon deposition as the material is 

in a melted state. Powder bed fusion is the typical technique used for selective laser 

sintering (SLS), selective laser melting (SLM), and electron beam melting (EBM). The 

material powder layer is spread over the build platform, and the laser fuses the layer 

powder. The new layer of powder is applied by roller or blade. Furthermore, the next 

layer is then mixed and applied (B. K. Gu et al., 2016). The technique is repeated until 

the model is complete. However, the aggregate powder in the powder bed is preheated 

by the SLS machine. Sheet lamination uses a metal sheet positioned on the cutting bed, 

referred to as laminated object manufacturing (LOM). The laser beam cuts the 

contours of each layer. Then, the material is bonded with the previous layer using 

adhesive or glue activated by hot rollers. Directed energy deposition (DED) consists 

of laser metal deposition with the nozzle mounted on a multi-axis arm moveable in 

multiple directions. The material is melted when the material is deposited using a laser, 

electron beam, or plasma arc. In addition, the material is applied in layers and solidified 

to manufacture or repair an existing object.
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Figure 1.2 AM Technologies with Different Methods and Techniques (Cotteleer 
et al., 2014).

SLM (selective laser melting) is a revolutionary additive manufacturing (AM) 

process that first appeared in the late 1980s (Nolan, 2014). This procedure begins with 

slicing the STL-formatted 3D CAD file data and creating a 2D image of each layer. 

Then, the data file is transferred to a pre-processing software application. The software 

provides settings, physical supports, and values to the file, allowing the object to be 

created by many types of additive manufacturing machines. Following the design, the 

SLM emerges the raw materials until the final object is produced.

In SLM, the part is constructed on top of a base plate or substrate in the build 

cylinder. A feed container is located next to the build cylinder (also called powder 

depositor). By lowering the build cylinder and elevating the feed container, the powder 

depositor evenly deposits a thin layer of powder metal on top of the metal substrate 

plate. Following layer deposition, a cross-section of the object to be constructed is 

scanned with a laser emitting hundreds of watts of power, such as an Nd: YAG or

3



ytterbium fibre laser (Seok et al., 2020). These cross-sections are generated using the 

CAD model preparation tools. Heat is applied to the material via scanning the powder 

layer's surface, which absorbs the energy. The layer powder melts, and the molten pool 

immediately solidifies. The material that has consolidated begins to form the product. 

Then, the build platform is lowered by the thickness of the layer, and a powder 

depositor is used to deposit a fresh layer on top of the previous one (Wits et al., 2021). 

The technique continues layering until the part is finished, as shown in Figure 1.3. The 

whole printing process is carried out in a chamber with nitrogen or argon-based inert 

gas environment. SLM techniques were selected for this study since the SLM methods 

are suitable to produce a high-quality, dense pack, and surface finish, particularly for 

metal alloys such as Ti6Al4V.

Figure 1.3 Process of SLM (Sidambe, 2014).

Powder metals and wire that AM use must fulfil two requirements, such as 

excellent weldability to prevent cracks during solidification and spherical particles 

with a size of a few microns to ensure adequate packing density, and uniformity of the 

powder deposition. The most frequent and mature metallic alloys produced by AM are
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Ni-based superalloys (Inconel 625, 718 and Hastelloy X), tool steels (H13 and 

maraging 300), Co-Cr alloys (Co28Cr6Mo), Al-based alloys (AlSi12, AlSilOMg, 

5083, 6061, 7050), and Ti-based alloys (commercial purity grade 1, grade 2, Ti6Al4V).

Ti6Al4V powder alloy is most widely utilised for SLM techniques to produce 

medical devices and parts. It has a high-temperature stability, excellent specific 

strength, attractive mechanical properties, corrosion resistance, high strength, 

lightweight, and low density to make a high-performance part. It is considered more 

substantial than some other titanium compounds (Kadirgama et al., 2018).

Today, Ti6Al4V powder is mainly used in the SLM method and considered 

more robust than some other titanium compounds. It has been widely used in 

biomedical, space, military, aerospace, and automotive industries (ISO 1997). 

According to Luo et al. (2020), SLM is used to construct scaffold materials with 

diamond cellular structures to meet the load-bearing function of bone tissues (Luo et 

al., 2020). Fiocchi et al. (2020) revealed that the Ti6Al4V trabecular structure 

produced by SLM decreases vibration as in the application of dampers on aerospace 

parts.

1.2 Problem Statement

The quality of produced parts from SLM is significantly affected by various 

manufacturing parameters of the machine. The denser titanium alloy resulted in an 

increase in energy density, where scan speed majorly contributed to optimum 

condition. C. Han et al. (2018) revealed that the micropores were presented from 

0.01% to 3.18% on the titanium alloys cube produced by SLM. Seifi et al. (2016) 

reported that Ti6Al4V produced by SLM contained defects such as voids and lack of 

fusion, which ultimately affected their mechanical properties. A study by Galarraga et 

al. (2016) suggested an average of 0.09% porosity on Ti6Al4V samples fabricated 

from the SLM method and these samples obtained irregular shape and spherical shape 

on the surface (balling effect). An experiment by M. Tang et al. (2021) found that the 

highest percentage of density was higher than 98.7% for Ti6Al4V samples and
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observed that the powder was not sufficiently melted. It was confirmed that 

insufficient energy density caused inappropriate scanning parameters during the 

fabrication process, which resulted in a defect of the product. Hence, optimisation of 

SLM process parameters is necessary to improve the quality of the final product. The 

contribution of this research is to enhance the density up to 98.7% of the Ti6Al4V 

samples. Therefore, this work explores the effects of SLM parameters including laser 

power, scanning speed, and hatching distance to reduce the defects and increase the 

density.

In this study, the influence of laser power, scanning speed, and hatching 

distance was examined to enhance the quality of the samples, particularly related to 

the balling effect in the creation of microcracks and micropores. Besides, improving 

the parameters showed an increase in the quality of products with regards to surface 

morphology related to the balling effect at their peak value. The balling and microcrack 

effect were obtained the major defects on this research. However, the hardness of the 

Ti6Al4V parts needs to study for prove that the fabricated part has appropriated 

quality. An experimental study was initially conducted to characterise the nature of the 

SLM-processed titanium compound, especially the impact of SLM parameters. Here, 

the optimum parameter to manufacture Ti6Al4V parts was found and should be 

utilised with the optimum value of the SLM parameter to produce bones and dental 

devices.

1.3 Aims and Research Objectives

This research aims to conduct an experimental study of enhancing 

manufacturing parameters with Ti6Al4V alloy using an SLM machine. The research 

objectives for this study are as below:

(a) To characterise the surface morphology, balling effects, hardness, and porosity 

of the Ti6Al4V fabricates using SLM at different parameters.
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(b) To enhance the SLM parameters for improving the packing density of Ti6A14V 

using the orthogonal experimental design (OED).

(c) To propose the lightweight lattice structure by comparing the compression 

strength and energy absorption of mechanical properties using the optimum 

conditions of the SLM parameters.

1.4 The Significance of the Research

SLM technology has the potential to increase innovation, minimise materials, 

compress the supply chain, and reduce waste. SLM allows manufacturing prototypes 

and parts on-demand, while saving time during development, design, and 

manufacturing processes without using any tooling. SLM technique is able to fabricate 

complex parts without additional cost compared to conventional manufacturing. This 

research has contributed to the enhancement of SLM parameters such as laser power, 

scanning speed, and hatching distance to reduce the defects and improve the packing 

density, focusing on medical and aerospace devices. Moreover, the global AM market 

in 2020 was estimated at 12.6 billion USD on average. Over the next three years, it is 

expected to grow by 17% and continue to reach 37.2 billion USD in the year 2026 

(Roberts, 2021). The prediction on the AM market is shown in Figure 1.4.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

Figure 1.4 Estimated Market Growth for AM (Roberts, 2021).
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Besides, additive manufacturing is one of the pillars of the Industry Revolution

4.0 (IR4.0), which is related to the latest manufacturing technology. AM technology 

is ready to be implemented together with internet of things (IoT) and connected to 

other machines through big data, which will create more intelligent machines. This 

technology gives an entirely automated process to a factory for production and 

transforms it into smart manufacturing (Idris, 2019). Nowadays, with the capabilities 

to manufacture and directly use parts as a functional component, the development of 

4D and 5D printing is introduced as the upcoming technology for AM research.

During the COVID-19 pandemic, the AM business market has been affected 

due to supply chain disruption, social distancing and remote working. However, 

according to the survey from Hubs conducted in February 2021, the overall AM market 

experienced unexpected growth. The results were evaluated that 83% of AM 

businesses maintained and increased their AM usage, as shown in Figure 1.5. The 

significant factors of the growing usage of AM have been due to filling up demands of 

personal protective equipment (PPE) in producing masks and face shields (Roberts,

2021 ).

Not effected

Decreased

Increased

Figure 1.5 Effect of COVID-19 on AM Usage (Roberts, 2021).



1.5 Scope and Limitation of the Research

This study focused on the optimisation of SLM parameters. The parameters of 

manufacturing were limited to laser power, scanning speed, and hatching distance. 

However, the laser beam diameter, layer thickness, and machine build size were not 

covered in this research.

The titanium alloy grade 5 or Ti6Al4V was employed in this experiment. The 

material was supplied by SLM Solutions Group AG, which was suggested by the 

machine fabricator and prohibited to be mixed with other materials with the reason of 

protecting the environment and maintenance of the machine. Additionally, the grain 

size for Ti6AL4V powder was fixed at 30 |am due to the quality of the product 

fabrication.

The lattice structure has been designed based on the BCC structure and 

compared. The diameter of struts has been limited to 1 mm to calculate the shrinkage 

of the lattice structure parts. Additionally, this study compared and investigated the 

energy absorption capability and mechanical properties of lattice structures made of 

Ti6Al4V and fabricated by the enhancement SLM process.

The SLM machine was utilised as the AM technique in this research. The 

capabilities and accuracy of the SLM technique were outstanding for Ti6Al4V 

fabrications. Moreover, the ability to fine-tune the parameters has great significance 

in fabricating the sample. Notably, the only AM machine available in Malaysia is at 

KKTM Kuantan, Pahang.

1.6 Thesis Outline

For this work, five chapters are presented. In Chapter 1, the research objective, 

aims, and limitations of this work are discussed. In Chapter 2, the literature review is 

elaborated, whereby, the differences between advanced additive manufacturing and

9



traditional methods are presented, and the types of technology, and parametrics 

(including powder technology) are revealed. In Chapter 3, the material and processes 

that were used in this study are disclosed, followed by flowcharts, sample 

characteristics, optimisation technique, and including mechanical properties. In 

Chapter 4, the resulting interpretation is scrutinised whereby, all results from the 

energy density, morphology, and mechanical analysis are shown. Furthermore, the 

results from the experiment and the field emission scanning electron microscopy 

(FESEM) are illustrated and described in detail pertaining to surface morphology, 

micropores, and microcracks. In Chapter 5, the conclusion for all the research findings 

is discussed. The main findings of this thesis regarding improvement of the new 

parameter by using the Taguchi method and reduction of the porosity on the process 

parameter of SLM are explained.
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