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ABSTRACT 

Human Activities Recognition (HAR) using mobile phone devices provides 
valuable contextaware information about the type of activities individuals perform 
within a time interval. HAR leverages sensory data available on today's sensor-rich, 
cheap, and portable mobile phones. It enables mobile phones to provide personalized 
support for many healthcare and well-being applications. It also has significant 
contributions to robotic, homeland security and smart environments. However, current 
recognition systems based on mobile phone sensors have observable issues in 
recognizing composite activities that occur concurrently or interleave i.e., complex 
activities, limiting their use in real-world applications. In those activities, the existence 
and variations of each activity as well as the order and length may vary. In this 
research, the issues of low recognition accuracy and high computing cost of complex 
human activities using mobile phone sensors are addressed. The composition and 
variations of human activity are examined as factors that impact the complexity of 
activity recognition. This research proposes to increase the quality of extracted features 
to increase the recognition accuracy with less resource consumption. It proposes 
extracting the wrist velocity as a feature for recognizing the performing arm’s complex 
activity. The wrist velocity feature is task oriented. Using the task-oriented wrist 
velocity feature will help to reduce recognition errors and therefore increase 
recognition accuracy. For this purpose, an extraction method for the wrist velocity 
feature is developed. In addition, the developed method is applied to recognize 
complex human activities using the Complex Activity Recognizer through Wrist 
velocity system (CARWV). Firstly, the extraction method begins by integrating the 
accelerometer and gyroscope data of the smartphone, which is placed on the upper arm 
and forearm. The integrated data is used to calculate the rotational angles of the upper 
arm and forearm. Then, the calculated rotational angles and lengths of the upper arm 
and forearm are used to calculate the position and the velocity of the wrist while 
performing the activity. Secondly, in the proposed recognition system (CARWV), the 
complex activity is broken into tasks that are represented by basic arm movements. 
The wrist velocity while performing the basic arm movements is extracted. The 
decision tree classifier is used to recognize the basic arm movements through the 
extracted feature. Then, the existing and order of recognized basic arm movements in 
the complex activity are used as features for recognizing the complex activity by 
measuring the similarity using the distance metric. The experiments demonstrate the 
validity of the task-oriented property of the extracted feature. The experiments also 
show increased recognition accuracy when using the proposed system up to 86% over 
performance for the state-of-the-art works, with 13 sec execution time and 31264 kb 
allocated memory in a notebook computer with Core i7 processor and 8GM memory. 
This study can facilitate future research in other fields where performance and limited 
resources are critical quality factors such as robotics and Wireless Sensor Networks 
(WSN).  
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ABSTRAK 

Pengenalpastian aktiviti manusia (HAR) menggunakan peranti telefon mudah alih 
menyediakan maklumat konteks yang berharga tentang jenis aktiviti yang dilakukan oleh 
individu dalam sesuatu selang masa. HAR memanfaatkan data sensori yang terdapat pada 
telefon bimbit pada hari ini yang dipenuhi dengan sensor, murah dan mudah alih . Ia 
membolehkan telefon mudah alih memberi sokongan peribadi untuk pelbagai aplikasi 
penjagaan kesihatan dan kesejahteraan. Ia juga memberi sumbangan penting kepada bidang 
robotik, keselamatan tanah air serta persekitaran pintar. Walau bagaimanapun, sistem 
pengenalpastian semasa yang menggunakan sensor telefon bimbit mempunyai masalah dalam 
mengenal pasti aktiviti komposit yang berlaku secara serentak atau selang masa, iaitu aktiviti 
kompleks, , menghadkan penggunaannya dalam aplikasi dunia sebenar. Dalam aktiviti 
tersebut, kewujudan dan sampel setiap aktiviti serta susunan dan jangka masa aktiviti tersebut 
mungkin berbeza-beza Dalam kajian ini, isu ketepatan pengenalpastian yang rendah dan kos 
pengkomputeran yang tinggi untuk aktiviti manusia yang kompleks menggunakan sensor 
telefon bimbit ditangani. Komposisi dan variasi aktiviti manusia dikaji sebagai faktor yang 
memberi kesan kepada kerumitan pengenalpastian aktiviti. Kajian ini bercadang untuk 
meningkatkan kualiti ciri yang diekstrak supaya dapat meningkatkan ketepatan 
pengenalpastian dengan penggunaan sumber yang rendah. Ia mencadangkan untuk 
mengekstrak halaju pergelangan tangan sebagai ciri untuk mengenal pasti aktiviti kompleks 
lengan. Ciri halaju pergelangan tangan adalah berorientasikan tugasan. Dengan menggunakan 
ciri halaju pergelangan tangan berorientasikan tugasan akan membantu mengurangkan. 
kesilapan pengenalpastian dan oleh itu meningkatkan ketepatan pengenalpastian. Untuk tujuan 
ini, kaedah pengekstrakan untuk ciri halaju pergelangan tangan dibangunkan. Selain itu, 
kaedah yang dibangunkan digunakan bagi mengenal pasti aktiviti kompleks manusia 
menggunakan Pengenalpastian aktiviti kompleks melalui Sistem HalaJu Tangan (CARWV). 
Pertama , kaedah pengekstrakan bermula dengan mengintegrasi data pecutan dan giroskop 
telefon pintar yang diletakkan pada bahagian lengan atas dan lengan bawah. Data yang 
diintegrasi digunakan untuk mengira sudut putaran lengan atas dan lengan bawah. Kemudian, 
sudut putaran yang dikira dan pajang lengan atas dan lengan bawah digunakan untuk mengira 
posisi dan halaju pergelangan lengan semasa melakukan aktiviti. Kedua, dalam sistema 
pengenalpastian yang dicadangkan (CARWV), aktiviti kompleks dibahagikan kepada tugasan 
mengikut pergerakan asas lengan. Halaju pergelangan tangan semasa melakukan pergerakan 
asas lengan diekstrak. Pengkelasan pokok keputusan digunakan untuk mengenali pergerakan 
asas lengan melalui ciri yang diekstrak. Kemudian, urutan pergerakan asas lengan yang sedia 
ada dan mengikut susunan dalam aktiviti kompleks t digunakan sebagai ciri untuk mengenal 
pasti aktiviti kompleks dengan mengukur persamaannya menggunakan metrik jarak. Ujikaji 
menunjukkan kesahihan ciri berorientasikan tugasan bagi ciri yang diekstrak . Ujikaji juga 
menunjukkan peningkatan ketepatan pengenalpastian apabila menggunakan sistem yang 
dicadangkan sehingga 86% berbanding prestasi untuk kaedah-kaedah terkini, dengan masa 
pelaksanaan 13 saat dan memori yang diperuntukkan 31264 kb menggunakan komputer 
notebook dengan pemproses Core i7 dan memori 8GM. Kajian ini boleh membantu kajian lain 
di masa hadapan dalam bidang lain di mana prestasi dan sumber yang terhad merupakan faktor 
kualiti yang kritikal seperti robotik dan rangkaian sensor tanpa wayar (WSN)  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

A paradigm shift is occurring in the field of computing technology as 

computing devices become progressively smaller and more powerful, from previously 

utilizing the desktop PC to relying on a more distributed and embedded form of 

computing referred to as ubiquitous computing (Weiser, 1991). Ubiquitous computing 

deals with the integration of technology in everyday objects with the aim of providing 

people with technological means that can help ease their everyday life.  

One of the most important topics in ubiquitous computing is context (Abowd 

et al., 1999; Cruz, 2019). The use of context is important in interactive applications 

particularly when the user’s context is changing rapidly such as the rapid change in 

smartphone devices. Context is any information that can be used to characterize the 

situation of an entity. There are four primary context types for characterizing the 

situation of a particular entity i.e. location, identity, time, and activity. 

Activity plays an important role in context awareness, since it is considered as 

one of the four most important context types while the other three types (location, 

identity and time) can be acquired quite precisely by now. Human activities 

recognition (HAR) can provide valuable context-aware information about the type of 

activities/routines individuals perform within a time interval (Ortiz, 2015). Activity 

context-aware information can be acquired using different sensors such as video 

captures, ambient, wearable sensors, and sensors of mobile devices. 

Current smartphones have rich sensors (Abdallah et al., 2015) such as the 

accelerometer and gyroscope. These smartphone sensors are more advantageous than 
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other sensors such as wearing sensors, ambient sensors, and camera (Reyes Ortiz & 

Jorge Luis, 2015). They are embedded within the smartphones so that users do not feel 

burdensome when carrying them throughout the entire day. The sensors are also 

inexpensive which significantly helps to reduce the cost of setup and energy 

consumption compared to ambient sensors. In addition, they are portable and provide 

some degree of privacy compared to a fixed camera. Thus, these privileges provide 

opportunities for potential use in several applications as a human activity recognition 

device. 

Activity recognition using smartphone devices focuses on inferring the current 

user’s activities by leveraging on the sensory data available on today's sensor-rich, 

cheap, and portable smartphones (Abdallah et al., 2015). Being able to recognize the 

state of the user enables the smartphones to provide the corresponding services based 

on what the user is doing. For example, assuming that the phone detects that the user 

is about to leave the room and its weather application indicates that it will rain later, a 

reminder will pop up with a message reminder of “Bring an umbrella. There is a high 

probability of rain” (Abdallah et al., 2015). 

Current works on HAR using smartphones mainly focus on simple single 

locomotion activities such as walking, running, biking, jogging, static (stationary), 

walking upstairs and walking downstairs. In real-world situations, human activities are 

often performed in complex manners. These include a single actor that performs 

interleaved and concurrent activities as well as multiple actors that perform a 

cooperative activity (Chen et al., 2012). 

Recognizing complex activities enables the smartphone to provide 

personalized support for various real world healthcare and well-being applications (Liu 

et al., 2015) such as human-machine interaction (e.g. robot), as well as those in security 

and military domains whereby performance and limited energy are critical quality 

factors.  

More recently, several studies have been conducted investigating the 

recognition of complex activities using smartphones. However, the reported 
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recognition accuracy of previous works with reference to computing cost is 

unsatisfactory in relation to complex activities using smartphone sensors (Yang, et al., 

2019; Yang, et al., 2018; Ramasamy et al., 2018). Firstly, these works have low 

accuracy in recognizing complex activities. Secondly, works which obtained higher 

results than the recognition accuracy often suffer from high computing cost. The 

relationship between recognition accuracy and computing cost issues in recognizing 

complex human activities could be explained as follows.  

Firstly, recognition accuracy of human activities is assessed by measuring two 

classes of error the recognition method can make: false positives and false negatives. 

A false positive means that the method wrongly considered two different activities as 

same activity (also called inter-activity similarity error), while a false negative means 

the method failed to match two same activities (also called intra-activity variability 

error). Complex human activities have challenges which cause the occurrence of such 

errors of recognition, particularly intra-activity variability error. For example, a 

complex activity comprises more than one activity that might be performed in 

changing order such as in interleave or parallel manner (composition property). 

However, the activities should be in particular structures and sequences to be 

recognized by current recognition methods (Liu et al., 2016).  

Also, several factors can affect the performance of activity, such as physical 

body differences or environmental state in which the activity is performed. Hence, the 

same activity may be performed differently by different subjects (variation property). 

In addition, the current features, which are used to recognize complex human 

activities, provide general information about the target activity which may not be 

suitable for describing all activities uniquely and for differentiating between the 

variations of activities (Preece et al., 2009). Furthermore, the number of proposed 

features is huge and extracting them could be extremely difficult for a microprocessor 

(Rosati et al., 2018). This is partly due to the broad range of human activities as well 

as the rich variation in how a given activity can be performed (Chen et al., 2020). 

Those challenges might confuse the recognition method which is trained in particular 

patterns and order. Thereby, the recognition methods may consider the variations of 
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activity as new and different activities thus leading to recognition errors (Younes et 

al., 2018).  

Secondly, the aforementioned challenges of recognizing complex human 

activities could be addressed by training the recognition model using a larger amount 

of data that captures as much of the variability as possible. However, processing such 

a substantial amount of reliable data would entail higher overhead due to the 

recognition method, so it is computationally expensive. On the other hand, increasing 

the operations of the recognition method to improve its ability to differentiate between 

similar activities is also computationally expensive, especially with mobile devices 

which have limited resources (Kim et al., 2009; Alzahrani & Kammoun, 2016; Minnen 

et al., 2006; Minnen et al., 2006; McGeoch, 2012). 

Another promising system is by increasing the recognition accuracy by 

increasing the quality of extracted feature that differentiates the activities. This 

increases the robustness of the recognition method by learning the recognition model 

using features that are common to activity variations and of which represent the 

activity uniquely with less resource consumption. Following the later system, this 

study proposes the extraction of the wrist velocity feature to address the issues of low 

accuracy in recognizing complex activities and high computing cost. 

1.2 Problem Statement 

The use of smartphones for the recognition of human activities enables the 

provision of personalized support for many healthcare and well-being applications as 

well as provides significant contributions to the robotic, security and military domains. 

However, the current recognition systems of concurrent and interleave (i.e. complex) 

human activities used in smartphones have observable issues that limit their usage in 

real world applications. In this research, three of these issues are addressed. The main 

issue is related to the performance of recognition systems and the other two influences 

in this performance. 



 

5 

The main issue is in the overall performance of the recognition systems. The 

issue is on how to get high accuracy while keeping the resource consumption low. The 

proposed system should have high accuracy in recognizing the various durations and 

sequences of composite activities. In addition, it should have light computation for 

smartphone usage. Several benchmark works had attained relatively high accuracies, 

but had demonstrated major resources consumption. For example, the SC2 (Liu et al., 

2016) and SACAAR (Saguna et al., 2013) methods demonstrated relatively high 

recognition accuracies. However, the SC2 (Liu et al., 2016) takes a long time to 

evaluate a large amount of candidate shapelets to find the discriminative shapelet 

required and consumes the smartphone battery. Meanwhile, the SACAAR (Saguna et 

al., 2013) uses HMM classifier which entails heavy computing for complex activity 

recognition.  

The other issue is choosing the right features to describe human activities. The 

great majority of HAR applications use time-domain and frequency-domain features. 

However, those features are affected by the variations of activities (Preece et al., 2009). 

The recognition methods may consider the variations of activity as new and different 

activities thus leading to recognition errors. Furthermore, the number of proposed 

features is huge and extracting them could be extremely difficult for a microprocessor 

(Rosati et al., 2018). In addition to the current statistical features such as time or 

frequency domain features, several benchmark works had used other techniques to 

describe human activities. For example, the SC2 method (Liu et al., 2016) uses the 

time series shapelet to describe the activities. Meanwhile, the PEMAR method (Vaka 

et al., 2015) splits the complex activities into smaller clusters which represent the 

simple activities. Both shapelets and clusters are also effected by the subject 

performance style of activity. 

Furthermore, there is the issue of choosing the right features to describe how 

human activities are combined to form the related complex activity. The complex 

activity comprises more than one activity that might be performed in changing order 

such as in interleave or parallel manner. Some of the recognition methods classify the 

complex activity as a whole unit. It considers simple and complex activities as equal 

classification labels. Hence, it uses the same classification methods to recognize both 
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(Garcia-Ceja & Brena, 2013; Dernbach et al., 2012). But complex activities have 

several and varied actions that reduce recognition accuracy when they are classified 

directly as one activity (Peng et al., 2016). On the other hand, other recognition 

methods deal with a complex activity as a combination of simple activities (Liu et al., 

2016; Vaka et al., 2015; Saguna et al., 2013). They delineate a complex activity as a 

predefined and fixed set of simple activities which in turn are predefined by human 

knowledge. For example, the SACAAR (Saguna et al., 2013) uses Context-Driven 

Activity Theory (CDAT) to define the complex activities (CA). For each complex, it 

defines tube attributes such as simple A and context C attributes, their weights (Waca), 

and situation (S). Meanwhile, the SC2 method (Liu et al., 2016) uses the predefined 

rules based on common knowledge to describe how simple activities form the complex 

activity. Both predefined tube and rules depend on the domain knowledge. However, 

the dependence on expert opinions to define simple and complex activities produces 

discrepancies and leads to the loss of fine-grained components in complex activities.   

Thus, a lightweight recognition system to get high recognition accuracy for 

various durations and sequences of composite human activities is desired to use them 

in real world applications. The related current works which studied the recognition of 

complex human activities and reviewed the features and classification methods used 

are discussed in Chapter 3 (e.g., Saguna et al., 2013; Liu et al., 2016; Vaka et al., 2015). 

Also in other domains, there are works which used the trajectory velocity as a feature 

for recognizing human activity and for other applications (e.g., Vatankhah et al., 2016; 

Xu & Ding, 2017; Svinin et al., 2019). 

1.3 Research Questions 

To address the issues as stated in the previous section, the following research 

questions were formulated: 

(a) What are the current methods used to recognize the complex activities 

with smartphone sensors? 



 

7 

(b) What is a possible method to increase the recognition accuracy of 

complex human activities with smartphone sensors? 

(c) What is a possible method to minimize usages of smartphone resources 

during complex activity recognition? 

(d) How do we evaluate the proposed method? 

1.4 Research Objectives 

This research proposes to increase the quality of the extracted feature so as to 

increase recognition accuracy with less resource consumption. It proposes extracting 

the wrist velocity feature which contains the task oriented property. The goal of this 

research is to develop an extraction method for wrist velocity feature. Then, the 

extracted feature is applied with other techniques to recognize complex human 

activities in order to improve recognition accuracy and reduce resource consumption. 

Thus, the research objectives that guide this study are: 

(a) To identify the current methods used for recognizing complex human 

activities using smartphone sensors. 

(b) To develop an extracting method for the task oriented wrist velocity 

feature. 

(c) To propose a recognition system for complex human activities by using 

the extracted wrist velocity feature. 

(d) To evaluate the proposed system in terms of recognition accuracy and 

resource consumption. 
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1.5 Contributions  

In this study, to address the issues of low recognition accuracy and high 

resource consumption in recognizing complex human activities using smartphone 

sensors, the following contributions can be achieved from the results obtained:  

(a) Developing an extracting method for task oriented wrist velocity 

feature from integrated smartphone sensors. This task oriented feature was inspired by 

the principles and rules that control body movements from a neurophysiological 

perspective. Those rules are used by the Central Nervous System (CNS) to coordinate 

different body parts. The extracted feature is strongly affected by the perfomed 

activity, hence reducing false positive errors. On the other hand, it is less affected by 

the same activity when perfomed by different subjects, hence reducing false negative 

errors. Reducing those errors helps to increase recognition accuracy. Extracting the 

wrist velocity feature is fundamental to this research. The result of experiments 

showed that wrist velocity feature is sufficient to differentiate between the activities. 

For example, both the Coffee time and Sandwich time activities share similar arm 

movements when reaching for items (e.g., the bread, cheese, tea, or cupboard) and 

moving the hand near the mouth to sip coffee or eat sandwich. But from the results of 

experiments using wrist velocity, there is no confusion between them. 

(b) Proposing a recognition system for complex human activities by 

applying the extracted task oriented feature with other techniques. The system is called 

Complex Activity Recognizer through Wrist Velocity (CARWV) system. To the best 

of our knowledge, for the first time the CARWV synthesized different techniques 

targeted to reduce the composition and variation of complex human activities. The 

CARWV contributes further to our understanding regarding the effect of reducing 

these two factors i.e. the composition and variation of complex human activities in 

addressing the issues of low recognition accuracy and high resource consumption. The 

CARWV yields superior results in improving recognition accuracy with less resource 

consumption which addresses the main issue in this research. The system consists of 

three layers namely the sensory layer, low level activity recognition layer, and high 

level activity recognition layer. It was built by the MATLAB software. To reduce the 
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composition of the activities and increase recognition accuracy, our system breaks up 

the complex activity into tasks which are represented by basic arm movements. Wrist 

velocity feature is extracted from basic arm movements to address the second issue of 

suggesting the right feature to describe simple activities while reducing the effect of 

variation. Then, the extracted feature is used to recognize the basic arm movements by 

decision dree classifier. After that, the exist (histogram) and order (transition matrix) 

of recognized basic arm movements are used as features to recognize the related 

complex activity by measuring the similarity using distance metric. Using the 

histogram and transition matrix to recognize the complex activities allows us to 

identify the different ways and variations that those basic movements are combined to 

produce the complex activity which addresses the third issue in this research. 

(c) A dataset was collected to evaluate the CARWV system against other 

state-of-the-art activity recognition systemes. We collected data from 20 subjects 

performing three complex human activities. Additionally, we evaluated the dataset to 

recognize the complex human activities with another public dataset i.e. the opportunity 

dataset. In these two datasets, we conducted a series of experiments that were 

simulated on a personal computer with an Intel i7-7700K CPU and 8GM RAM 

capacity. 

(d) Establishing the superiority of the evaluation results of the CARWV in 

addressing the issues of low recognition accuracy and high resource consumption of 

complex human activities recognition. The proposed method (CARWV) was 

practically implemented and evaluated with other benchmarks. It obtained a 

recognition accuracy of 86% with a 13-second execution time and 31264 kb memory 

allocation. The results indicate the superiority of the CARWV in recognizing complex 

human activities with low computing cost compared to other state-of-the-art works. 

1.6 Scope of the Study  

In order to achieve the study objectives, the scope of the reseach was itemized 

as follows: 
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(a) The accelerometer and gyroscope of smartphones were used for activity 

sensing. The activity sensing could either be vision or ambient sensors as used 

in other works. 

(b) While most of the works in human activity recognition had focused on 

recognizing simple human activities such as running, walking, and jumping, 

this research addressed the recognition of complex human activities. It 

investigated the recognition of single user complex physical human activities 

in two datasets i.e. our own dataset and the Opportunity public dataset and their 

related set of basic arm movements. Our own dataset contains subjects that 

perform three complex activities i.e. preparing breakfast, preparing tea, and 

preparing a sandwich. Meanwhile, the Opportunity dataset involves four 

complex activities i.e. early morning moving, coffee time, sandwich time, and 

cleanup.  

(c) The complexity of human activity has different dimensions. The research 

examined two dimensions i.e. the composition and variations of human 

activity. These two factors could confuse the recognition methods which were 

trained in specific patterns and order and thereby leading to recognition error 

and reduction of recognition accuracy performance of the recognition systems. 

(d) Different factors influence the performance of the recognition systems of 

complex human activities which are collected using smartphone sensors. This 

research proposes to increase the quality of extracted features in order to 

improve the performance. 

(e) The formulated method was evaluated by recognition accuracy, F1 measure, 

execution time, and allocation memory criteria. Other performance 

measurements were also used for different purposes. 
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1.7 Significance of the Study  

The outcomes of this research would greatly contribute to the application of 

human activity recognition. The significance of this research are: 

(a) Recognition of complex activities using smartphones sensors which provides 

continuous health and medical data about the user’s real life  activities so as to 

give a better picture of his fitness levels and diagnosis of diseases that need 

longer periods of examination. This will improve the medical emergency 

response for people who suffer from critical conditions such as Parkinson’s 

Disorder. 

(b) Improvement of the performance recognition of complex activities that leads 

to the exploration of extensive studies in human-robot interaction, human 

computer interfaces, and smart homes. For example, inferring the robot to 

human activities will help the robot to coordinate the actions of search and 

rescue operations with the human rescue team. In addition, recognition of real 

life activities helps to improve the user’s experience by customizing the device 

or place's behavior depending on user status i.e. when he is outdoors, at the 

workplace, or at home. 

(c) Figuring out a lightweight method for recognizing human activities will help 

other devices that have limited energy resource such as wireless sensor 

networks (WSN) which have important military and security applications. 

Military-based applications could monitor soldier mobility in real-time for 

health status updates and training scenarios. Military sensing can include 

crawling, kneeling, or situation assessments, which can be critical for military 

missions. Security fields may use real-time mobility tracking for personnel on 

foot and detect enemy intrusion. 
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1.8 Thesis Organization 

This thesis is organized in six chapters as follows. The first chapter introduces 

the problem area and the research objectives that guide the study. In the second 

chapter, comprehensive reviews of literature on the system of recognizing complex 

human activities, comparison with other approches related to the proposed system for 

recognizing complex human activities as well as the limitations of the respective 

systemes are presented. In the third chapter, the operational framework that maps the 

objectives and the outcomes of the study are discussed. In addition, the methodological 

system concerning research data, research procedure and data analysis procedure are 

described and justified. In Chapter 4, the architecture of the proposed CARWV system 

is thoroughly explained along with discussions on the ways CARWV is used to 

recognize basic movements and complex activities and its key techniques and 

limitations. Chapter 5 addresses  the results of the study which include discussions on 

the evaluation process of the CARWV system. These include explanations on the 

experiments conducted to evaluate the capability of the CARWV system in 

recognizing complex human activities using smartphone sensors, experiments that 

compare the performance (i.e. recognition accuracy and F1 measure) and 

computational cost (i.e. total execution time and allocation memory) of our system 

with three state-of-the-art works. In addition, explanations on experiments conducted 

to test the effects of sensor modularity and window sizes in the recognition of complex 

activities using the CARWV are also presented in the chapter. Finally, Chapter 6 

highlights the contributions of this study and concludes the study.   

1.9 Chapter Summary 

This chapter focused on the identification and statement of problems as well 

specifications of the research scope. The objectives and the signficance of the research 

were also presented. The next chapter focuses on the review of literature that relates 

to studies on HAR and complex activity recognition using smartphone sensors.
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